
In-Situ Visual Exploration over Big Raw Data 1

Nikos Bikakisa, Stavros Maroulisa, George Papastefanatosa, Panos Vassiliadisa

aUniversity of Ioannina, Greece

Abstract

Data exploration and visual analytics systems are of great importance in Open Science sce-
narios, where less tech-savvy researchers wish to access and visually explore big raw data files
(e.g., json, csv) generated by scientific experiments using commodity hardware and without be-
ing overwhelmed in the tedious processes of data loading, indexing and query optimization. In
this paper, we present our work for enabling efficient query processing on large raw data files
for interactive visual exploration scenarios and analytics. We introduce a framework, named
RawVis, built on top of a lightweight in-memory tile-based index, VALINOR, that is constructed
on-the-fly given the first user query over a raw file and progressively adapted based on the user
interaction. We evaluate the performance of a prototype implementation compared to three other
alternatives and show that our method outperforms in terms of response time, disk accesses and
memory consumption. Particularly during an exploration scenario, the proposed method in most
cases is about 5-10× faster compared to existing solutions, and requires significantly less mem-
ory resources.

Keywords: Visual Analytics, Progressive & Adaptive Indexes, User-driven Incremental
Processing, Interactive Indexing, RawVis, In-situ Query Processing, Big Data Visualization,

1. Introduction

Open science practices have provided, in recent years, a huge number of datasets, being shared
in open access repositories. Many of these are produced, curated and consumed by scientists in
the form of raw data, i.e., files in raw formats like .csv, .json, etc. These users usually have lim-
ited skills in complex data management and analysis as well as limited resources or commodity
hardware for use. At the same time the tasks the users wish to accomplish are fairly typical and
involve having a quick overview and then exploring and analyzing the contents of a big raw data
file preferably by easy-to-use visual ways, such as 2D visualization techniques (e.g., scatter plot,
map), avoiding the tedious tasks of data loading, preparation and indexing.

As an example, consider a scientist (e.g., astronomer) who wishes to visually explore and an-
alyze sky observations stored in raw data files (e.g., csv) using an available datasets; e.g., Sloan

1To appear in Information Systems (IS), Elsevier, 2020

Digital Sky Survey (SDSS)2, Palomar Transient Factory3, Zwicky Transient Facility4, Large
Synoptic Survey Telescope5, in which hundreds of millions of sky objects (e.g., stars) are de-
scribed. First, the scientist selects the file and visualizes a part of it using scatter plots with the
sky coordinates (e.g., right ascension and declination) [23]. Then, she may focus on a sky region
(e.g., defining coordinates and area size), for which all contained sky objects are rendered; move
(e.g., pan left) the visualized region in order to explore a nearby area; or zoom-in/out to explore
a part of the region or a larger area, respectively. She may also click on a single or a set of
sky objects and view details, such as name and diameter; f ilter out objects based on a specific
characteristic, e.g., diameter larger than 50 km; or analyze data considering all the points in the
visualized region, e.g., compute the average age of the visualized objects. The major challenges
of such exploration scenarios include:

− First, how can we support a non-expert user with limited programming or scripting skills
to access and analyze raw data from a file through visual ways, i.e., via an intuitive set of
visual rather than data-access (e.g., querying) operations, without being overwhelmed with
any data pre-prossessing tasks, such as extracting, loading and indexing data to a database?

− Next, how can we keep the response time of such visual operations significantly small (e.g.,
less than 1sec) in order to be acceptable by the user?

− Finally, how can we perform the aforementioned operations in machines with limited com-
putational, memory and space resources, i.e., using commodity hardware?

Most experimental and commercial visualization tools perform well for ad-hoc visualizations
of small files (e.g., showing a trend-line or a bar chart) or over aggregated data (e.g., summaries
of data points, into which user can zoom in), which can fit in main memory. For larger files,
the tools usually require a preprocessing step for data to be loaded6, indexed (e.g., a spatial
index like R-tree) and handled either via a traditional database or a distributed storage hosted
in a non-commodity hardware. Further, many commercial RDBMs and visualization tools offer
also capabilities for querying external raw data files (e.g., external tables)7; however, they limit
themselves to recurrent file access each time a query is performed and achieve poor performance
[9], prohibitive for the interactive exploration purposes.

On the other hand, in-situ querying [48, 44, 9, 55, 67, 79, 68] is a recent trend, that aims
at enabling the on-the-fly querying over large sets of raw data, by avoiding the loading and
indexing overhead of traditional DBMS techniques. In such scenarios, large data files which do
not fit in main memory, must be efficiently handled on-the-fly using commodity hardware. The
techniques adopted in these scenarios, attempt to minimize the loading and I/O cost of querying
by progressively building an index for the raw file in main memory.

Most of these works, however, study the generic in-situ querying problem without focusing
on the specific needs for raw data visualization and exploration, and more specifically the need
for in-situ processing of a specific query class, that enables user operations in 2D visual explo-
ration scenarios; e.g., render data on a map, pan the visible area left or right, zoom or filter.

2www.sdss.org
3www.ptf.caltech.edu/iptf
4www.ptf.caltech.edu/ztf
5www.lsst.org
6For example, Tableau has limitations on the size of the data file that can be loaded for visualization [6].
7For example, Oracle [3], MySQL [1] and PostgresSQL [4] provide mechanism that enable SQL querying of csv files.

www.sdss.org
www.lsst.org

Although working in more than two dimensions or broader query classes is possible, both the
2.05-dimensional nature of the human eye [81] and the 2-dimensional nature of the media (being
paper or screen) make the key two-dimensional operators, like the aforementioned ones, being
fundamental, especially, for the initial part of the knowledge extraction process, which is data
exploration. Hence, the challenge in such scenarios is to achieve optimization of these specific
operations, such that visual interaction with raw data is performed efficiently on very large input
files using commodity hardware.

In this paper, we address the aforementioned challenge by developing a framework with spe-
cific, intentionally picked characteristics. Specifically, our proposed framework addresses the
need for (1) in-situ, interactive visual exploration scenarios of 2D plots (e.g., maps or scatter
plots); (2) over very large numbers of data points, residing in flat, external files on disk; (3) using
commodity hardware (thus, alleviating the need for highly distributed computer infrastructure);
and (4) without the overhead of a preprocessing step or the loading of data into a database. We
consider a set of fundamental visual operations that are transformed to access operations to the
raw data and propose query evaluation and optimization methods for improving their perfor-
mance, i.e., the user response time during exploration.

To this end, we develop the RawVis framework, which is built on top of a lightweight main
memory index, VALINOR (Visual AnaLysis Index On Raw data), constructed on-the-fly given
the first user query. The index organizes information regarding the raw data objects into tiles
in the 2D space; holds additional metadata in the tiles for enabling efficient analysis operations
and overviews; and, adapts its structure based on the user interaction. In our extensive experi-
ments we illustrate that the proposed framework reports 5-10× faster response times, during an
exploration scenario, compared to existing systems. Next we provide an overview of the RawVis
framework.

RawVis Framework Overview. In our working scenario (Figure 1), we consider that a user
visually explores and analyzes data stored in a large raw data file in disk using a 2D visualiza-
tion tool and technique (e.g., scatter plot, map). The visual interface makes use of our RawVis
framework for accessing and querying the data file and our framework maps visual operations
performed by the user to query operators on the data file.

As an example, let’s assume that the user initially selects two attributes (Ax and Ay) of the
file as the X and Y axis of the visualization. Ê The first time the user requests to visualize or
analyze the raw data, the raw file is parsed and a “simplified” initial version of the index is built,
organizing the data objects into tiles based on their Ax and Ay values and storing metadata for the
contents of each tile (Index Initializer). In parallel with the index construction, the first query is
evaluated during the file parsing (Query Evaluator). Ë All user’s visual operations (e.g., pan,
zoom, filter) are transformed to data access queries (Visual Operation Translator), which are then
Ì evaluated over the index structure (Query Evaluator). Í Following each query evaluation, the
index structure is adapted accordingly, reorganizing the objects’ grouping (Index Adapter). This
process, which results in the incremental (i.e., progressively) adaptation of the index following
the user interactions, constructs tile hierarchies, and recomputes and enriches metadata. During
the index construction or the query evaluation, the index structure may not fit in main memory;
in such cases, the Eviction Handler component stores parts of the index structure in the disk. Î
Finally, the results are returned to the user.

Index
Initializer

Eviction
 Handler

O
bj

e
ct

s

Attributes
A1 … Ax … Ay … Ad

o1 a1,1 … a1,x … a1,y … a1,d f1

o2 a2,1 … a2,x … a2,y … a2,d f2

 … …

on an,1 … an,x … an,y … an,d fn

File
Offsets

Raw Data Disk File

tilem tilej tileh …

Tiles on Disk

Ax

Ay

ok

oj

Qℓ

oi

VALINOR Memory Tile Index

Index
Adapter

Visual
Operation
Translator

Qℓ

2 3 4

RawVis Framework

visualization examples

on

 1 4 8

ok

oj

oi oj

oi

ok

user
interaction

parse
file

construct
index

read/write
tiles

Analytics
Processor

Query
Evaluator

Front-end

Statistics

render/pan/zoom filter analysisdetails
?

Visual Operations



o5

o2

o1

2

4

6

5results

data access
query Qℓ

oj

ok

oi

1

‘

*only in first Q
*

Figure 1: RawVis Framework Overview

Contributions. In this paper, we provide the following contributions:

− We formulate visual user interactions over raw data as data-access operations. Particu-
larly, we propose a set of visual operations for 2D exploration and we map them to query
operators over an underlying index.

− We design a main-memory index in the context of in-situ visual exploration over large raw
data. The index exhibits a hierarchical tile-based structure for grouping objects based on
X and Y dimensions, enriched with aggregated metadata (i.e., statistics about the contents
of a tile) for enabling and speeding up analytics.

− We introduce a user-driven initialization algorithm for building the index based on the first
user query. This methods is based on a locality based probabilistic approach that speeds
up the user interaction at the initial stages of the exploration. Also, we study the space
complexity of the proposed index.

− We design a query-based adaptation technique that adjusts the index structure based on
the user interaction. Also, we theoretically study the performance of the query evaluation
w.r.t. to the proposed adaptation method. Our adaptation algorithm splits the initial index
structure into more fire-grained tiles following the user exploration and achieves increased
performance especially for analytic tasks on the underlying data.

− We consider the case of memory constraints and we implement an eviction mechanism for
storing parts of the index in disk.

− We conduct an extensive experimental evaluation over two real-world and two synthetic
datasets. We evaluate the performance of our methods in terms of execution time, I/O
operations, memory consumption and scalability. Moreover, we compare our framework
with three competitors, i.e., MySQL, PostgresRaw [9], and R-tree, and we show that our
framework outperforms competitors both in execution time and memory consumption.
Particularly, during an exploration scenario, our approach in most cases is about 5-10×
faster compared to existing approaches.

A preliminary version of this work outlines some basic concepts of our framework [20].
Here, we significantly extend [20] as follows. (1) In Sections 2, 3, 4, we formulate the basic
concepts and provide the full details of the RawVis exploration model, the VALINOR index and
the basic query answering mechanisms, respectively. (2) In Section 5, we present two completely
novel extensions: (i) an extension to the initialization method of the index (Section 5.1); and (ii) a
new method for the adaptation of the index based on the user query (Section 5.2). Both methods
achieve greater performance in terms of response time compared to the initial baseline methods
presented in [20]. (3) In Section 6, we design a new method for storing the index in disk. (4) In
Section 7 we conduct extensive experiments with respect to [20] with two additional real datasets
for evaluating both the baseline and the newly introduced techniques.

Outline. The paper is organized as follows. In Section 2 we present fundamental concepts of
our framework, and in Section 3 we describe the proposed index. In Section 4 we present the
basic operations over the index, that of index initialization and query evaluation. Then, Section 5
describes advanced techniques for the index initialization and adaptation, respectively, and Sec-
tion 6 presents a disk-based implementation. Section 7 presents the experimental evaluation, and
Section 8 the related work. Finally, Section 9 concludes the paper.

2. Basic Concepts

In this section we define the basic concepts of the RawVis framework. Table 1 presents the basic
notations.

Raw Data File & Objects. We assume a raw data file F containing a set of d-dimensional
objects O. Each dimension j corresponds to an attribute A j ∈ A, where each attribute may be
numeric or textual. Each object oi contains a list of d attributes oi = (ai,1, ai,2, ..., ai,d), and it is
associated with an offset fi (a hex value) pointing to the “position” of its first attribute (i.e., ai,1)
from the beginning of the file F . Note that object entries can be either fixed or variable-length; in
the latter case they are separated by a special-character; e.g., CR for a text file, that precedes the
offsets. Note also, that we consider flat files, i.e., files containing objects that neither exhibit any
nesting or any other complex structure (e.g., JSON formats), nor refer to data located in other
files.

Visual Exploration Model. Given a raw data file F containing a set of d-dimensional objects,
the user arbitrarily selects8 two attributes Ax, Ay ∈ A, with numeric values that can be mapped
to the X and Y axis of a 2D visualization layout (e.g., a map, scatter diagram). The Ax and Ay

attributes are denoted as axis attributes, while the rest as non-axis.

8We assume that the user is familiar with the schema of the data file; otherwise, as a first step, she may have a preview
of it, in terms of loading a small sample.

Table 1: Common Notation

Symbol Description

F Raw data file

O, oi Set of d-dimensional objects, an object

fi Position of oi in the file F

A, A j, ai, j List of attributes, the jth attribute of the list, the value of attribute A j of the object oi

Ax, Ay Axis attributes

Φ, φ 2D visualized area, center of the visualized area

Q Exploratory Query

S, F, D, N Select, Filter, Details & Analysis part

OS, OQ Objects selected from S, Objects resulted from OS after evaluating F
Vx,y,D Values of axis attributes along with Details attributes’ values

VN Numeric values resulted from the Analysis part

(Vx,y,D,VN) Query result

I VALINOR index

T , t Set of tiles in the index, a tile

t.Ix , t.Iy Intervals of tile t

t.E Object entries in tile t

t.M Metadata of tile t

IP,AP,MH Initialization, Adaptation policy & Metadata handler

t.ES Objects of t that are included in the 2D area specified by S
RS

t 2D area of t that overlaps with the area specified by S
tQ Query subtile

The user selects to visualize a rectangular area Φ = (Ix, Iy,OΦ,DΦ,NΦ), called visualized
area, which is defined by the two intervals Ix = [x1, x2] and Iy = [y1, y2] over the axis attributes
Ax and Ay, respectively; i.e., Φ corresponds to the 2D area Ix × Iy. The visualized area, contains
a set of visible objects OΦ ⊂ O, for which the values of their axis attributes fall within the ranges
of that area. Each object oi ∈ OΦ is associated with a set of visual annotations DΦ presenting
values from a set of {A1, A2, ...Ak} non-axis attributes. Further, Φ is associated with a set of visual
annotations NΦ calculated from applying a set of N aggregate functions to all objects OΦ. The
OΦ, DΦ and NΦ can be empty sets.

We define a visual operation VO : Φ → Φ′ as a 2D transformation on the visualized area,
which transforms it to a new area Φ′ = (I′x, I

′
y,O

′
Φ
,D′

Φ
,N′

Φ
). The following basic visual opera-

tions are considered:

− render: visualizes all objects contained in the visualized area. Formally:
VOrender : Φ(Ix, Iy,∅,DΦ,NΦ)→ Φ′(Ix, Iy,OΦ,DΦ,NΦ). Note that the objects may be vi-
sualized as points or other visual elements.

− move: translates the boundary of the visualized area with shift constants kx and ky (i.e.,
number of pixels) on the X and Y axis, respectively. Formally:
VOmove : Φ(Ix, Iy,OΦ,DΦ,NΦ)→ Φ′(I′x, I

′
y,O

′
Φ
,D′

Φ
,N′

Φ
), where I′x = [x1 + kx, x2 + kx],

I′y = [y1 + ky, y2 + ky]

(a) Raw Data File (b) 2D Representation

…

File
Offset

f1

f2

f3

f4

f5

Asc Decl Age Diam

o1 21 11 3 7

o2 23 12 1 4

o3 11 1 7 6

o4 19 7 2 3

o5 29 18 4 8

O
b
je

ct
s

Attributes Decl

 10 20 30 Asc

o1

o5

o2

o4

o3

10

20

Decl

 10 20 30 Asc

o1

o5

o2

o4

o3

10

20

Q

(c) Exploratory Query

S.Ix = [19, 31]

S.Iy= [9, 22]

o5

o2

o1

o2

o1

o5

(d) Visualization
 Examples

o2

o5

o1

Figure 2: (a) Raw Data File (b) 2D Data Representation (c) Exploratory Query (d) Visualization Examples

− zoom in/out: zooms in/out the boundary of the visualized area keeping the point φ = (φx, φy)
inside Φ as fixed point with a zoom factor z%, with z ∈ R+.
Formally: VOzoom : Φ(Ix, Iy,OΦ,DΦ,NΦ) → Φ′(I′x, I

′
y,O

′
Φ
,D′

Φ
,N′

Φ
), where

I′x = (φx −
√

z
|Ix|

2
, φx +

√
z
|Ix|

2
), I′y = (φy −

√
z
|Ix|

2
, φx +

√
z
|Ix|

2
). VOzoom corresponds to

Zoom in operation when 0 < z < 1, and to Zoom out when z > 1. Note that this operation
assumes a scale on the X and Y coordinates and a subsequent translation to keep the area
center φ fixed.

− f ilter: excludes objects visualized in Φ, based on conditions over the non-axis attributes.
Formally: VO f ilter : Φ(Ix, Iy,OΦ,DΦ,NΦ)→ Φ′(Ix, Iy,O

′
Φ
,D′

Φ
,N′

Φ
), where O′

Φ
⊂ OΦ.

− details: visualizes annotations with values for non-axis attributes on every object included
in Φ. Formally: VOdetails : Φ(Ix, Iy,OΦ,∅,NΦ)→ Φ′(Ix, Iy,OΦ,DS ,NΦ).

− analyze: computes aggregate values for all objects included in Φ and visualizes them ap-
propriately as annotations of the entire area. Formally: VOanalyze : Φ(Ix, Iy,OΦ,DΦ,∅) →
Φ′(Ix, Iy,OΦ,DΦ,NΦ).

These operations may be combined in a sequence, e.g., zoom in a region and then filter the
presented objects. Subsequent user actions form the user’s exploration model, e.g., the user
first renders a specific area Φ and then moves to render a neighboring area Φ′. Thus, a user’s
exploration model is a finite ordered set of visual operations applied by the user on the 2D space.

Example 1. [Raw Data File & Objects] In Figure 2(a) a sample of the raw data file is pre-
sented, containing five objects (o1-o5), where each object represents an observation of a sky
object, such as a star. Each object is described by four attributes (dimensions). The attributes
Asc and Decl correspond to right ascension and declination, respectively, measured in degrees.
Practically, right ascension corresponds to terrestrial longitude and declination to geographic lat-
itude; their combination gives the position of an object in the sky. The Age attribute measures
the age of the star in billion years, and the diameter (Diam) measures the diameter in km. Con-
sidering the object o1, we have that a1,1 = 21, a1,4 = 7, etc. In analogy, for o2 we have a2,1 = 23
and a2,4 = 4. Further, for each object oi there is a file pointer fi that corresponds to the offset of
oi from the beginning of the file.

Figure 2(b) presents a 2D representation of 12 file objects from the file, in which the attributes
Asc and Decl have been selected as the axis attributes AX and AY , respectively. In this example,
the attributes Age and Diam are non-axis attributes. Assuming (not depicted in the figure) that
we want to annotate each of the objects with the details of the Age of the star, each of the object
would have an annotation with its Age (e.g., as a label or mouse-over tooltip). The area could
also be annotated with the result of an analysis, that computes the average Diam of all the objects
of the diagram. Finally, as shown in Figure 2(d), the objects included in the 2D visualized area
are rendered using a scatter plot and a map. �

Exploratory Query. Considering the aforementioned visual operations, we proceed with map-
ping them to data-access operators, which operate on the underlying data file. Data-access op-
erators are essentially the building blocks of a single query applied on the data, which we call
exploratory query. In what follows, we formulate this notion and provide the definition of each
operator. Next, we provide the mapping of visual to data access operators.

Given a set of d-dimensional objectsO and the axis attributes Ax and Ay, an exploratory query
Q over O is defined by the tuple 〈S,F,D,N〉, where:

− The Select part S defines a 2D range query (i.e., window query) specified by two intervals
Ix and Iy over the axis attributes Ax and Ay, respectively. The Select part is denoted as
S = (Ix, Iy) with its intervals to be referred as S.Ix and S.Iy. This part, selects the objects
OS ⊆ O for which both of their axis attributes have values within the respective intervals;
i.e., their axis attributes’ values are included in the 2D area (i.e., plane) specified by the
intervals S.Ix and S.Iy. The Select part is mandatory in a query Q, while the rest parts are
optional.

− The Filter part F applies a set of (conjunction or disjunction) conditions ci on the non-axis
attributes. The Filter part is defined as F = {c1, c2, ...ck}. We denote the set of attributes
involved in the conditions of F as FA. Each condition ci is a predicate involving an atomic
unary or binary arithmetic operation over object attributes and constants. The Filter part is
applied over the objects OS, selecting the objects OQ ⊆ OS that satisfy the conditions in F.
Note that, if the Filter part is not defined (i.e., F = ∅), then OQ = OS.

− The Details part D defines a set of non-axis attributes, for which the values of the objects
that satisfy the filter will be returned by the query. Formally, D = {A1, A2, ...Ak}, where
Ai < {AX , AY }, ∀1 ≤ i ≤ k. The details part is applied on all filter surviving objects in OQ.

−

The Analysis part N is a set of Fi algebraic aggregate functions [39], each of them ap-
plied over one or more numeric attributes of the objects OQ. The Analysis part is defined
as N = {F1(AF

1), F2(AF
2), ...Fk(AF

k)}, where each function Fi takes as parameters a set of
attributes belonging to A and returns a real numeric value. The result of each aggregate
functions is a single numeric value for the entire visualized area, computed by applying
it over the objects of OQ. Also, as NA =

⋃k
i A

F
i we denote the attributes that are used in

all Fi ∈ N. Further, VN = {v1, v2, ...vk} is the list of values vi calculated by Fi over the
objects OQ, with vi ∈ R. Note that, a large number of statistics (e.g., Pearson correlation,
covariance) corresponds to the class of Fi. Specifically, more than 90% and 75% of the
statistics supported by SciPy [5] and Wolfram [7], respectively, are defined as algebraic
aggregate functions [82].

The semantics of query execution involves the evaluation of the four parts of the query in the
following order: (1) Select part; (2) Filter part; (3) Details, Analysis part. Intuitively, the S elect
and Filter part apply restrictions (the equivalent of selection in relational algebra) to the entire
space of objects, resulting in a set of qualifying objects OQ. For each of these objects, we will
visually present both the axis attributes as well as the attributes of the details part D (albeit with
different treatments). Finally, we will apply the set of aggregate functions of the analysis part
over all the objects of OQ and, for each of these functions an aggregate numeric value that will
also annotate the visualized area will be produced.

Query Result. The result R of an exploratory query Q over O is a set of tuples corresponding
to the objects OQ retrieved by the query as well as one or more numeric values for each func-
tion Fi applied on these objects. Each tuple contains the values of the axis attributes AX and
AY and the values of the attributes specified in D, denoted as Vx,y,D, as well as the numeric val-
ues VN resulted from computing the analytic part over OQ. Formally, the result R consists of:
(1) a set of tuples Vx,y,D = {〈oi : αi,x, αi,y, αi,AD1

, ...αi,ADk
〉,∀oi ∈ OQ}, with {AD1, ...ADk } = D; and

(2) a set of numeric valuesVN. Thus, the result is R = (Vx,y,D,VN).

Example 2. [Exploratory Query] In Figure 2(c) an exploratory query Q is presented. The
Select part of Q is defined by the two intervals S.Ix=[19◦, 31◦] and S.Iy=[9◦, 22◦]. The query
selects all objects contained in this 2D area. The objects OS selected by the Select part are
o1, o2, o5. Assuming that the query has only a Select part, the result fetches only axis attribute
values, i.e., R = (〈o1 : 21, 11〉, 〈o2 : 23, 12〉, 〈o5 : 29, 18〉). If we enrich the query with a
Filter part F = {Diam < 5 km}, which applies a condition over the diameter attribute, i.e., FA =

{Diam}, then the result will be R = (〈o1 : 21, 11〉, 〈o5 : 29, 18〉), as the o2 is omitted due to
its 4km diameter. Furthermore, adding to the above query a Details part D = {Age}, the result
becomes R = (〈o1 : 21, 11, 3〉, 〈o5 : 29, 18, 4〉). Finally, assume that the query defines an
Analysis part N = {corr(Age,Diam), Avg(Age)}, which calculates the correlation (i.e., Pearson
correlation coefficient) between Age and Diam, and the average Age, i.e., F1 = corr, F2 = Avg,
and NA = {Age,Diam}. The two functions are computed only over the objects included in the
query result; i.e., o1 and o5. So, the result is R = ({〈o1 : 21, 11, 3〉, 〈o5 : 29, 18, 4〉}, {0.996, 3.5}),
where v1 = 0.996 and v2 = 3.5 are the correlation between Age and Diam, and the average Age
of o1 and o5, respectively. �

Table 2: Correspondences between Visual Operations and Exploratory Queries *

Description Visual Operation Exploratory Query

Render the objects included in the visualized render Φ S = (Ix, Iy)
2D area Φ defined by the intervals Ix, Iy.

Move the visualized area Φ to a new Φ′. move from Φ to Φ′ S = (I′x, I
′
y)

Φ′ = I′x × I′y

Zoom in/out over the visualized area Φ, having as zoom zoom in/out z% over Φ S = (I′x, I
′
y)

center the point φ inside Φ, and a zoom factor z%. with center φ

Zoom in: 0 < z < 1 Zoom out: z > 1 φ = (φx, φy), z ∈ R+ S.I′x = [φx −
√

z
|Ix |

2
, φx +

√
z
|Ix |

2
]

S.I′y = [φy −
√

z
|Iy |

2
, φy +

√
z
|Iy |

2
]

Filter the objects included in the visualized area Φ, filter the objects inside Φ, {c1, c2, ...ck} S = (Ix, Iy)
by applying the set of conditions {c1, c2, ...ck} F = {c1, c2, ...ck}

Presents the values of the attributes {A1, A2, ...Ak} detail the objects inside Φ, {A1, A2, ...Ak} S = (Ix, Iy)
for the objects included in the visualized area Φ. D = {A1, A2, ...Ak}

Analyze the objects in the visualized area Φ, analyze the objects inside Φ, {F1, F2, ...Fk} S = (Ix, Iy)
based on a set of functions {F1, F2, ...Fk}. N = {F1, F2, ...Fk}

* Φ is the visualized 2D area Ix × Iy

Expressing Visual Operations as Exploratory Queries. Each visual operation of our model
can be implemented by a data access operator of an exploratory query. Table 2 presents the
correspondences for the six aforementioned visual operations.

The Render operation is implemented by the Select part of the query, setting the intervals Ix

and Iy equal to the region of the visualized 2D area Φ. The move operation changes the current
visualized area Φ shifting to a new one Φ′. It is again implemented by the Select part of a query
with the new intervals of the shifted area Φ′. The zoom in/out operations are also implemented
by a Select part, having as interval parameters the new coordinates of the contained/containing
visualized regions, respectively. Note that, |I| denotes the length of the interval I.

The f ilter, details and analyze operations are implemented in a straightforward manner by
including in the Select part the appropriate data access operator, i.e., the f ilter operation is
implemented by including a Filter part, and the details and analyze operations correspond to the
Details and Analysis parts, respectively. Note that, as described in the previous section, multiple
visual operations can be combined and implemented with one query, e.g., move a region while
filtering the objects based on the value of a specific attribute.

3. The VALINOR Index

The VALINOR is a lightweight tile-based multilevel index, which is stored in memory and
organizes the data objects of a raw file, into tiles. The index is constructed on-the-fly given
the first user query and progressively adjusts its structure to the user visual interactions. Each
tile is constructed, during initialization, on range over values of the Ax and Ay axis attributes,
by dividing the Euclidean space into initial tiles (see Sect 5.1 for the initialization method).
Further, considering the distributivity of the employed aggregate functions, each tile contains

metadata that allows efficient query evaluation. Subsequent user operations split these tiles into
more fine-grained ones, thus forming a hierarchy of tiles. Overall, the design of our index relies
on the following basic principles: (1) fast on-the-fly construction; and (2) effective metadata
computations and storing, which in turn, offers efficient computation of aggregate functions.
These principles are further enhanced by exploiting advanced methods in the context of user
exploration scenarios.

Object Entry. For an object oi its object entry ei is defined as 〈ai,x, ai,y, fi〉, where ai,x, ai,y are the
values of the axis attributes and fi the offset (a hex value) of oi in the raw file.

Tile. A tile t is a part of the Euclidean space defined by two left-closed, right-open intervals
intervals t.Ix and t.Iy. In this work, we assume hierarchies of tiles (i.e., forest), although a
hierarchy with a single root tile can also be defined. A tile can have an arbitrary number of
child nodes, whereas leaf tiles are the tiles without child nodes. A non-leaf tile covers an area
that encloses the area represented by any of its children: given a tile t with t.Ix = [x1, x2) and
t.Ix = [y1, y2), for each child node t′ of t, with t′.Ix = [x′1, x

′
2) and t′.Ix = [y′1, y

′
2), it holds that

x1 ≤ x′1, x2 ≥ x′2, y1 ≤ y′1 and y2 ≥ y′2. In each level of the hierarchy, there are no overlaps
between the tiles of the same level (i.e., disjoint tiles). Further, leaf tiles can appear at different
levels in the hierarchy.

Each tile t is associated with a set of object entries t.E, if it is a leaf tile, or a set of child tiles
t.C, if it is a non-leaf tile. The set t.E is the set of object entities, such that for each ei ∈ t.E its
attribute values ai,x and ai,y fall within the intervals of the tile t, t.Ix and t.Iy respectively.

Synopsis metadata. Apart from object entries, each tile t is associated with a set of synopsis
metadata t.Mwhich are aggregated or computed values computed from the t.E objects contained
in the tile over their attributes. For simplicity, synopsis metadata is also referred to as metadata.
As t.MA we denote the set of attributes for which metadata has been computed for the tile t.

The synopsis metadata t.M of a tile t are numeric values calculated by algebraic aggregate
functions, over all objects t.E in t. Exploring the synopsis metadata for a set of tiles Tk, we can
compute values for more complex algebraic aggregate functions, for the objects included in tiles Tk.
The main idea is that metadata are defined at the level of a single tile (i.e., for the objects of a
tile, we carry the aggregate values of several aggregate functions over all the objects of a tile).
When the tile has children, we can compute the aggregate statistics for the tile, from the aggre-
gate statistics of its children. Naturally, this requires the restriction of th employed aggregate
functions to algebraic ones, which by definition can distribute the computation of the aggregate
statistic over a set to a composition of aggregate statistics over its subsets [57]. Specifically, we
employ functions like count, sum, mean, sumO f S quaresO f Deltas, min, max over the objects
of a tile. Whenever an aggregate computation is required over tiles that are fully contained in the
query, their existing stats can be exploited directly, without having to go to the disk to retrieve
the necessary columns and compute them.

VALINOR Index. Given a raw data file F and two axis attributes Ax, Ay, the index organizes the
objects into hierarchies of non-overlapping rectangle tiles based on its Ax, Ay values. Specifically,
the VALINOR index I is defined by a tuple 〈T , IP,AP,MH〉, where T is the set of tiles defined
in the index; IP is the initialization policy defining the methods to compute the sizes of tiles and
construct the tiles during the initialization phase; AP is the adaptation policy defining the method
for reconstructing the index and reorganizing object entries following user’s interaction; and MH
is the metadata handler which performs the computations in the metadata stored in each tile.

Tile tz

object entries tz.ℰ

o1 : ⟨21 11 f1 ⟩

o2 : ⟨23 12 f2 ⟩

o5 : ⟨29 18 f5 ⟩

 Asc Decl file off

tz.IAsc = [20, 30)

tz.IDecl = [10, 20)

intervals

(b) VALINOR Index (c) Tile

…

File
Offset

f1

f2

f3

f4

f5

Asc Decl Age Diam

o1 21 11 3 7

o2 23 12 1 4

o3 11 1 7 6

o4 19 7 2 3

o5 29 18 4 8

O
bj

ec
ts

Attributes

Decl

 10 20 30 Asc

tz

o1

o5

o2

o4

o3

10

20

tz

(a) Raw Data File

child tiles tz.� = ∅

metadata tzℳ

 max(Diam)=8

 ∑Diam=18

 ∑Diam
2
=129

 min(Age)=1

 ∑Age=8

 ∑Age
2

=26

n = 3

Age

Age & Diam

Diam

∑Age Diam=57

tJ

tJa

tJd

tJb

tJ hierarchy [10, 20)⨯[0, 10)

tJ

tJa tJb tJc tJd

[10, 13)⨯[0, 6) [13, 20)⨯[0, 6)

O3 O4

[13, 20)⨯[6, 10)[10, 13)⨯[6, 10)

tJc

(d) Tile Hierarchy

Figure 3: The VALINOR Index Overview

Tiles-Query Spatial Relations: Overlap, Fully/Partially-Contained. Considering the spatial
relations between the Select part of the query and tiles included in the VALINOR, we define the
following.

Given an exploratory query Q with S be the Select part and T be the tiles defined in the
VALINOR, we denote as TS ∈ T the leaf tiles that overlap with the 2D area (plane) specified by
S. Also, the tiles TS are divided into two disjointed tile sets TS f and TSp , which denote the tiles
of TS that are fully- and partially-contained in S, respectively.

Further, given a tile t ∈ TS, we denote the object entities of t that are included in the 2D area
specified by S as t.ES. Note that, in case that t is a fully-contained tile, then t.ES = t.E.

Additionally, given a tile t ∈ TS, we denote the plane of t that overlap with S as RS
t . Hence,

in case that a tile t is fully-contained by the query, then RS
t corresponds to the area defined by t.

Example 3. [VALINOR Index] Figure 3(a) presents the input data file from Example 1, where
the Asc and Decl have been selected as the two axis attributes for the analysis. Figure 3(b)
presents a version of the VALINOR index, which (in the upper-level) divides the 2D space into
4 × 3 equally sized disjoint tiles, and the tile t j is further divided into 2 × 2 subtitles of arbitrary
sizes. The multilevel structure of the tile t j is presented as a hierarchy in the Figure 3(d).

Figure 3(c) presents the contents of a tile tz, highlighted with grey color in the index. For
each tile, the index stores its intervals tz.IAsc and tz.IDecl, the object entries tz.E contained in this
tile and a set of metadata computed over axis or non-axis attributes of the contained objects. In
the example, tz contains o1, o2 and o5.

Furthermore, for each object in the tile, the index stores the values of the axis attributes along
with the offset pointing to the position of the object in the file. For example, the entry for the
object o1 is 〈31, 11, f1〉, where 33 and 11, are the Asc and Decl values of the o1, respectively.

Finally, in our example the index stores for tz the number of enclosed objects (n = 3), as well
various statistics for the two non-axis attribute Age and Diam, such as the min, max, sum values,
the sum of squares and the sum of their product. �

Implementation Details & Practical Considerations. To make our implementation work, we
have adopted several design choices and assumptions. We assume that data in a CSV file are
organized in records separated by a new line delimiter (we assume that no headers exist in the
file); all records are homogeneous, and thus have the same schema (same number of entries).
Entries within a record are separated by a comma delimiter, followed by a new line character
indicating the beginning of the new record in the file. The offset of the record is the location
of its first character in the file, i.e., the hex value of the location of the next character after the
new line delimiter. Each tile is linked with its records in the data file by maintaining a list with
the offset (hex value) of the beginning of each record. When parsing the raw file, we reduce the
tokenizing and parsing costs by parsing only the necessary attributes for a query and stopping the
tokenizing once we find the last attribute in the row needed for the query or initialization. The
user has minimal input to give, specifically, the delimiter of the csv file (e.g., comma or tab) as
well as which are the axis attributes and a reasonable estimate for their ranges in order to avoid
having to scan the raw file to determine them. Each object in a tile contains exactly two floats (x,
y values) and a long value (offset). The index tiles are not of uniform size. When tiles are evicted
to the disc, only their objects are actually written. We do not rely on Java serialization for this.

4. Query Processing over VALINOR Index

This section describes the process for the evaluation of exploratory queries over the index.
It first presents the initialization of the index, which is constructed by the first query posed, and
then it describes the evaluation of subsequent queries performed over the initialized index.

4.1. Index Initialization & First Query Evaluation
In our approach, we do not consider any loading phase for the index construction, but rather

the index is constructed on-the-fly the first time the user requests to visualize a part of the file.
Considering an interactive scenario, the index construction should entail a small overhead in the
response time of the first query. Thus, a lightweight version of the index is constructed, which
corresponds to a flat tile structure, by parsing the raw file once.

Algorithm 1 describes the initialization phase. The algorithm takes as input, the raw file
F , the axis attributes Ax, Ay, and the first exploratory query Q0, and provides as output, the
initialized index I and the results of the first query (Vx,y,D,VN).

First, the initialization policy IP uses the computeInitialTileSize method to determine an initial
tile size `x0 , `y0 (line 2). Then, using this initial size, the constructInitialTiles method constructs
the tiles T of the index, which corresponds to the initial flat structure of the index without any
computed metadata on each tile.

The initialization policy IP determines the initial tile sizes. For instance, an initial tile size
can be either (1) given explicitly by the user (e.g., in a map the user defines a default scale of
coordinates for the initial visualization); (2) provided by the visualization setting considering
certain characteristics (e.g., screen size/resolution, visualization type) [50, 14, 78, 21]; or, (3)
computed from the data in the raw file based on a binning technique that divides the data space
into equal size tiles. The latter was introduced in [20] and is considered as the baseline method
for the initialization of the index. In Section 5.1, we propose an advanced method that determines
and constructs varying tile sizes by considering the user exploration entry point, i.e., the position
of the first user query in the 2D space.

In the next step, the algorithm scans once the file F (loop in line 4). For each object, the
algorithm reads the attribute values of ai,x, ai,y and the file offset fi (lines 5 & 6). Then, it

Algorithm 1. Initialization & First Query Evaluation (F , Ax, Ay, Q0)
Input: F : raw data file; Ax, Ay: X and Y axis attributes; Q0 〈S,F,D,N〉: first query
Parameters: IP: initialization policy; MH: metadata handler
Output: I: initialized index; (Vx,y,D,VN): first query result R
Variables: V: the attribute values used in Analysis part computation

1 V ← ∅
2 `x0 , `y0 ← IP.computeInitialTileSize(Ax, Ay) //determine the initial tile size

3 I,T ← IP.constructInitialTiles(`x0 , `y0) //determine the intervals of the tiles and construct the tiles T that initialize the index I

4 foreach oi ∈ F do //read objects from file, assign them to the constructed tiles, and evaluate the first query Q0

5 read ai,x, ai,x from F
6 fi ← offset of ai,1 in F
7 append 〈ai,x, ai,y, fi〉 to tile entries t.E, where t ∈ T determined from ai,x, ai,y and t intervals //assign the object oi to tiles t

8 MH.updateMetadata(t.M, oi)
9 if oi included in Select part S and satisfies the Filter part F then //evaluate the query

10 αi,AD1
, ...αi,ADk

← for oi read the values of the attributes D1, ...Dk referred in the Details part D

11 insert 〈oi : αi,x, αi,y, αi,AD1
, ...αi,ADk

〉 intoVx,y,D //insert a result tuple into results

12 insert into V the values of oi for the attributes NA referred in the Analysis part A

13 VN ← use the values of V to compute the statistics of the Analysis part A
14 return I, (Vx,y,D,VN)

appends the object to the entries t.E of the corresponding tile t (line 7). The updateMetadata
method considers the values of oi to compute and update the metadata t.E of the tile t (line 8).

Next, the algorithm evaluates the query (lines 9-13). It first checks if the object oi is included
in the query result (line 9), i.e., whether oi is selected by the Select part, and satisfies the condi-
tions of the Filter part. Then, it reads the attribute values in the Details part, constructs the result
tuple of o (line 10), and inserts the tuple to the result setVx,y,D (line 11).

As a final step, the algorithm reads the attribute values of oi (line 12) and computes the
Analysis part for each tile (line 13). Finally, the result of the first query and the initialized index
are returned (line 14).

4.2. Query Processing Overview

The following process describes the evaluation of all subsequent queries. An overview of
the query evaluation is presented in the Algorithm 2 and details for each operator are provided
in following subsections. Algorithm 2 takes as input, the initialized index, an exploratory query
and the raw file. The algorithm returns (a) the values of the two axis attributes of the objects in
the result set along with the values of the attributes defined in the Detail part of the query, and,
(b) the values computed for each tile in the Analysis part.

First, the Select part is evaluated (line 1), using the evaluateSelectPart procedure (Proc. 1).
Given a query Q, this procedure first looks up the index I and determines the leaf tiles TS
overlapping with the Select part of the query. For each tile, we examine its objects and select the
objects OS, contained in the query window. The getTilesRequireFileAccess procedure (Proc. 2)
determines the leaf tiles TSF ∈ TS for which access to the raw file is required (line 2). In the next
step (line 3), each leaf tile t ∈ TSF is examined for splitting, based on the adaptation procedure
adaptTiles (Proc. 3). The splitting process results in a new set of tiles T ′SF , which is a super-set
of TSF , containing also the subtiles created by the splitting (as well as the tiles’ hierarchies info).

Algorithm 2. Query Processing (I, Q, F)
Input: I: index (initialized); Q 〈S,F,D,N〉: query; F : raw data file
Variables: OS: objects selected from Select part; TS: leaf tiles that overlapped with the Select part;

TSF : leaf tiles for which file access is required; T ′SF
: tiles resulted from TSF after splitting;

VFA : values of the attributes included in the Filter part; VD: values of the attributes defined in the Details part;
VNA : values of the attributes required for the Analysis part computation;
Vx,y,D: objects of the result along with the detail values; VN: numeric values resulted from the Analysis part

Parameters: AP: adaptation policy; MH: metadata handler
Output: (Vx,y,D,VN): query result R

1 OS, TS ← evaluateSelectPart (I,S)
2 TSF ← getTilesRequireFileAccess (TS, Q)

3 T ′SF
← AP.adaptTiles (TSF , OS)

4 if TSF , ∅ then
5 VFA ,VD,VNA ,← readFile (T ′SF

, OS, Q, F)

6 if T ′SF , TSF then

7 MH.updateMetadata (T ′SF
, Q,VAF ,VNA)

8 OQ ← evaluateFilterPart (OS,VFA)
9 Vx,y,D ← construct the tuples by combining OQ andVD

10 VN ← evaluateAnalysisPart (OQ, N,VNA)
11 return (Vx,y,D,VN)

Next, the procedure readFile (Proc. 4) retrieves from the file the objects tES of each leaf tile
t from T ′SF ; specifically it retrieves the values of all attributes VD, VFA , VNA required for the
evaluation of the Details, Filter, and Analysis parts, respectively (line 5).

If tile splitting is performed (line 6), the updateMetadata procedure computes and updates
the metadata in tiles T ′SF (line 7). Finally, the Filter (line 8), Details (line 9) and Analysis (line
10) parts are evaluated.

Example 4. [Query Processing] In this example we assume the same exploratory query as
the one used in Example 2. Particularly, the query Q has the following parts: (1) Select part:
S.Ix=[19◦, 31◦], S.Iy=[9◦, 22◦]; (2) Filter part: F = {Diam < 5 km}; and (3) Analysis part:
N = {corr(Age,Diam), Avg(Age)}. Further, we assume the index described in Example 3 and
presented in Figure 3.

The query processing procedure is depicted in Figure 4. We assume that the index is already
initialized (i.e., the Q is not the first query). Ê depicts the index before the query Q is posed,
whereas Ë depicts the updated index after Q evaluation.

First, we have to evaluate the Select part. We identify the tiles that overlapped with the query;
i.e., t1, t2, t3, t4. Then, for each of these tiles, we select these objects that are selected by the query;
i.e., o1, o2, o4.

Next, we have to identify for which of the overlapped tiles we have to access the file. In our
case, the tiles t1 and t4 are omitted from the process that follows, since these tiles do not include
any of the selected objects. Both tiles t2 and t3 are partially contained in the query. As a result,
we do not have the metadata for the selected objects to compute the Analysis and Filter part
defined in the query. Recall that, the metadata is computed and stored per tile.

Tile t2c

object entries t2c.ℰ

metadata t2cℳ

 Asc Decl file off

t2c.IAsc = [20, 28)

t2c.IDecl = [10, 14)

intervals

 max(Diam)=7

 ∑Diam=11

 ∑Diam
2
=65

 10 20 30

Perform Query Q

1

Evaluate Query Q

2

Decl

Asc

t2
o5

o3

10

20

Q

o4

o1
o2

Decl

 10 20 30 Asc

o1

o5

o2

o4

o3

10

20

o1

o5

o2

10

20

14

20 28 30

t2d

t2a
t2b

t2 after split

t2c

 min(Age)=1

 ∑Age=4

 ∑Age
2

=10

n = 2

Age

Age & Diam

Diam

∑Age Diam=25

o1 : ⟨21 11 f1 ⟩

o2 : ⟨23 12 f2 ⟩

child tiles t2c.� = ∅

t2c

Qt1

t3

t2a
t2b

t2d

computed metadata using the data
retrived from file for o1 & o2

retrieve from file the Age & Diam
values for o1 & o2

t4

t1

t3
t4

[20, 30)⨯[10, 20)

t2

t2a t2b t2c t2d

[20, 28)⨯[14, 20) [20, 28)⨯[10, 14) [28, 30)⨯[10, 14)

O1, O2 O5

[28, 30)⨯[14, 20)

t2 hierarchy

Figure 4: Query Processing over VALINOR Index

Hence, we have to access the file for objects o1, o2, o4, and read the attribute values required
for the evaluation and, particularly, the attributes Diam and Age that are used in the Filter and/or
Analysis part. Using the retrieved values, we can evaluate all the parts of the query.

Along with the query evaluation, the index structure is adapted via splitting. In our example,
the tile t2 is split into four disjoint subtiles t2a , t2b , t2c , t2d . As previously mentioned, we have
to access the file for the objects o1 and o2, which are the objects included in subtile t2c . Using
the retrieved attribute values, we can compute the metadata for the subtile t2c . Overall, during
the query processing, we evaluate the query; and we construct subtiles and compute metadata
for the constructed subtiles. A detailed example for the splitting process is presented later in the
adaptation section (Sect. 5.2, Ex. 5). �

4.3. Select Part Evaluation

In order to evaluate the Select part over the index (Alg. 2, line 1), we have to identify the
OS objects by accessing the leaf tiles TS which overlap with the window query specified in the
Select part of Q.

First, we define the following simple function used in the Select part evaluation.

− getSelectOverlappedLeafTiles(I,S): This function returns the leaf tiles TS which overlap
with the Select part S of the query. It identifies the highest-level overlapped tiles. Then,
for each tile, it traverses the hierarchy to determine the overlapped leaf tiles TS.

− getSelectedObjectsFromTile(t,S): This function scans all objects t.E of a tile t and returns
the objects t.ES that are included in the Select part S of the query.

In case that the tile t is fully-contained in the Select part, the returned objects t.ES corre-
spond to all objects included in the t; i.e., t.E. On the other hand, if t is partially-contained,
the returned objects t.ES are the objects included in the overlapped 2D area RS

t .

Procedure 1: evaluateSelectPart(I, S)
Input: I: index; S : Select part of the query
Output: OS: objects selected from Select part; TS: leaf tiles that overlapped with Select part

1 TS ← getSelectOverlappedLeafTiles (I,S)
2 forall t ∈ TS do
3 t.ES ← getSelectedObjectsFromTile (t,S)
4 insert t.ES into OS

5 return OS, TS

Procedure 2: getTilesRequireFileAccess(TS, Q)
Input: TS: leaf tiles that overlap with the Select part of the query; Q 〈S,F,D,N〉: query
Output: TSF : leaf tiles that require file access

1 forall t ∈ TS do
2 if t ∈ TS f then //tile is fully-contained in S

3 if D , ∅ or F can not be evaluated using t.M then //Filter and/or Analysis part is included and can evaluated using t.M

4 accessRequired ← true

5 else //tile is partially-contained in S; i.e., t ∈ TSp

6 if D , ∅ then //Details part is included

7 accessRequired ← true //access file for the t.ES objects in t

8 else if F = ∅ and N = ∅ then //no Filter & Analysis parts

9 accessRequired ← false
10 else if N and F can be evaluated using t.M then //Filter and/or Analysis part is included and can evaluated using t.M

11 accessRequired ← false
12 else
13 accessRequired ← true

14 if accessRequired is true then //we have to access the file for the objects t.ES
15 insert t into TSF

16 return TSF

The evaluation of Select part is described in the evaluateSelectPart procedure (Proc. 1). First,
it identifies the leaf tiles TS using the function getSelectOverlappedLeafTiles (line 1). Then,
for each of the identified leaf tile t ∈ TS, the function getSelectedObjectsFromTile returns the
objects t.ES that overlap with the Select part of the query (line 3). Finally, the evaluateSelectPart
procedure returns the objects OS selected from the Select part and the leaf tiles TS (line 5).

4.4. Determining the Tiles that Require File Access

The getTilesRequireFileAccess (Proc. 2) determines the tiles for which we have to access the
file and read the attributes values. File access is determined by the intersection between a tile and
the query (fully/partially contained), the operations defined in the query, and the metadata stored
in each tile.

Particularly, Procedure 2 for each tile t ∈ TS, examines if the tile is partially/fully-contained
in query (line 2), and if the operations defined in the query can be evaluated by tile’s metadata
(lines 2-13). The procedure returns the tiles for which a file access is required (line 16). In case
of fully-contained tiles (line 2) we have to access the file if a Details part is defined, or a Filter
is included, and its condition can not be computed using metadata. On the other hand, if tile is

Procedure 3: adaptTiles(TSF ,Q)
Input: TSF : leaf tiles for which file access is required; Q: query
Parameters: AP: adaptation policy
Output: T ′SF : tiles resulted from TSF after splitting

1 forall t ∈ TSF do
2 if AP.splitRequired (t) = true then
3 Ta ← AP.split (t) //construct the subtiles Ta by splitting tile t

4 AP.reorganizeObjectsInSplittedTiles (Ta, Q)

5 else
6 Ta ← t

7 insert Ta into T ′SF

8 return T ′SF

partially-contained (line 5), in case that a Details part is defined in the query (line 6), we always
have to read from the file the values of the objects included in the Details part. Also, we have to
examine if the computations defined in the Analysis and Filter parts can be evaluated using the
metadata that are already available in each tile (line 10).

4.5. Progressive Index Adaptation
During query evaluation, we employ an progressive index adaptation policy AP, which

adapts the index structure based on the user interaction. Particularly, the index adaptation is
performed using a tile splitting method, in which the tiles are incrementally split into subtiles
and construct tiles’ hierarchies. For each new subtile, its metadata are computed.

The adaptTiles (Proc. 3) reorganizes objects in the index by splitting tiles into smaller ones,
based on the adaptation policy AP. The procedure takes as input the set of tiles for which, access
to the file is required TSF , and returns a new set of tiles T ′SF , which is a super-set of TSF ,
containing the subtiles created by the splitting as well as the tiles’ hierarchies info. For each tile
t ∈ TSF the procedure examines if t has to be split using the method splitRequired, and, if so,
reorganizes the objects into the new tiles.

Note that, a tile may be split, only when a query overlaps with it. This restructuring attempts
to maximize the number of tiles which are fully-contained in subsequent queries. Fully contained
tiles may improve the performance, by reducing the I/Os operations needed for answering the
query (more details are presented in Section 5), .

In a baseline implementation introduced in [20], the splitRequired method defines a numeric
threshold for the maximum number of objects that a tile should contain. In case that more objects
are contained in the tile a split is performed. The split procedure in our baseline implements a
Quadtree method. That is, each tile t overlapping with the query and containing more objects
than the threshold is split into 4 equally sized subtiles.

4.6. File Access
The procedure getTilesRequireFileAccess (Proc. 2), identifies the leaf tiles TSF , for which

we have to access the file F in order to evaluate the query. Here, we present the readFile (Proc. 4)
which reads from file data for the objects included in the TSF tiles.

For each object oi in which is selected from the Select part, and contained in a tile for which
file access is required, we read from the file at the offset fi (lines 1, 2) the attributes values
required for the Filter, Details & Analysis part (line 3).

Procedure 4: readFile(TSF , OS, Q, F)
Input: TSF : tiles for which file access is required; OS : objects included in Select part;

Q 〈S,F,D,N〉: query; F : raw data file
Output: VFA ,VD,VNA , attributes values required for the Filter, Details & Analysis part

1 forall oi included in tiles TSF with oi ∈ OS do
2 access F at file offset fi
3 VFAi ,VDi ,VNAi ,← read the oi attributes values that are required for the F, D and N parts
4 insertVFAi intoVFA ; insertVDi intoVD; insertVNAi intoVNA ;

5 returnVFA ,VD,VNA

One of the goals we try to achieve in the design of the index, is to reduce the cost of I/O
operations. For that, we first store the file offset of each object and we start reading the file
from this position to retrieve its attribute values. Second, exploiting the way that VALINOR
constructs and stores the object entries, we are able to access the raw file in a sequential manner.
The sequential file scan increases the number of I/Os over continuous disk blocks and improves
the utilization of the look-ahead disk cache.

During the initialization phase, the object entries are appended into tiles entries as the file is
parsed (Alg. 1). Implementing tile entries t.E as a list, the entries in each tile are sorted based
on its file offset. That is, for each t ∈ T , ∀oi, o j ∈ t.M, with list positions i < j, we have that
oi. f < o j. f . Hence, in the query evaluation, we identify the tiles TF for which we have to read
the file (Alg. 2, line 2). Then, from the lists of object entries in TF , we read the objects from
lists following a k-way merge based on objects file offset. This way, object values are read by
accessing the file in sequential order. Note that, in our experiments, the sequential access results
in about 8 × faster I/O operations compared to accessing the file by reading objects on a tile basis
(i.e., read the objects of tile ti, then read the objects of tile tk, etc.).

4.7. Aggregate Metadata Management

The metadata is used to improve the performance of queries with an Analysis and/or Filter
part, by reducing both I/O and computation cost. After the adaptation of the tiles, the metadata
handler MH, using the values retrieved from the file, recomputes and updates the metadata for
the subtiles created by the adaptation process. The updateMetadata procedure (Algo 2, line 7):
(1) determines for which attributes to compute or update the metadata; (2) computes metadata;
and (3) updates metadata in the hierarchies of the tiles in case of splitting. The metadata stored in
the tiles is determined by the metadata handler MH considering the functions that are used in the
Analysis parts of the query.For every tile, the metadata handler keeps a hash table with keys the
column number of a non-axis column in the raw file. Each key is mapped to that tile’s synopsis
metadata for that non-axis column. If the Analysis part of query requests bivariate statistics
for two attributes (e.g., correlation or covariance), the metadata handler also keeps metadata
pertaining to the pair of attributes.

4.8. Filter, Details & Analysis Parts Evaluation

In the general case, the Filter part requires to retrieve from file the valuesVFA of the attributes
included in the Filter conditions (Alg. 2, line 5). Using the retrieved values VFA , the filter con-
ditions are evaluated over the OS objects for filtering out the query objects OQ. However, there
are cases where the metadata (e.g., min, max) may be used to evaluate the filter conditions and
avoid file access.

To evaluate the Details part, we have to access the file, since in order to reduce the index
size, we do not store attribute values other than the two axis attributes9. For the objects OQ we
retrieve the values VD of the attributes included in the Details part (Alg. 2, line 5). Then, for
each object of OQ the details valuesVD are combined with the axis attribute values, resulting to
the set of tuplesVx,y,D.

Finally, the Analysis part is evaluated using: (1) the existing metadata of the fully-contained
tiles; and (2) the values retrieved from the file, for the partially-contained tiles.

Note that, although both the Select and Filter parts operate as traditional selection operations
on the data (the Select part is evaluated over the two axis attributes, whereas the Filter part on the
non-indexed attributes), we explicitly consider them as different operations in our query model
in order to speed up visual exploration operations. Filtering on non-axis fields has an implicit
benefit on the performance, in the case that metadata for this attribute exists (e.g., a user revisits
a tile with the same filter condition).

We have a similar restriction on the expressiveness of our approach for the grouping opera-
tion. Grouping primarily targets the two axis attributes, i.e., aggregates are computed at the level
of the tiles included in the query window, whereas grouping on a non-index attribute (e.g., aver-
age age by gender) is implicitly enabled via filtering operations (i.e., average age per tile filtering
the gender). We are aware of this restriction, nevertheless our model is not a general-purpose
query model but rather serves the needs of basic exploration operations (e.g., panning, zooming).

5. Advanced Methods for Index Management – Initialization & Adaptation

In this section, we present two methods for the initialization and adaptation of the index
during query evaluation. One of the goals for improving the query performance is to reduce
the costly file reads that are needed for answering the query. The Details, Filter and Analysis
parts of the query usually require access to the raw file to fetch the values for the extra attributes
involved in these parts. In order to handle these cases, we compute and store per tile aggregated
metadata for the contained objects. A subsequent query overlapping with this tile may use the
stored metadata and avoid accessing the file in order to evaluate the query.

What makes possible for a query to exploit the metadata depends on whether the overlapping
tile is fully or partially contained in the query; i.e., all of its objects are needed for answering the
query or a subset of. In a partially-contained tile t, we have to: (1) traverse the objects in t in
order to find the objects t.ES that are included in the Select part of the query; and (2) access the
file in order to compute the metadata for t.ES objects. On the other hand, for a fully-contained tile
t, there is no need to perform any of the aforementioned operations as (1) the required metadata
have already been computed for t; and (2) there is no need to iterate over the objects in t to find
the ones that are included in the window. As a result, we neither have to access the file for any
of the object contained in t (i.e., I/Os cost), nor identify t.ES (i.e., computation cost). Hence,
fully-contained tiles reduce both computation and I/Os cost (for more details see Sect. 5.3).

In what follows we present our techniques, which aim to increase the number of fully con-
tained tiles in a user exploration scenario by adjusting the initial tile structure, as well as incre-
mentally performing index reorganization and metadata computations during query processing.

9Note that, for both Filter and Details parts evaluation, we can avoid file accesses by storing values for attributes other
than axis. However, here we describe the setting which requires the minimum memory resources.

Ax

Ay

Q0
⨯

κ0x

κ0y

Figure 5: Query-Driven Index Initialization

5.1. Query-driven Index Initialization

This section presents an advanced approach for the initialization of the VALINOR index.
The baseline initialization policy, as introduced in [20], groups objects into equal-size tiles but
does not take into account the location of the initial user query in the 2D space as well as any
subsequent user exploration actions for building the initial sizes of the tiles.

Assume that the user starts with an initial query Q0, with (xc, yc) being the center of the Select
part, lying in the tile t0 and continues the exploration by applying the set of visual operations
presented in Section 2. Recall that only the move and zoom operations change the visualized area
to a new range; thus, subsequent queries corresponding to user operations performed at the early
stages of the user exploration (i.e., user session) are highly likely to reside (overlap) in tiles near
to the initial tile t0.

To take advantage of this locality, VALINOR initializes tiles via a tile structure that is more
fine-grained (i.e., having a large number of smaller tiles) in the area around the initial query. This
is depicted in Figure 5, where given the first query, the size of initial tiles becomes larger as their
distance from the initial query center (xc, yc) gets bigger. Increasing the number of tiles near the
first query, increases the possibility that subsequent user queries in this neighborhood overlap
with fully-contained tiles, which in turn reduce the computation and I/O cost.

In what follows, we build upon the locality-based characteristic of the exploration model and
propose a new approach, called query-driven initialization policy, for initializing the tiles of the
index, based on the first user query and the potential next user actions. Note that the new method
replaces the existing baseline initialization policy (line 2 of Algorithm 1) and is executed before
the population of the tiles with object entries. At this stage, the query-driven initialization aims
at speeding up the initial actions of the user session. When combined with the adaptive splitting
(Sect. 5.2) the method provides fast results for the entire user session.

Query-driven Initialization Policy Overview. Our method considers that an initial set of tiles
T0 is constructed for the index following the baseline equal-size initialization method, with each
tile having a fixed size `0x × `0y . Then, the Query-driven Initialization method takes as input: the
constructed tiles T0, the first user’s query Q0, and the number of extra tiles TS it will create. For
each tile t ∈ T0 the initialization method computes a numeric initialization split factor (S F). The
SF factor determines the number of equally-sized subtiles which the tile t will be split into. In
this case, the tile t will be the father tile of the new subtiles. For example, assume an initial query
Q0 and a tile t ∈ T0; then, if S FQ0 (t) = 4, the tile t will be split into 4 equally-sized subtiles, with
size of `0x/2 × `0y/2.

Subtiles Size. Let T0 be the initial set of equally-sized tiles with area size `0x × `0y (i.e., ∀t ∈
T0, |t.Ix| = `0x , |t.Iy| = `0y); Q0 is the initial user query with ranges Q0.Ix,Q0.Iy and query center
(xc, yc); andT = T0∪TS is the set of tiles which the index will contain, withTS being the subtiles
created by splitting tiles in T0. The number of equally-sized subtiles, which a tile t ∈ T0 will
be split into, is determined by its initialization split factor (S F). S F is used for calculating the
dimensions `x(t), `y(t) of t’s subtiles with respect to its initial dimensions `0x and `0y , as follows:

`x(t) =

`0x/b
√

S FQ0 (t)c if S FQ0 (t) ≥ 4
`0x otherwise

`y(t) =

`0y/b
√

S FQ0 (t)c if S FQ0 (t) ≥ 4
`0y otherwise

Note that, splitting occurs only when S FQ0 (t) ≥ 4, i.e.,
√

S FQ0 (t) ≥ 2; and the floor function
is used for truncating the split factor to an integer value.

Initialization Split Factor (SF). To compute the S F for a tile t, we model the likelihood that a
subsequent query will overlap with t as a probability distribution over the distance of each point
in t from the initial query Q0 center (xc, yc), i.e.,

S FQ0 (t) = %t · |TS |

where, %t = P(X ∈ t.Ix,Y ∈ t.Iy) is the probability that the next user query moves the query center
within tile t. In other words, we treat X,Y as random variables corresponding to the center of a
subsequent query performed by the user in the plane.

The formula distributes a fixed number of new subtitles to the initial set of tiles based on a
probability distribution. The probability aims to adjust the splitting factor based on the distance
of each initial tile from the initial query center. To achieve this locality-based splitting, the
distribution of %t should decrease as the distance from (xc, yc) becomes larger. Although this
probability can be computed using several factors, such as user moving patterns, visualization
setting characteristics (e.g., screen size/resolution, visualization type) [50, 14, 78], we consider
that it follows a bivariate normal distribution over the X,Y random variables; however, other
distributions with similar characteristics could be considered. The probability density function
is given by:

p(x, y) =

exp
{
− 1

2

[(
x−µx
σx

)2
+

(
y−µy

σy

)2
]}

2πσxσy

where, X,Y are independent (covariance is zero); µx = xc, µy = yc (the initial query’s center); and
σx = |Q0.Ix|, σy = |Q0.Iy|, i.e., we set the standard deviation equal to the initial query range for
the X and Y variables, respectively. The reason is that we require the majority of the new subtitles
to be allocated in tiles at a distance of 3 query ranges from the initial query center.10 This way
we achieve a dense distribution around the initial query, entailing to smaller fully-contained tiles
for the first user queries following the initial one.

10Recall that, according to the empirical 68-95-99.7 rule for the normal distribution, the 68% of the data is within 1
standard deviation (σ) of the mean (µ), 95% of the data is within 2 standard deviations (σ) of the mean (µ), and 99.7%
of the data is within 3 standard deviations (σ) of the mean (µ).

5

6

7

8

In
it

ia
liz

at
io

n
 t

im
e

(m
in

)

Initial number of tiles

0

5

10

15

20

25

In
d

ex
 S

iz
e

(G
B

)

Initial number of tiles

Figure 6: Initialization Time & Index Memory Size varying the Number of Initial Tiles

Initialization Parameters Analysis. The initialization formula depends on the `0x , `0y ranges for
the initial tiles T0, and the number of new subtiles |TS | the index will create after the splitting.

We can express `0x , `0y at a scale of the overall exploration area, i.e., the ranges |max − min|
of the Ax and Ay attributes; i.e., `0x = l · |max(Ax) − min(Ax)| and `0y = l · |max(Ay) − min(Ay)|,
with l ∈ (0, 1]. Large values of l (the edge case of l = 1 is that initial range is the entire
exploration area) result in a coarse-grained initial tile structure, especially for the areas far from
the initial user session. The trade-off is that very large tiles are less likely to be fully-contained
by subsequent queries, entailing an increased I/O and adaptation cost, when user moves to that
area. On the other hand, too small l values increase the initial number of tiles even in locations far
from the initial query, thus the memory and processing requirements of the index. The edge case
is creating more tiles than the number of objects, because for non-uniform datasets, there will be
parts of the space with tiles containing no objects. Figure 6 presents the initialization time and
index size in relation to the number of initial tiles for a synthetic dataset SYNTH10 (see Sect. 7).
As can be seen, for larger numbers of initial tiles (i.e., smaller values of l) the initialization time
and the memory requirements of the index increase. For example, for an initial number of tiles of
10K (l = 1/100) the initialization time and the index size are 5.27 min and 4.33 GB respectively,
while for 25M tiles (l = 1/5000) it requires around 7.8 min and 21 GB.

In our experiments, we vary the l parameter with respect to the Ax and Ay ranges for several
datasets with different distributions. From our study, we found that a value between 1/100 and
1/500 provides very good results for most of our datasets; i.e., the initial tiles of the equal-width
methods is between 10K and 250K.

As previously mentioned, the above parameters can be estimated based on large number of
factors, such as: visualization setting characteristics (e.g., screen size/resolution), visualization
type, user moving patterns [50, 14, 78, 21]. However, this is beyond the scope of this work.

Memory Space Analysis. An upper bound of the total number T of tiles allocated during the
initialization can be determined based on the memory constraints of the environment, as follows.
Let mem(t) be the footprint of each tile entry in memory, such that mem(t) = bt + bo · |t.E|, where
bt is a fixed number of bytes allocated for each tile record for holding its 2 ranges (e.g., 4 floats),
initially computed metadata (e.g., 1 float) and a list of references (integers) to its children (if it is a
non-leaf tile); bo is a constant value for each object entry in the tile, keeping the Ax, and Ay values
(e.g., 2 doubles) and its offset (e.g., a big int) from the beginning of file. The initial index memory
footprint (before splitting) forT0 tiles is mem(T0) =

∑
t∈T0

mem(t) = |T0|·bt+bo·|O|, whereas after
splitting the index footprint becomes mem(T) =

∑
t∈T mem(t) = |T0| · bt + |TS | · bt + bo · |O|, as

all object entries are contained in leaf nodes, thus considered only once in the memory allocation.
Let memMAX be the maximum memory to be reserved for the initialization of the index, then
mem(T) ≤ memMAX; i.e., |TS | ≤ (memMAX − |T0| · bt − bo · |O|)/bt.

Note that, as |O| � |T |, the memory requirement for the index is heavily determined by the
number of objects in the raw file. Also, the index size is not affected by the number of attributes
comprising a record in the file as the VALINOR stores only the two attributes Ax, Ay of each
object. In Section 6, we provide an eviction method for handling cases where the size of objects
in memory do not fit in the allocated memory resources.

5.2. Query-driven Index Adaptation

In this section we present a method, called Query-driven Tile Splitting for restructuring the
index based on the query window posed by the user. Particularly, this method implements the
split function (line 3) of the adaptTiles procedure in Section 4.5. As presented, in Section 4,
tiles visited by the query can be split into smaller ones, i.e., the index is progressively adapted
to the user’s interaction. The index adaptation performs tile splitting, computes metadata and
reorganizes objects into smaller groups during use exploration. The smaller tiles may result in
larger numbers of fully-contained tiles during user exploration. The metadata of fully-contained
tiles are going to be exploited by the next queries to reduce both I/O and computation cost. The
basic characteristics of our adaptation method is that: (1) it follows a tile splitting process, where
tiles split into subtiles, building tiles hierarchies; and (2) the subtile ranges are determined by the
query ranges. The proposed method allows to perform the adaptation (compute the metadata,
construct subtiles and reassign objects) without performing any extra I/O operations except the
ones required for the query evaluation.

The baseline method presented in [20] splits a tile that overlaps with the query to equally
sized sub-tiles (Quadtree like). The main drawback of this method, is that in many cases where
the split is performed, however, no metadata is computed for any of the constructed subtiles.
Hence, the I/O that are performed during the query evaluation is not used anywhere. This occurs
when the subtiles constructed by the splitting are not fully-contained in the query. On the other
hand, in our query-driven splitting method, all the performed I/O operations are exploited to
compute the metadata of subtiles. In what follows we outline the basic idea of our Query-driven
Tile Splitting method.

Query-driven Tile Splitting Overview. We consider a query which contains an Analysis part;
i.e., non-axis attributes data is required for the query evaluation. Recall that during evaluation,
for each partially-contained tile t, we access the file, and, for each object in the 2D area RS

t that
overlaps with the query, we retrieve the attribute values that are required for the Analysis part.
Then, we have to compute the metadata for the area RS

t , for these objects.
Our method, during the processing of a query Q, splits t into subtiles, such that one of them

t′ corresponds to the RS
t area. The metadata for the tile t′ is computed during the evaluation of

Q. Hence, in the case where one of the subsequent queries fully contains t′, there is no need to
access the file in order to compute metadata for this part of the query. The basic idea is better
illustrated in the next example.

Example 5. [VALINOR Adaptation & Query Processing] Considering Example 2, after
evaluating the query Q and adapting the index (Fig. 4), a subsequent query Q′ is performed,
as presented in Figure 7. We observe that the query Q′ overlaps with the tiles t2a , t2b , t2c , t2d .
Similarly to Example 2, in order to evaluate Q′, we have to examine the overlapping tiles and

2

Perform & Evaluate Query Q’

3

Decl

 10 20 30 Asc

o1

o5

o2

o4

o3

10

20

Q
Q’

Decl

 10 20 30 Asc

o1

o5

o2

o4

o3

10

20

t2aQ

After Q Evaluation

t2d

t2b

t2d

t2bat2a

20

18

14

o5

28 30

t2ba

t2bb

t2ba

t2b after split

t2 hierarchy
(after splits)

[20, 30)⨯[10, 20)

t2

t2a t2b t2c t2d

[20, 28)⨯[14, 20) [20, 28)⨯[10, 14) [28, 30)⨯[10, 14)

O1, O2

O5

[28, 30)⨯[14, 20)

t2aa
t2bb

[28, 30)⨯[14, 18) [28, 30)⨯[18, 20)

Figure 7: Index Adaptation and Query Processing

identify the selected objects; also, for these tiles we have to determine for which of them we have
to access the file.

We observe that the tile t2c , constructed during Q evaluation, is now fully-contained in Q′

and its metadata has been already computed. Hence, for Q′ evaluation we do not have to access
the file for the objects o1 and o2 included in t2c .

For the evaluation of Q′, we access only o5, whereas in the case that no splitting occurs we
had to access o1, o2 and o5. Similarly to Example 2, during Q′ evaluation, the tile t2b is further
split in two subtiles t2ba and t2bb . The tiles t2a and t2d are ignored since they do not contain any
objects. Note, that the tile t2c is fully-contained to the query and its metadata has been previously
computed. So, in case that t2c is split in this step, we have to compute metadata for the resulted
subtiles. As result, we have to perform extra I/O operations to access the values of o1 and o2
from the file. �

Tile Splitting & Subtiles Construction. In our approach, each tile t of the partially-contained
tiles TQp is split into a set of disjointed subtiles. The subtiles are created based on the area RS

t
which captures the area that the query Q overlaps with t. Particularly, one of the new subtiles
of t, denoted as Query Subtile tQ, corresponds to the area RS

t . In Figure 7, at the left, the query
subtile corresponds to t2c .

Here, for ease of presentation, given a query Q, the intervals of the Select part S.Ix and S.Iy

are denoted as Qx and Qy, respectively. Given a tile t, the intervals of the tile t.Ix and t.Iy are
denoted as tx and ty and we assume closed intervals for tiles. In what follows, we refer that an
interval I = [a, b] is contained into an interval I′ = [c, d], denoted as I ⊆ I′, when a ≥ c and
b ≤ d. Otherwise, I is not contained in I′, denoted as I * I′. Further, we assume that the tile t
with tx = [tx1, tx2] and ty = [ty1, ty2], is partially-contained in the Select part of the query Q with
Qx = [Qx1,Qx2] and Qy = [Qy1,Qy2].

Based on the spatial relation between a partially-contained the tile t and the query Q, there
are four cases based on which the subtiles are created. Figure 8 presents these four cases.

– Case 1. Case 1 holds when: (1) tx ⊆ Qx and Qy * ty and ty * Qy; or (2) ty ⊆ Qy and Qx * tx

and tx * Qx. In the following definition and the Fig. 8, we assume the first condition. The second
condition is also defined, in analogy.

In this case, two subtiles tQ and ta are constructed, where: (tQ) tQx = [tx1, tx2], tQy = [ty1,Qy2];
(ta) tax = [tx1, tx2], tay = [Qy2, ty2].

split

Q

t

Q

t t

Q

t

Q

tQ

ta tb

tc

ta tQ

ta

tb

tQ

tb tc

te

ta

td

tf tg th

case 1 case 2 case 3 case 4

tQ

After
Splitting

Before
Splitting

Figure 8: Tile Splitting Cases

– Case 2. In the Case 2, we construct three subtiles. This case holds when: (1) tx ⊆ Qx and
Qy ⊆ ty; or (2) ty ⊆ Qy and Qx ⊆ ty. In the subtiles definition we assume the first condition (the
case depicted in Fig. 8). In analogy, the second condition is defined.

In this case, three subtiles tQ, ta and tb are constructed, where: (tQ) tQx = [tx1, tx2], tQy = [Qy1,Qy2];
(ta) tax = [tx1, tx2], tay = [Qy2, ty2]; (tb) tbx = [tx1, tx2], tby = [ty1,Qy1].

– Case 3. Case 3 holds when: (1) tx * Qx; and Qx * tx; and ty * Qy; and Qy * ty. In this
case, four subtiles tQ, ta, tb, and tc are constructed, where: (tQ) tQx = [Qx1, tx2], tQy = [ty1,Qy2];
(ta) tax = [tx1,Qx1], tay = [Qy2, ty2]; (tb) tbx = [Qx1, tx2], tby = [Qy2, ty2];
(tc) tcx = [tx1,Qx1], tcy = [ty1,Qy2].

– Case 4. This case holds when: tx ⊆ Qx and ty ⊆ Qy. In this case, nine subtiles tQ, ta, tb, ... th are
constructed, where: (tQ): tQx = [Qx1,Qx2], tQy = [Qy1,Qy2]; (ta) tax = [tx1,Qx1], tay = [Qy2, tx2];
(tb) tbx = [Qx1,Qx2], tby = [Qy2, ty2]; (tc) tcx = [Qx2, tx2], tcy = [Qy2, ty2];
(td) tdx = [tx1,Qx1], tdy = [Qy1,Qy2]; (te) tex = [Qx2, tx2], tey = [Qy1,Qy2]; (tf) t f x = [tx1,Qx1],
t f y = [ty1,Qy1]; (tg) tgx = [Qx1,Qx2], tgy = [ty1,Qy1]; (th) thx = [Qx2, tx2], thy = [ty1,Qy1].

5.3. Splitting Model Analysis
In this section, we analyze the cost of query evaluation via our splitting approach.

I/O Cost. We assume that the cost for reads is the same as the cost of writes, as cio we denote
the I/O cost, which is the cost for reading/writing one object entry from/to the disk.

Cost for Evaluating a Fully & Partially-contained Tile. The cost for a query is different when
it is evaluated over a partially or a fully contained tile. Assume that a tile t is partially-contained
in a query Q, with RS

t to be the overlapped area. Recall that, t.E are the objects included in t;
t.ES are the objects of t selected by Q (i.e., the objects included in the overlapped area RS

t); and
cio be the cost of one I/O operation. Thus, the cost CQ

part(t) of the evaluation of a query over a
partially-contained tile t is:

CQ
part(t) = t.E + cio · t.ES (1)

The t.E is the cost of scanning the objects t.E included in t in order to identify the objects t.ES
that are included in the Select part S of the query. This is the cost of getSelectedObjectsFromTile
function described in Section 4.3. Then, for each of the t.ES objects we have to access the file,
and the cost is cio · t.ES.

On the other hand, if t is fully-contained in a query Q, then t.E = t.ES; thus there is no need
to scan every single object in t to assess whether it should be selected by the query nor to access
the file for computing metadata for the tile (we assume that metadata is already computed by a
previous query). Hence, the cost CQ

f ull(t) of the evaluation of a query over a fully-contained tile t
is:

CQ
f ull(t) = 0 (2)

Splitting & Subtiles Construction Cost. The overall cost of splitting consists of the cost of
splitting the tile t, constructing its subtitles, and reallocating the object entries of t in the new
subtiles. First, we have to determine the intervals of each subtile of t, and in the same time we
define the subtiles as child tiles of t (i.e., initialize the child pointers). These can be performed
without a cost, since the intervals of the subtiles are directly determined by the query select area
RS

t (Sect. 5.2). Then, we have to assign the objects t.E of the tile to the new subtiles. In the worst
case 9 subtiles will be constructed (Case 4, Sect.5.2). Therefore, the cost for splitting a tile t is:
9 · t.E.

Evaluation Cost in case of Splitting and not Splitting Here, we are going to study, the im-
provement gained by performing a split. This analysis is going to be used in order to define the
criterion for performing a split or not.

Assume a query Q that partially contains a tile t, and thus t is split based on our method
resulting in a set of disjoint subtiles, one of which matches the query overlapping area, denoted
as tQ. Then, assume that the next query Q′, partial contains t and fully contains tQ.11 Note that,
this is a very common case in exploration scenarios, since as previously analyzed the user tends
to explore nearby areas. Next, we examine the cost for evaluating Q′, in case of performing and
not performing a split during the Q evaluation.

In case of no split, we have that Q′ partially contains t. Thus, based on Eq. 1 the evaluation
cost Φ

Q,Q′

nosplit of Q′ in case of no split:

Φ
Q,Q′

nosplit = CQ′
part(t) = t.E + cio · t.ES′ (3)

In case of a split, Q′ partially contains t and fully contains tQ. In order to determine the
evaluation cost in case of splitting we consider: the cost to evaluate the fully and partially-
contained tiles (Eq. 1, 2); the tile’s splitting cost (9 · t.E); and the cost to access the child tiles of
t, which in worst case, we have to traverse 9 child pointers of t. Therefore, the evaluation cost
Φ

Q,Q′

split for Q′ in case of split is:

Φ
Q,Q′

split = (t.E − t.ES) + cio · (t.ES′ − t.ES) + (9 · t.E) + 9 (4)

11The assumption that Q′ is the next query, can be generalized to considering that Q′ is one of the following queries
(not strictly the next), if we consider that the tile t is not further split after Q.

Expected Splitting Gain. We use the costs CQ,Q′

nosplit and CQ,Q′

split of evaluating Q′ in the two cases of
not splitting and splitting, respectively. We define the expected splitting gain as the improvement
in the performance of evaluating Q′ in case of splitting the tile t during Q evaluation. Hence,
based on the Eq. 3 & 4, the expected splitting gain ∆ΦQ′ for the query Q′ is defined as:

∆ΦQ,Q′ = Φ
Q,Q′

nosplit − Φ
Q,Q′

split = cio · t.ES (5)

The final part of the equation results by omitting the cost of memory-based operations (i.e.,
tile’s object scanning and splitting cost), since the cost of these operations is clearly dominated
by the cio cost of I/O operations.

Splitting Criterion: To Split, or not to Split? We use the expected splitting gain as a criterion
to determine, during the query evaluation, whether to perform a split or not. This gain is only an
approximation indication, since it indicates the improvement over a single query when splitting
is performed, without however taking into account future splits and queries. Otherwise, at an
exhaustive scenario, we have to enumerate all possible queries and splitting scenarios which is
prohibited in our online setting.

Let a numeric splitting threshold ε ∈ R+. Using the expected splitting gain ∆ΦQ,Q′ and the
splitting threshold ε, we define a splitting criterion, in which a splitting is performed only when
∆ΦQ,Q′ > ε. Hence, based on Eq. 5 we have:12

Splitting Criterion : if (cio · t.ES) > ε , perform a split (6)

We can observe in Eq. 6 that the criterion is defined based on I/O cost cio and the objects
t.ES of the tile t, selected by the query Q. These objects are computed during the Q evaluation;
hence, defining the I/O cost, we are able to compute the splitting criterion on-the-fly during the
evaluation of the Q.

6. Operating VALINOR Index under Memory Constraints

There are cases where the size of the index exceeds the memory available for its operation
and parts of the structure have to be stored at the disk. Here, we define the eviction policy that
determines which parts of the index are removed from main memory and written to the disk.

Disk Storage Model. The eviction policy used in VALINOR is defined at the “tile-level”. When-
ever a tile is evicted from main memory, all its records are removed from main memory and
written to disk, or conversely, read from disk to memory (i.e., fetched) when we retrieve it for
usage. Note that, the “tile-level” policy described here can be easily adapted to accommodate a
“record-level” policy, in which individual records from tiles can be selectively evicted and stored
in disk.

12The threshold ε can be determined based on numerous factors such: hardware performance, tiles and query sizes,
etc. However, this is beyond the scope of this work.

Each time a tile is selected to be evicted, all of its objects currently residing in memory are
written to the disk13 The objects of a tile may be written to different positions in the disk (i.e.,
organized in different files) and a pointer attached to the tile indicates the tile’s position in the
disk. The use of different files allows to store the objects of each tile in sequential manner. In
our disk storage model, we denote as N = |O| the number of objects in the dataset. Further, we
assume that the main memory can fit M objects14, with N > M.15

Eviction Phases. The objects’ evictions are performed in two different phases. The first is during
the index initialization phase, and the second is during query processing. Recall that eviction is
performed only when the size of objects in tiles exceeds the memory size.

During the index initialization and while reading the objects from the source file and building
the index, if the memory gets full, we evict tiles (and write them in disk), in order to free memory
up and read the remaining objects. Recall that, during initialization all objects must be read from
the source file and indexed.

During query processing, a query may overlap with tiles which have been evicted and stored
in the disk. In that case, we first have to free memory and then fetch previously evicted tiles
needed by the query; i.e., first we write “memory-based” tiles to the disk, and then we fetch the
evicted tiles from the disk into memory. In what follows, we describe the eviction during the two
phases.

6.1. Eviction During Query Processing

An eviction is performed when a query overlaps with a tile which has been previously written
to disk. In that case, in order to fetch the required tile, we have to free memory by writing another
tile to the disk. Before we define the eviction policy, we present some necessary definitions.

Tile Disk Access Cost. Each tile t is associated with a disk cost Cio(t) that is the cost of read-
ing/writing the objects entries t.E from/to the disk. Recall that, we assume that the cost for reads
is the same as the cost of writes, as cio we denote the cost for reading/writing one object entry
from/to the disk (Sect. 5.3). The tile disk cost Cio(t) for tile t is the cost of reading/writing all
objects of t from/to disk. That is, Cio(t) = cio · |t.E|. Note that, the cost Cio(t) is imposed in both
cases where: (1) the eviction policy selects to write a tile t to the disk; and (2) a query accesses a
tile t, which is stored in the disk.

Tile Eviction Score. A tile t is associated with a numeric eviction score tevS c ∈ [0, 1], which
formulates the possibility that the tile t is going to be selected by (i.e., overlapped with) a next
query. The highest is the score, the more likely is for the tile to be selected by a subsequent
query. This score can be computed considering several factors, such as: the size of the tile’s
area w.r.t. query’ selection area size; temporal and spatial locality of the tile w.r.t. previously
expressed queries; user moving patterns, visualization type, screen size/resolution [50, 14, 78,
21]. However, this is beyond the scope of this work. In our implementation, considering the
“locality” of exploration scenarios, we define the eviction score based on the Euclidean distance
between the tile and the query.

13Tile’s metadata will also be written to the disk, however here for simplicity we assume that there are no metadata
stored in tiles.

14Section 5.1 presents the memory requirements of a tile and an object.
15Note that, here for simplicity, we assume that M has be calculated by excluding from “actual” memory size, the

memory required to store the information related to the index structure; e.g., tiles intervals, pointers, etc.

Expected Eviction Cost. The expected eviction cost Et for a tile t combines (1) the tile disk
access cost Cio(t); and (2) the eviction score tevS c of t, as

Et = tevS c ·Cio(t) (7)

The overall expected eviction cost for a set of tiles Te, is computed as the sum of the costs of
all tiles. That is, ETe =

∑
∀ti∈Te

Eti . Obviously (also in our implementation) one can consider Cio(t)

to be constant, especially, if all accesses are at the same disk.

Based on the aforementioned definitions, in what follows, we formulate eviction policy that
is adopted during query processing.

Eviction Policy. Let V be the number of objects, which have to be evicted from memory. The
eviction policy selects the tiles Te to be evicted, such as the overall expected eviction cost ETe of
Te is minimized and the tiles of Te contains at least V objects. Hence, formally we have:

minimize
∑
∀ti∈Te

Eti subject to
∑
∀ti∈Te

|ti.E| ≥ V (8)

Selecting Tiles to be Evicted. Considering the objective of the eviction policy (Eq. 8), we
adopt a generally known approximation approach to select the tiles that are going to be evicted.
Initially, we sort the tiles based on their expected eviction cost Et, in descending order. Then, we
select and evict the top tiles which in sum contain at least V objects.

Reconstruction If, during query processing, a tile that has been evicted overlaps a query and we
need to examine its objects, we fetch the objects that are in the disk and we merge with the ones
in memory to recreate the complete list of a tile’s objects. Note that during this recreation, the list
of objects preserves its original order of insertion. To minimize the associated I/O costs, during
fetching, no objects are erased from the disk. In this way, if a tile needs to be evicted again, we
remove its objects from memory and only write to the disk the ones that were not written before.

6.2. Eviction during the Initialization Phase

In this section we describe the eviction method that is followed during the initialization phase.
As already mentioned, we adopt a “Tile-level” eviction method. During the initialization phase,
new records read from the source file are placed into tiles. If the main memory gets full as we
read the objects from the source file,we have to free memory by writing tiles to the disk in order
to make space and read the remaining objects. “Tile-level” eviction means that all tile objects
which have been read into memory up to the time eviction occurs are stored to disk, while the
population of the tile continues. That means that an eviction may occur on a tile, when its current
objects exceed the memory limitations and the tile may keep receiving new objects from the file
parsing and store them in memory, after that last eviction. In this way, some of the objects of a
tile may reside in the disk, and some may be in memory.

During the initialization phase, each time the memory gets full, the eviction policy selects
the tile with the following two properties: (1) it has not been previously evicted, and, (2) it has
the minimum eviction score among all candidates (specifically, this is the tile located far away
from the initial query’s range), and writes its objects currently residing in memory to disk.

Table 3: Datasets Basic Characteristics

Name Num of Object Num of Attributes Data Size (GB)

Real Datasets
SDSS 40M 446 270
TAXI 165M 18 26

Synthetic Datasets
SYNTH10 100M 10 11
SYNTH50 100M 50 51

7. Experimental Analysis

In this section, we conduct the experimental evaluation of our approach. We first present
the experimental setup which describes the datasets, the evaluation scenario, the setting for the
competitors and details about our implementation and then present the results.

7.1. Experimental Setup

Datasets. We have used two real datasets, the NYC Yellow Taxi Trip Records (TAXI), which is
a csv file, containing information regarding yellow taxi rides in NYC16, and the Sloan Digital
Sky Survey dataset (SDSS). From the TAXI dataset, we selected a subset that includes taxi trip
records in 2014 (165M objects, 26 GB) with each record object referring to a specific taxi ride
described by 18 attributes (e.g., pick-up and drop-off dates and locations, trip distances, fares,
and tip amount). Table 3 presents the basic characteristics of the datasets. In our experiments for
the TAXI dataset, the pickup location longitude and latitude were selected as the axis attributes,
and the two attributes for which statistics were calculated were the trip distance and the tip
amount. Each query is defined over an area of 500m × 500m size (i.e., window size), simulating
a map-based exploration at the neighborhood zoom level, with the first query Q0 posed in central
Manhattan (a very dense area).

From the Sloan Digital Sky Survey dataset, we used in our experiments a csv file (270 GB)
containing 40M rows of the the PhotoObjAll table, each row described by 446 attributes. The
right ascension and declination attributes were selected as the axis attributes of our exploration
scenario.

Regarding the synthetic datasets (SYNTH10/50), we have generated two csv files of 100M
data objects, having 10 and 50 attributes (11 and 51 GB, respectively). Each attribute value is a
real number in the range (0, 1000) and follows a uniform distribution. For the query sequences
we generated for the synthetic dataset, we used a window size with approximately 90K objects.

Evaluation Scenarios. We study the following visual exploration scenario: (1) First, the user
selects the two axis attributes and requests to explore a region of the data from the raw file,
specifying also the attributes for which statistics will be calculated. For this action, referred to
as “From-Raw Data-to-1stResults”, we measure the execution time for creating the index and
answering the first query, the results of which are evaluated directly on the raw file, during index
initialization. (2) Next, the user continues exploring areas of the dataset.

16Available at: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

User’s Entry Point. For selecting the entry point (initial query Q0) of the user we adopt the
following. In the TAXI dataset, the position of Q0 is defined over the NY Manhattan area. In the
SYNTH10/50 datasets, the position of the initial query is randomly selected over the whole area.
Finally, the SDSS dataset is very sparse, there are numerous, large empty areas (i.e., without
containing objects), so we find a not-empty area to evaluate our queries.

Query Size. The initial size of the queries, for the TAXI dataset the size corresponds to one
city block in the Manhattan. For the SYNTH10/50 and SDSS datasets, we follow an approach
which is based on visualization-based assumptions. The maximum number of objects that can
be visualized without having objects’ overlaps (i.e., two objects are very close and appear as a
single object) can be estimated assuming that: each can be visualized in one pixel, and there are
no objects in the pixels around it.

In this setting, the maximum number of visualized objects is (w × h)/9, where w × h is the
resolution of the screen. Today the most common resolutions in desktops are 1366 × 768 and
1920× 108017, which results in about 100K to 200K objects to be visualized. Therefore, the size
of the queries in SYNTH10/50 contains about 100K objects, and in SDSS about 200K objects.

Exploration Scenarios. In our evaluation we examine two exploration scenarios. In the first
scenario, we generated sequences of 100 overlapping queries, with each window query shifted
in relation to its previous one by 1-20% towards a random direction (N, E, S, W, NE, NW, SE,
SW). This scenario attempts to formulate a common user’s behavior in 2D visual exploration,
where the user explores nearby regions using pan operations. [87, 88, 52, 78, 14, 84, 28, 31]. For
example, assume the common ”region-of-interest” or ”following-a path” scenarios in map visual
exploration.

The second exploration scenario combines pan and zoom operations. Particularly, based on
the findings of [14] for 2D exploration, the users perform almost equal number of pan and zoom
operations. Further studies [72] have shown that in general in map-based visual exploration tasks,
the users change the zoom level at most 3 (i.e., +/- 3 levels w.r.t. zero level). Thus, in our second
scenario, we assume that a user performs a pan or a zoom operation with equal probability. In
case of pan, we follow the strategy used in the first scenario (i.e., random shift 1-20% toward
a random direction). For the zoom operations, we consider that a user has equal probability of
performing a zoom-in or a zoom-out operation. Each zoom-in/zoom-out operation increases or
decreases the visualized area to 150% in relation to the previous one.

VALINOR Variations. To assess the effect of the initialization and adaptation policy, we mea-
sure the performance of three variations of VALINOR. In the first variation called VALINOR-S,
we use the basic initialization mode without index adaptation. With this setting, VALINOR
essentially works as a static flat-tile structure that does not adapt to the query workload. In
the second variation, called VALINOR-B, we use the basic initialization mode with the basic
quad-tree like adaptation mode as introduced in [20], while in the third (VALINOR), we use the
query-based initialization mode (Sect. 5.1) with the query-driven adaptation mode (Sect. 5.2).
For every one of the variations, we initialized the index with l = 1/100 resulting in an initial grid
of 100 × 100 equal-width tiles (this number of initial tiles is used in all the experiments). Also,
we set the number of extra tiles |TS | which will be created during the Query-driven initialization
method to a 20% of the number |T0| of initial tiles. Recall, these new tiles will be distributed
around the first query Q0. For both adaptation modes, we set the threshold for the number of
objects required in order to split a tile equal to 200.

17https://gs.statcounter.com/screen-resolution-stats/desktop/worldwide

https://gs.statcounter.com/screen-resolution-stats/desktop/worldwide

0

4000

8000

12000

16000

20000

SYNTH10 SYNTH50 TAXI SDSS

Ra
w

 D
at

a-
to

-1
st

Re
su

lt
Ti

m
e

(s
ec

) SQL-0I SQL-1I SQL-2I R-tree PGR VALINOR

28000 sec

Figure 9: Time for Answering the 1st Query over the Raw File.
Time includes: File Parsing, Index Construction & Q0 Evaluation

Competitors. We have compared with: (1) A traditional DBMS (MySQL 8.0.15), where the user
has to load all data in advance in order to execute queries; three indexing settings are considered:
(a) no indexing (SQL-0I); (b) one composite B-tree on the two axis attributes (SQL-1I); and
(c) two single B-trees, one for each of the two axis attributes (SQL-2I). MySQL also supports
SQL querying over external files (see CSV Storage Engine in Sect. 8); however, due to low
performance [9], we do not consider it as a competitor in our evaluation18. (2) PostgresRaw
(PGR)19, build on top of Postgres 9.0.0 [9], which is a generic platform for in-situ querying over
raw data (Sect. 8). (3) A main memory Java implementation of the R*-tree20 [15]. We have
tested various configurations for R-tree index fan-out, ranging from 4 to 128; as the difference
in the performance is marginal, we only report on the best one, i.e., 16. For all the other tuning
decisions, with respect to its performance and memory minimization, we have setup the R*-tree
with the configuration recommended in its GitHub repository.

Metrics. We compare our method with the existing solutions, as well as with our previous
baseline approach of [20]. We measure the: (1) execution times for each query in the sequence;
(2) accumulative execution time for the entire exploration scenario; (3) memory consumption;
(4) the performance of the eviction mechanism under varying memory constraints; and (5) the
number of I/O operations. In all cases, the reported time values are the averages of 10 executions.

Implementation. We have implemented RawVis21 on JVM 1.8 and the experiments were con-
ducted on an 3.60GHz Intel Core i7-3820 with 64GB of RAM. We applied memory constraints
(max Java heap size) in order to measure the performance of our approach and our competitors
in a commodity hardware setting. For large datasets, PGR required a significant amount of mem-
ory (in some cases more than 32GB); the same held for the in-memory R-Tree implementation
(>16GB in most cases). In contrast, VALINOR performed well in all datasets (>250GB) for
heap size less than 10GB (see Sect. 7.2).

18We refer the reader to [9], which has performed several experiments comparing the PostgresRaw against two DBMSs
(MySQL and a commercial DBMS). The experiments demonstrated the (noticeable) poor performance of the DBMS
systems against PostgresRaw (e.g., in some experiments PostgresRaw is about 12× faster than the MySQL), which is
due to the fact that each time a query is posed to external data, the whole file needs to be parsed.

19https://github.com/HBPMedical/PostgresRAW
20https://github.com/davidmoten/rtree
21The source code is available at https://github.com/Ploigia/RawVis

https://github.com/HBPMedical/PostgresRAW
https://github.com/davidmoten/rtree
https://github.com/Ploigia/RawVis

0

40

80

120

160

1M 10M 50M 100M

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Objects

Q0 Indexing Parsing

Figure 10: Initialization Phase: File Parsing, Index Construction & Q0 Evaluation

7.2. Results

From-Raw Data-to-1st Result Time. In this experiment, we measured the time required to
answer the first query Q0. This time includes the time required to load and index the data for
MySQL, and to construct the positional map for PGR. For the VALINOR and R-tree cases the
in-memory indexes must be built. For the R-tree construction, bulk-loading was used.

Figure 9 presents the results for the datasets used. In these results, we omit MySQL for the
SDSS dataset as it took more than 5 hours just to load the dataset without creating any indexes.
VALINOR outperforms the MySQL and R-tree methods, for all datasets. Before being able to
answer the first query, MySQL needs to parse and convert all attributes of the raw file and store
all data on disk. Also, for the SQL-1I and SQL-2I cases, the corresponding indexes must be
built, which explains the increased initialization time in relation to SQL-0I where no index is
generated.

Further, as expected, VALINOR exhibits a lower initialization time than R*-tree; the latter
must determine multilayer MBRs and assign objects to leaf nodes as opposed to our approach
which is initialized with fixed tile sizes.

In this experiment, VALINOR exhibits a slightly higher initialization time in relation to PGR
for the SYNTH10/50 and TAXI datasets. This can be attributed to the non-optimized csv pars-
ing and slower I/O Java operations, as opposed to the efficiency provided by the programming
language of PGR (i.e., C) – of course, improving our implementation in terms of parsing and I/O
is open for exploration in the future.

Despite this slight difference in initialization time, as demonstrated latter, VALINOR is con-
siderable faster in answering queries during an exploration scenario. Particularly, during explo-
ration, in most cases, VALINOR is about 5-10× faster compared to existing systems.

For the largest dataset (SDSS), which contains 446 attributes, VALINOR outperforms the
other methods. Particularly, VALINOR populates the index only for the two axis attributes and
stores tile metadata for the attributes requested in the analysis part of the queries. PGR, on
the other hand, populates its index (positional map) with the position of all tokenized attributes
until the last attribute requested in the query. For the queries posed in SDSS, this last attribute
corresponds to the declination which is the 398th attribute in the dataset. As a result, PGR
keeps in the positional map the position of the first 398 attributes, which explains the slower
initialization time.

Finally, for assessing the time required for VALINOR for answering the 1st query Q0, we
have separately measured the time of the initialization phase that spent to: parse and read the
file, construct the index and determine the objects of the first query Q0. In our experiment we

Figure 11: Initialization & Adaptation Methods: Execution Time
Comparison of the Three VALINOR Configurations

use the SYNTH10 data varying the number of objects from 1M to 100M objects. The results are
presented in the Figure 10. In all cases, the time required for parsing the file clearly dominates
(more than 70%) the overall initialization time. On the other hand, since the first query Q0, is
evaluated during the file parsing and the index construction, the query evaluation overhead is
negligible.

Initialization & Adaptation Methods. Next, we evaluate the performance of the three VALINOR
variations, and show that the query-driven initialization and adaptation policies improve query
execution time, especially for the first operations of the exploration scenario. Figure 11 presents
the execution time for queries Q1 ∼ Q99. Note that Q0 is not depicted in the figures. This query,
which triggers the initialization of the index, is answered directly from the raw file and does not
exhibit any significant difference among the VALINOR variations presented.

As we can observe, VALINOR-S exhibits the worst performance for all datasets. In
VALINOR-S, there is no adaptation to the workload in order to increase the number of fully-
contained tiles with precomputed aggregate values. Both, VALINOR-B and VALINOR perform
tile splitting to minimize future file reads, however in VALINOR, as can be seen, the query-
driven initialization and adaptation policies used provide an initial boost in query performance.
This boost is more significant for the TAXI and SDSS datasets, since the window size used for
their workload is much smaller in relation to the initial tile size. In VALINOR, the query-driven
initialization policy splits the area around the first query in a more fine-grained fashion, mak-
ing subsequent neighboring queries fully overlap more tiles sooner and reducing their execution
time. This initial boost in query performance is also the result of the query-driven adaptation
policy employed. Using this adaptation method, the subtiles that correspond to the intersection
with the query are more likely to fully overlap with similarly-sized subsequent queries. This is in
contrast to the basic adaptation mode, where a tile may need to be split multiple times to create

 (a) SYNTH10 (b) SYNTH50

 (c) TAXI (d) SDSS

0.E+0

1.E+4

2.E+4

3.E+4

4.E+4

5.E+4

6.E+4

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

I/

O
 o

p
er

at
io

n
s

Query Sequence

VALINOR-S VALINOR-B VALINOR

0.E+0

1.E+4

2.E+4

3.E+4

4.E+4

5.E+4

6.E+4

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

I/

O
 o

p
er

at
io

n
s

Query Sequence

VALINOR-S VALINOR-B VALINOR

0.E+0

1.E+6

2.E+6

3.E+6

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

I/

O
 o

p
er

at
io

n
s

Query Sequence

VALINOR-S VALINOR-B VALINOR

0.0E+0

1.1E+5

2.2E+5

3.3E+5

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

I/

O
 o

p
er

at
io

n
s

Query Sequence

VALINOR-S VALINOR-B VALINOR

Figure 12: Initialization & Adaptation Methods: Number of I/O Operations
Comparison of the Three VALINOR Configurations

subtiles small enough to be fully contained by the next queries. Also, in the query-driven adap-
tation policy, we exploit all the I/O operations for the subtiles that correspond to the intersection
with the query by computing metadata for them. As a result, in VALINOR, the index adapts to
the workload and executes the first queries faster than in VALINOR-B. However, as can be seen
in Figure 11, both adaptation methods manage to adapt to the workload and exhibit a similar
performance after a number of queries (e.g., approximately after 15 to 20 queries). Note that,
this behavior is aligned with the goals of the optimizations proposed in this work; i.e., to improve
the overall response time, especially for the user operations performed at the early stages of the
exploration scenario.

The execution time examined above, is mainly determined by the number of I/O operations
required to answer each query. This is evident in Figure 12, where as it can be seen, the plots
follow closely the corresponding execution time plots in Figure 11. Regarding the two syn-
thetic datasets (SYNTH10/50), their I/O plots almost completely match (Fig. 12a, b). These
two datasets have the same number of rows and all of their attributes have values uniformly dis-
tributed in the same range. Their only difference is the number of attributes each one has (i.e.,
10 and 50 respectively). Thus, since we use the same query workload and the same initialization
setting, the I/O operations required for both datasets are similar. Also, every query in their work-
load had the same window size and selected approximately the same number of objects. This
explains why in VALINOR-S, where the index does not perform tile splitting in order to reduce
the file accesses of subsequent queries, the number of I/O operations does not change from query
to query. Overall, for the synthetic datasets, VALINOR requires around 30% less I/Os compared
to VALINOR-B and 80% less compared to VALINOR-S; 22% and 87% for TAXI, 30% and 92%
for SDSS respectively.

0

3

6

9

12

15

Q0 Q11 Q22 Q33 Q44 Q55 Q66 Q77 Q88 Q99

M
ax

im
um

 D
ep

th

Query Sequence

Figure 13: Maximum Hierarchy Depth of VALINOR per query (TAXI)

Regarding the index adjustment to the query selection predicate, the incremental index adap-
tation performs a larger number of tile splittings in areas that are frequently visited by the user.
As a result, an unbalanced index is constructed, with deeper tile hierarchies in those areas. On
the other hand, the threshold used by our splitting method (Sect. 5.3) limits the number of times a
tile is split. Figure 13 presents the maximum depth of the index resulting from every query in the
sequence for the TAXI dataset. The initial depth of the index after Q0 is one. Between queries
Q1 ∼ Q99 where the user explores neighboring areas, the query-driven adaptation method, fur-
ther splits the tiles and increases the maximum depth of the index. We observe, however, that
due to the threshold limit, the depth converges to a maximum value (14 for the TAXI dataset).

To assess the influence of Q0 on how the index is refined during the entire exploration sce-
nario, we have conducted an experiment in SYNTH10, in which we varied the initial query, while
keeping constant the remaining workload of queries Q1 ∼ Q99. Since this dataset has a uniform
distribution, the position of Q0 does not significantly affect the initial tiling of the index. Thus,
we only varied the Q0 size (from 0.01% to 10% selectivity on the dataset) and we measured the
way the index is refined (number of total tiles) after every query. Figure 15 shows that although
Q0 size affects the initial tile structure, VALINOR attempts to adjust the number of tile splittings
that happen after Q0. For small Q0 sizes, the index is already split in more small tiles around
Q0 and following queries create fewer tiles compared to larger sizes of Q0. This explains why
for larger Q0 the number of total tiles increases more rapidly at first. Still, as can be seen in the
figure, after Q85 the number of new tiles created by tile splittings are approximately the same
despite different Q0.

VALINOR vs. Competitors during Exploration Scenarios. In this experiment, we compare
the behavior of VALINOR against the existing solutions. Figure 14 shows the execution time for
queries Q1 ∼ Q99, without the first query that includes the initialization stages for every system
(e.g., loading and indexing the data for MySQL).

In the results, we omit the plots for SQL-0I for the two synthetic datasets, and the ones
for SQL-0I and SQL-1I for the TAXI, as the corresponding execution times were much higher
(more than 350sec). Also, in the SDSS dataset, we did not run the query sequence for any of the
MySQL settings, as it took more than 5 hours just to load the data.

Compared to the other methods, VALINOR exhibits significantly lower execution time in
almost all cases. Particularly in TAXI dataset, where VALINOR times range between 0.3 to 12
sec, VALINOR is more than 2× faster in all queries and more than 10× faster in 35% of queries
than the best competitor, and in the rest of datasets VALINOR is about 2-5× faster.

Figure 14: Execution Time: VALINOR vs. Competitors

Regarding PGR, we observe that it requires approximately the same time for every query.
The positional map used in PGR, attempts to reduce the parsing and tokenizing costs of future
queries, by maintaining the position of specific attributes for every object in the raw file. How-
ever, PGR still needs to examine all objects in the dataset in order to select the ones contained
in a 2D window query. Also, in contrast to VALINOR, PGR does not keep any metadata in
order to efficiently compute the aggregate queries. This is also the main reason why the R-tree
is significantly slower compared to VALINOR. For the evaluation of the analysis part of a query
the R-tree cannot reuse previously computed metadata in order to reduce the number of I/O
operations, and has to go to the raw file for every object contained in the select part of the query.

Besides the positional map used in PGR, a cache is also employed to hold the values of pre-
viously accessed attributes and avoid access to the raw file altogether. So, for queries Q1 ∼ Q99
where the cache is already populated, and the attributes requested are the same as in Q0, PGR
does not need to access the raw file. The time to execute every query then depends mainly on the
number of objects contained in the dataset. For example, for TAXI which contains 165M objects
every query takes around 26 sec, while for SDSS which contains 40M objects, 4.7 sec. This
explains why PGR is faster for some of the queries in the SDSS dataset compared to VALINOR.
VALINOR, despite adapting to the workload in order to minimize file reads, still needs to access
the raw file for the objects of partially-contained tiles. For SDSS, these raw file accesses are par-
ticularly expensive considering its disk size (270GB). Nevertheless, VALINOR performs better
than PGR for most of the queries in SDSS, needing approximately 51% less total time to execute
queries Q1 ∼ Q99.

9000

10000

11000

12000

13000

14000

15000

Q0 Q14 Q28 Q42 Q56 Q70 Q84 Q98

N
um

be
r o

f T
ile

s

Query Sequence

0.01% 0.05% 0.5% 10%

Figure 15: Number of Tiles varying Q0 Selectivity

The accumulative time needed to execute the query sequence of the exploration scenario
for every dataset is shown in Figure 16. The accumulative time captures the overall perfor-
mance of the user scenario. This time includes Q0 which is depicted separately from all subse-
quent queries. As it can be seen, the cumulative time needed to execute the complete workload
by VALINOR is much lower in relation to other systems. For example, for the TAXI dataset
VALINOR needs around 15 min, while PGR, which is the best competitive method for this
dataset, requires approximately 51 min. Even though PGR needs less time to answer the first
query for the TAXI dataset, as well as for SYNTH10/50, the rest of the sequence is executed
mush faster by VALINOR, resulting in better overall performance.

Discussion. We observe that VALINOR achieves for most queries (except Q1) of SYNTH10 and
SYNTH50 response times between 0.07 and 0.55 and between 0.1 and 0.8, respectively. Note
that, in SYNTH10 only one query reports time more than 0.5 sec, and in the SYNTH50 dataset
11 queries. Regarding the SDSS and TAXI datasets, due to a noticeable larger number of I/Os
(about two orders of magnitude more), the response times are larger. Particularly, in SDSS we
have times between 0.15 and 9.5. However, in more than 35% of the queries the time is less
than 1 sec. On the other hand, the best competitive method (PGR), reports times more than
4.2 sec in all queries. In the TAXI dataset, where we have the larger number of I/Os, we have
times between 0.3 and 11, with 4.2 seconds being the average value. On the other hand, the best
competitive method (PGR), reports times between 23 and 28, with 26 as average value. Further,
in PGR about 85% of the queries require more than 25 sec. Hence, in 85% of the queries the PGR
reports more than twice worse performance compared to our worst case (11 sec). Overall, in our
experiments, the proposed method, in most cases, is about 5-10× faster than the competitors, and
requires significantly less memory resources.

Finally, we have to note that the system’s performance is highly affected by implementation
issues. For example, in our case, the disk I/O operations cost, dominates the response time. The
VALINOR has been implemented as a prototype using the Java programming language, which is
known to have poor performance in I/O operations, compared to other programming languages;
e.g., C/C++. So, the use of other programming languages will have an impact on performance.

Evaluating Filter Operations. For assessing the behaviour of VALINOR with regard to varying
filtering on non-axis attributes, we compare VALINOR against PGR while varying the filter
part. For this, we generate 4 queries for SYNTH10, keeping the select part (i.e., window query)
fixed, while alternating their filter condition. Specifically, the filter part of each query includes

Figure 16: Overall Execution Time for the Entire Exploration Scenario

a condition over a different non-axis attribute. For example, Q0 filters objects having their 8th
attribute greater than 700; Q2 filters objects with the 6th attribute less than 200, etc. The same
workload of queries Q0 ∼ Q3 are repeated 3 times and the results are shown in Figure 17. In
the plot, the first iteration of Q0 includes the initialization time for both systems, which explains
the significantly higher execution time. As can be seen, VALINOR outperforms PGR in this
experiment. For every such query, VALINOR first evaluates the select part, and may read the
raw file to retrieve the non-axis attribute included in the filter part only for the objects contained
in the window query. Also, while reading these non-axis attributes, it stores tile metadata for
them, which assists next filter queries avoid expensive IO operations. This is evident especially
for Q3. The first time Q3 is executed, there is no tile metadata for the 9th attribute which its
filter condition references. As a result, VALINOR needs to retrieve this attribute for all objects
contained in the select part. Simultaneously, while reading this attribute, it populates fully-
contained tiles with related metadata (e.g., min, max for this attribute). When the same query Q3
is executed again, VALINOR utilizes this metadata to avoid most I/O operations, which explains
its faster execution time. Regarding PGR, we can observe that apart from the first iteration of
Q0, which initializes the positional map and cache of the system and thus exhibits much higher
execution time, PGR also exhibits a significantly slower execution time for the first iteration of
Q1 ∼ Q3 as it populates the positional map for the corresponding non-axis attributes of each
query’s filter condition. Next iterations of these queries require less time, as they can utilize the
already populated structures of PGR.

Combining Pan & Zoom Operations. In this experiment, we compare VALINOR’s perfor-
mance with that of PGR and R-tree, for the second exploration scenario which includes pan,
zoom-in and zoom-out operations on the TAXI dataset. Figure 18 presents the results, where

0
5

10
15
20
25
30
35

Q0 Q0' Q0'' Q1 Q1' Q1'' Q2 Q2' Q2'' Q3 Q3' Q3''

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Query

VALINOR
PGR~~

Figure 17: Execution Time for Filter Operations (SYNTH10)

0

10

20

30

40

50

60

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Query Sequence

RTREE
PGR
VALINOR

Figure 18: Exploration using Pan and Zoom In/Out Operations (TAXI)

VALINOR exhibits better performance for every query Q0 ∼ Q99. Compared to the first ex-
ploration scenario which did not include zoom operations, we can observe that in this, query
execution times vary significantly. Zoom-out operations increase the number of objects con-
tained in a window query and result in slower execution times in general. For example, Q9, Q13
and Q74 correspond to zoom-out operations, which explains the significantly higher execution
time observed for all 3 methods examined. On the other hand, zoom-in operations restrict the
visualized area and reduce the objects that need to be examined. As a result, queries like Q2
or Q42 correspond to drops in execution time. The aforementioned behavior, where larger win-
dow queries result in slower execution time, is more consistent for the PGR and R-tree methods,
where all contained objects have to be examined and their non-axis attributes included in the
analysis part of the query, either fetched from disk for R-tree, or from disk or cache for PGR. On
the contrary, VALINOR performs tile splittings and populates fully-contained tiles with meta-
data for the non-axis attributes that are retrieved. As a result, even for a zoom-out operation
(e.g., Q82), VALINOR may require less time than the previous, smaller window query, if it can
utilize tile metadata to avoid I/O operations.

Memory Consumption. In this experiment, we examine how VALINOR’s size in memory
changes while it is adapted to the query workload. The experiment was ran on the synthetic

4.328

4.329

4.33

4.331

4.332

4.333

Q0 Q15 Q30 Q45 Q60 Q75 Q90

M
em

o
ry

 (
G

B
)

Query Sequence

(a) VALINOR During an Exploration Scenario

0

5

10

15

1M 10M 50M 100M

M
em

o
ry

 (
G

B
)

#Objects

R-tree VALINOR

(b) VALINOR vs. R-tree

Figure 19: Memory Consumption (SYNTH10 or SYNTH50 – is the same in both datasets–)

datasets with the index operating using its query-driven initialization and adaptation policies.
Note that, the memory consumption in VALINOR is not affected by the objects’ dimensionality,
since in each case, only the two axis attributes are indexed. As a result, using either of the two
synthetic datasets (SYNTH10/50) would require the same memory. The query workload used is
the same as in previous experiments, with each query requesting bivariate statistics on two non-
axis attributes. Figure 19(a) shows the results. We can observe that the total size of the index
increases slightly as queries are processed. This is the result of tile splitting to adapt to the query
workload and of metadata being stored for fully-contained tiles.

Figure 19(b) presents VALINOR’s memory footprint compared to R-tree. We did not con-
sider PGR and MySQL settings since they exhibit different memory requirements due to their
tight-coupling with the RDBMS. Nevertheless, PGR required a significant amount of memory for
its positional map and cache for datasets with more attributes (in some cases more than 32GB).
For this experiment, we measured the memory used to build VALINOR and R-tree varying the
number of objects in the synthetic dataset. Note that, same as VALINOR, the memory of R-tree
is not affected by the objects’ dimensionality. So, SYNTH10 is the same as SYNTH50. We can
observe that VALINOR requires significantly less memory than R-tree, with R-tree requiring 2×
more memory for 100M objects.

Performance of VALINOR under Memory Constraints. Next, we examine the behavior of
VALINOR when operating under memory limitations and its index structure size exceeds the
available memory size. In this scenario, parts of the index have to be evicted to the disk and
loaded again into memory as needed. For this experiment, we used the SYNTH10 dataset run-
ning the same workload as before, but varying the percentage of objects that can fit into the
memory available between 25%, 50%, 75% and 100%. To show the effect of eviction during
query processing, we modified the workload used previously for the synthetic dataset, generat-
ing sequences of 100 overlapping queries, increasing the window size (5×) and shifting each
query in relation to its previous one by a shift amount of 50%.

Figure 20 presents the cumulative time needed to answer the query sequence for every case.
As we can see, VALINOR’s initialization time increases under memory pressure. Since the
objects cannot fit in memory, some objects are evicted during the initialization phase. To bet-
ter demonstrate how memory pressure affects query processing, we present separately in Fig-
ure 21(a) the cumulative time needed to answer Q1 ∼ Q99. As can be seen, the time needed to
answer queries after the initial one, is not greatly affected. Since we follow an eviction policy
based on the distance from the query, and the workload consists of neighboring and overlapping
queries, very few evictions need to happen during query processing. Specifically, the effect is

0

100

200

300

400

500

600

10% 25% 50% 75% 100%

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Percentage of objects in memory

Q1-Q99 Initialization & Q0

Figure 20: Overall Execution Time varying the Memory Size (SYNTH10)

0

20

40

60

80

100

10% 25% 50% 75% 100%

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
)

Percentage of objects in memory

Q1-Q99

(a) Overall Execution Time

0

1

2

3

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Query Sequence

10% 25% 50% 75% 100%

(b) Execution Time per Query

Figure 21: Execution Time varying the Memory Size (SYNTH10)

more pronounced when restricting the available memory to 10% of the dataset, as can also be
seen in Figure 21(b), which presents the execution time for queries Q1 ∼ Q99.

8. Related Work

Several areas relate to the general problem of exploration and visualization of raw data, which
can be grouped into two main categories: efficient indexing and querying of the raw data; and ef-
ficient and effective exploration and visualization techniques. On the indexing and query process-
ing part, the most relevant one deals with in-situ query processing, i.e., how the time-consuming
task of loading and indexing of the data can be avoided such that the time-to-analysis is min-
imized. In this respect there are recent works that aim to compute and store statistics for the
data on-the-fly minimizing the access to the raw data. Also, several spatial indexes have been
proposed for 2D querying and analysis in database settings. On the visualization and exploration
part, there is number of visualization-driven indexes, most of them operating in main memory,
that aim at speeding up user exploration actions. In this section, we present in details these works
and provide a comparison of our approach to them.

In-situ Query Processing. Data loading and indexing usually take a large part of the overall
time-to-analysis for both traditional RDBMs and Big Data systems [44]. In-situ query processing
aims at avoiding data loading in a DBMS by accessing and operating directly over raw data files.
NoDB [9] is a philosophy for constructing a no-dbms querying architectures, and PostgresRAW

is one of the first efforts for in-situ query processing. PostgresRAW incrementally builds on-the-
fly auxiliary indexing structures called “positional maps” which store the file positions of data
attributes, as well as it stores previously accessed data into cache. As opposed to VALINOR,
the positional map in PostgresRAW, can only be exploited to reduce parsing and tokenization
costs during query evaluation and can not be used to reduce the number of objects examined in
two-dimensional range queries. Also, VALINOR is better optimized for aggregate queries, since
it can reduce raw file accesses by reusing already calculated statistics on a tile level.

DiNoDB [79] is a distributed version of PostgresRAW. In the same direction, PGR [55]
extends the positional maps in order to both index and query files in formats other than CSV.
In the same context, Proteus [54] supports various data models and formats. Recently, Slalom
[67, 68] exploits the positional maps and integrates partitioning techniques that take into account
user access patterns.

Raw data access methods have been also employed for the analysis of scientific data, usually
stored in array-based files. In this context, Data Vaults [49] and SDS/Q [22] rely on DBMS
technologies to perform analysis over scientific array-based file formats. Further, SCANRAW
[26] considers parallel techniques to speed up CPU intensive processing tasks associated with
raw data accesses.

Recently, several well-known DBMS support SQL querying over csv files. Particularly,
MySQL provides the CSV Storage Engine [1], Oracle offers the External Tables [3], and Post-
gres has the Foreign Data [4]. However, these tools do not focus on user interaction, parsing
the entire file for each posed query, and resulting in significantly low query performance [9] for
interactive scenarios.

All the aforementioned works study the generic in-situ querying problem without focusing
on the specific needs for raw data visualization and exploration. Instead, our work is the first
effort trying to address these aspects, considering the in-situ processing of a specific query class,
that enables user operations in 2D visual exploration scenarios; e.g., pan, zoom, details. The
goal of our solution is to optimize these operations, such that visual interaction with raw data is
performed efficiently on very large input files using commodity hardware.

Visual Exploration. Visual data exploration offers the users the ability to interact with the
underlying data through visual ways, i.e., mapping user operations to data access and querying
methods [70, 17, 11, 37]. In this context, the first efforts focused on developing visual querying
languages for DBs such as [90, 12, 24, 25, 62]. Although, they share some similar concepts, most
of them address the need to offer the database analyst a visual way for syntactically expressing a
query, rather than offering visual operations for interactive data exploration. In most interactive
visualization systems, visual user operations (e.g., map panning) are used for specifying the
actual query logic and several visualization languages have been proposed to to simplify the
generation of such visualizations [30, 41, 42, 83].

In the context of visual exploration, several indexes have been introduced. VisTrees [32] and
HETree [21] are tree-based main-memory indexes that address visual exploration use cases; i.e.,
they offer exploration-oriented features such as incremental index construction and adaptation.
Compared to our work, both indexes focus on one-dimensional visualization techniques (e.g.,
histograms), and they do not consider disk storage; i.e., data is stored in-memory.

Hashedcubes [29], Nanocubes [59], SmartCube [60] and Gaussian Cubes [80] and are main-
memory data structures supporting a wide range of interactive visualizations, such as heatmaps,
time series, and histograms. They are based on main-memory variations of a data cube in order to
reduce the time needed to generate the visualization. In comparison with our approach, Hashed-

cubes and Nanocubes require that all data resides in memory, and thus it does not address the
need of reducing the overall time-to-visualization (both loading and query processing time) over
raw data files and it does not feature any adaptive technique based on the user interaction. Top-
Kubes [63] proposes an extension of Nanocubes for the interactive computation of top-k queries
in large datasets.

Further, graphVizdb [19, 18] is a graph-based visualization tool, which employs a 2D spa-
tial index (e.g., R-tree) and maps user interactions into window 2D queries. To support the
operation of the tool, a partition-based graph drawing approach is proposed. Compared to our
work, graphVizdb requires a loading phase where data is first stored and indexed in a relational
database system. In addition, it targets only graph-based visualization and interaction, whereas
our approach offers interaction in 2D layouts, such as maps or scatter plots.

In another context, tile-based structures are used in visual exploration scenarios. Semantic
Windows [52] considers the problem of finding rectangular regions (i.e., tiles) with specific ag-
gregate properties in an interactive data exploration scenario. This work uses several techniques
(e.g., sampling, adaptive prefetching, data placement) in order to offer interactive online perfor-
mance. ForeCache [14] considers a client-server architecture in which the user visually explores
data from a DBMS. The approach proposes a middle layer which prefetches tiles of data based
on user interaction. Prefetching is performed based on strategies that predict next user’s move-
ments. Our work considers different problems compared to the aforementioned approaches, but
some of these methods can be exploited in our framework to further improve efficiency and es-
timate several parameters (e.g., splitting criteria, eviction and initialization policy). However,
these issues are beyond the scope of this work.

Recently, many systems adopt the progressive paradigm attempting to reduce the response
time. [33, 13, 73, 86, 8, 35]. Progressive approaches, instead of performing all the computa-
tions in one step (that can take a long time to complete), splits them in a series of short chunks
of approximate computations that improved with time. Therefore, instead of waiting for an un-
bounded amount of time, users can see the results unfolding progressively. These approaches
can adjust the relation between the response time and the approximation error bounds. On the
other hand, in our approach, the exact answers are presented to the users as soon as these are
computed.

Exploratory Data Analysis. Data exploration sessions usually start by employing statistical
analysis to gain an overview of the various characteristics of the data and find underlying trends in
an iterative process, where each exploratory query helps formulate the next one. Most traditional
database systems provide support for basic statistical analysis (e.g., aggregates, top-k, etc). More
advanced exploratory statistical analysis can be performed by tools like the R programming
language [71] or NumPy and SciPy [5]. These tools cannot handle our scenario, though, since
they either assume that the data fits in memory, or are integrated with traditional database systems
which require a preprocessing phase.

In [82], Data Canopy is introduced, which attempts to reduce the number of data accessed
while calculating statistics, by synthesizing statistics from basic aggregates calculated over chunks
of the data columns and are cached for reuse by future queries. Although, Data canopy, like
VALINOR allows the reuse of already cached basic aggregates for the efficient calculation of
more general statistics, it does not deal with the problem of fast exploration over large raw
datasets. Also, in Data Canopy, the chunks are defined over consecutive data items from a col-
umn or a set of columns, as opposed to VALINOR where the data objects are organized into tiles
based on their values for the two axis attributes. In that way, the chunking used in Data Canopy

can be used to compute statistics over query ranges defined between two positions in a column
set and can not be exploited for the evaluation of two-dimensional window queries.

Traditional and Adaptive Indexes. A vast collection of index structures has been introduced
in traditional databases, as well as Big Data systems. Traditional spatial indexes, such as the R-
tree, kd-tree, quadtree [36], are designed to improve the evaluation of range or nearest-neighbor
queries on multidimensional data, and are widely available in both disk-based and main memory
implementations. In R-trees [61], nearby objects are grouped together using minimum bounding
rectangles, with rectangles at higher levels of the tree aggregating an increasing number of ob-
jects and leaf nodes containing the actual objects. In the same context, several variants have been
proposed to solve some of its disadvantages. For example, X-trees [16] try to avoid the over-
lap in the bounding boxes, a common problem in higher dimensions, by introducing a splitting
algorithm and the concept of supernodes. M-trees [27], another R-tree variant, are constructed
using a distance metric and rely on the triangle inequality for more efficient range and k-nearest
neighbor queries. In contrast to X-trees, M- trees suffer from large overlap.

R-trees, as well as its variants [61], consider several criteria (e.g., tree balance, space cover-
age, node overlaps, fill guarantees) in order to improve query processing. As a result, even main
memory implementations require substantial memory and time resources to construct, which
makes them inappropriate for enabling the users to quickly start exploring and interacting with
the data, as in the case of in-situ data exploration (see also the results in Sect. 7). On the contrary,
our approach proposes a main-memory lightweight index, which aims at accelerating the raw
data-to-visualization time and offering a simple set of 2D visual operations to the user, rather
than covering aspects of spatial data management.

[88] studies the problem of distributed caching of multi-dimensional raw arrays. The system
implements a distributed caching system that improves the performance of queries that use fre-
quently accessed data values, focusing on similarity join over arrays queries [87]. To this end,
a method that selects which part of the data to be cashed is proposed. This method is based on
an R-tree which is incrementally enriched with the data that are accessed. Further, the caching
mechanism, uses an algorithm to select in which node the cached data have to be stored in order
to minimize data transfer. This algorithm is implemented as a search greedy algorithm which is
based on incremental array view maintenance [89]. Similarly to our work, [89] considers raw
data files, as well as the incremental indexing paradigm. However, our work considers different
settings, problems and goals. For example, our focus is to provide 2D in-situ visual exploration
over raw file, without considering a caching mechanism or a distributed setting. Further, our
index structure is used to store file positions and compute aggregate functions; instead, in the
aforementioned work, the index stores data objects (not file positions). Additionally, the basic
goal of our index is to minimize I/O operations, as well as statistics computation. Notwithstand-
ing the differences, the introduction of concepts and ideas from [88] in VALINOR is a topic of
future work.

Similarly to VALINOR, the basic idea of approaches like database cracking and adaptive
indexing [40, 38, 45, 47, 46, 69, 43, 74, 65, 43, 10], is to incrementally build and adapt indexes
during query processing, following the characteristics of the workload. However, in these works
the data has to be previously loaded in the system, i.e., a preprocessing phase is required. As
a result, these approaches are not suitable for in-situ query scenarios, where the cost of the
preprocessing phase has to minimized. In addition, the existing cracking and adaptive indexing
methods have been developed in the context of column-stores [40, 38, 45, 47, 46, 69, 10], or
MapReduce systems [74]. On the other hand, VALINOR has been developed to handle raw

data stored in text files with commodity hardware. Due to the common adaptive nature of the
techniques, the introduction of concepts and ideas of data cracking into VALINOR is a topic of
future research.

Finally, our structure employs a value-existence indexing technique that is similar to the
concept of the Zonemaps [64, 2], which has been widely used in traditional databases. Each cell
in the grid groups the positions of the records in the raw file based on their distance in the 2D
plane, keeping the bounds and other statistics (e.g., count) in the form of cell properties. Range
queries are quickly evaluated on the cell properties (zones) and only the cells that overlap the
query ranges are further processed, thus eliminating unnecessary memory accesses.

Grid Files –and a critical discussion– . The basic structure of the presented index has sev-
eral similarities with the grid file [66]. Both partition the space, organizing the data objects in
tiles/cells. Basic differences between them are related to the tiles’ merging and splitting phases,
methods, and criteria. Firstly, in grid both the merging/splitting phases are performed during
the grid construction. On the other hand, in VALINOR the merging/splitting operations are per-
formed after construction, during the runtime. Further, in VALINOR the merging/splitting is
performed incrementally and adaptively, based on user interactions. Secondly, the criteria which
are adopted to determine the merging/splitting, are different. In a grid file, the merging/splitting
is based on criteria like better storage utilization, min/max number of objects per tile, number
of I/O accesses, budget size, etc. In contrast, in VALINOR the merging/splitting is based on the
user’s interaction (queries). Furthermore, in VALINOR the initial structure characteristics (e.g.,
tile size) are estimated by the first user’s interaction. Also, VALINOR computes and exploits
specific metadata focusing on improving visual-based operations and analytics.
Grid or R-Tree? The insightful reader might wonder what are the benefits of following a grid-
based approach, rather than an R-Tree one. We surveyed the literature on the comparison of grid
files and R-trees. As already mentioned, regarding the construction of an R-tree, its inherent
objectives (i.e.,, tree balance, space coverage, node overlaps, fill guarantees) result in the need
for substantial memory and time resources (even main memory implementations), which makes
them inappropriate for enabling the users to quickly start exploring and interacting with the data,
as in the case of in-situ data exploration. Hence, one major limitation of using spatial structures
in our scenario is related to efficient construction phase.

The expensive construction phase of several (main-memory) spatial indexes is also validated
by several studies. Regarding our case, considering that the construction cost of the initial VALI-
NOR version, is similar to the construction cost of a grid structure [66]. In this context, the
better performance of main-memory grid over several spatial structures (e.g., R-tree variances,
quadtree) is demonstrated in several recent experimental studies. In more details, several stud-
ies have demonstrated that main memory grid indexes have considerable better performance on
construction phase [76, 85, 77]. Further, some studies suggest that grid indexes have better per-
formance even over the R-tree versions that use efficient bulk loading methods [85, 77]; i.e., STR
[58] and Hilbert R-Tree [53].

Regarding the query performance, recent studies [75, 51, 76], show that the grid index, have
noticeable better performance in range and kNN queries, as well updates operations, compared
to R-tree variances and quadtree, when the indexing is performed in 2 dimensions and the indexes
are stored in main memory. Additionally, [76] concludes that grid index is surprisingly robust to
varying parameters of the query workloads.

9. Conclusions and Future Directions

In this paper, we have presented the RawVis framework that is built on the top of the VALINOR
index, a light weighted main memory structure, which enables interactive 2D visual exploration
scenarios of very large raw data files using commodity hardware. VALINOR is constructed from
a raw data file given the first user query and adapted based on the user interaction.

We have formulated a set of basic visual operations and mapped them to query operators
evaluated on the VALINOR index. Further, we have designed an advanced initialization method
in the context of visual exploration, which reduces the time of index construction, and in the
same time, improves the query evaluation at the initial stages of the exploration. We have pro-
posed a query-based adaptation model that restructures the index based on the user interaction,
resulting in efficient computation of the analysis operations. Also, we have developed an eviction
mechanism that stores parts of the index in disk in case of limited memory resources. Finally,
we have conducted a thorough experimental evaluation with real and synthetic datasets and com-
pared with several competitors (e.g., MySQL, PostgresRaw, R-tree). The results demonstrates
that our methods outperform the competitors in query execution time, number of I/O operations,
and memory consumption.

In what follows we mention two basic directions - in the form of research questions - which
are not covered in this work but worth further investigation in our future studies.

How can we smoothly scale up dimensionality? For the moment, our approach is built upon
the assumption that the user interacts with two attributes (the axis attributes) of the data as the
basis of the exploration. This is reasonable to a large extent and well known for long [81, 34],
as the 2.05-dimensional nature of the human eye [81] and the 2-dimensional nature of the media
(being paper or screen) practically limits the intuition offered by 3D models, let alone of higher
dimensionality. Fundamental visual representations like tabular, scatter-plot or bar-chart-with-
data-series representations are practically at the very end of the visualization spectrum that starts
with simple KPI reporting via numbers or speedometers, passes via the traditional point/bar/pie
charts and ends at the aforementioned visual representations. However, using more attributes
for visual exploration can have a potential in the future. To support this exploration scenario,
VALINOR will have to be enriched with a cache that will maintain previously accessed attributes,
besides the ones that were used to build it.

What if the data sets are not static, flat files? A clear limitation of this paper is that the data
need to be stored in flat files on disk. In case of data with a complex –e.g., nested – structure,
like for example JSON or XML data would need to be transformed first, assuming that this is
feasible. Thus, there is an open research path, to accommodate non-flat raw data into VALINOR,
without the need of preprocessing them first. Similarly, in this paper, we assume no updates to
the data. The incremental maintenance of the index, in the presence of updates, is another open
problem. Assuming that the users update the file without touching VALINOR, a potential path
to follow would be the fast identification of insertions and deletions (updates in this setting can
be modeled as a pair of ’delete old and insert new’) [56], and the subsequent adaptation of the
index accordingly.

What are the deep foundations of an algebra of visual operations? In this paper, we proposed
a set of visual operations, very common to 2D visual exploration scenarios. However, we do not
consider more complex or combinations of those operations which can support the application
of more complex visual analytics. Assuming we want to equip the end users with the potential
of interactively exploring the data, what kinds of operations constitute the fundamental core of
operations, upon which more complex operations can be built? Do we need a closed algebra

that can guarantee a scoped horizon of actions, or do we need extensible frameworks, where
operations can be added along with the necessary infrastructure for their optimization?

Acknowledgments. The authors want to thank the reviewers and editors of this paper for their
constructive comments that have significantly improved both the clarity and thoroughness of
the paper. This research is co-financed by Greece and the European Union (European Social
Fund- ESF) through the Operational Programme ”Human Resources Development, Education
and Lifelong Learning 2014-2020” in the context of the project ”PLOIGIA: Navigation and
Visual Analytics on Raw Datasets” (MIS 5005089).

References

[1] MySQL: The CSV Storage Engine. https://dev.mysql.com/doc/refman/8.0/en/

csv-storage-engine.html.
[2] Oracle: Database Data Warehousing Guide - Using Zone Maps. https://docs.oracle.com/

database/121/DWHSG/zone_maps.htm.
[3] Oracle: External Table Enhancements in Oracle Database 12c Release 1. https://

oracle-base.com/articles/12c/external-table-enhancements-12cr1.
[4] PostgreSQL: Foreign Data. https://www.postgresql.org/docs/current/

ddl-foreign-data.html.
[5] SciPy: Open Source Scientific Tools for Python. http://www.scipy.org.
[6] Tableau: Limitations to Data and File Sizes with Jet-based

Data Sources. https://kb.tableau.com/articles/Issue/

limitations-to-data-and-file-sizes-with-jet-based-data-sources.
[7] Wolfram : Descriptive Statistics. https://reference.wolfram.com/language/guide/

DescriptiveStatistics.html.
[8] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. Blinkdb: Queries with

Bounded Errors and Bounded Response Times on Very Large Data. In European Conference on
Computer Systems (EuroSys), 2013.

[9] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. Nodb: Efficient Query Execution
on Raw Data Files. In ACM Intl. Conf. on Management of Data (SIGMOD), 2012.

[10] K. Alexiou, D. Kossmann, and P. Larson. Adaptive Range Filters for Cold Data: Avoiding Trips to
Siberia. VLDB Endowment, 6(14), 2013.

[11] G. Andrienko, N. Andrienko, S. Drucker, J.-D. Fekete, D. Fisher, S. Idreos, T. Kraska, G. Li, K.-L.
Ma, J. D. Mackinlay, A. Oulasvirta, T. Schreck, H. Schmann, M. Stonebraker, D. Auber, N. Bikakis,
P. K. Chrysanthis, G. Papastefanatos, and M. Sharaf. Big Data Visualization and Analytics: Future
Research Challenges and Emerging Applications. In Workshop on Big Data Visual Exploration and
Analytics (BigVis 2020), 2020.

[12] M. Angelaccio, T. Catarci, and G. Santucci. Query by diagram: A fully visual query system. J. Vis.
Lang. Comput., 1(3), 1990.

[13] M. Angelini, G. Santucci, H. Schumann, and H. Schulz. A Review and Characterization of Progressive
Visual Analytics. Informatics, 5(3):31, 2018.

[14] L. Battle, R. Chang, and M. Stonebraker. Dynamic Prefetching of Data Tiles for Interactive Visual-
ization. In ACM Intl. Conf. on Management of Data (SIGMOD), 2016.

[15] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: An Efficient and Robust Access
Method for Points and Rectangles. In ACM Intl. Conf. on Management of Data (SIGMOD), 1990.

https://dev.mysql.com/doc/refman/8.0/en/csv-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/csv-storage-engine.html
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm
https://oracle-base.com/articles/12c/external-table-enhancements-12cr1
https://oracle-base.com/articles/12c/external-table-enhancements-12cr1
https://www.postgresql.org/docs/current/ddl-foreign-data.html
https://www.postgresql.org/docs/current/ddl-foreign-data.html
http://www.scipy.org
https://kb.tableau.com/articles/Issue/limitations-to-data-and-file-sizes-with-jet-based-data-sources
https://kb.tableau.com/articles/Issue/limitations-to-data-and-file-sizes-with-jet-based-data-sources
https://reference.wolfram.com/language/guide/DescriptiveStatistics.html
https://reference.wolfram.com/language/guide/DescriptiveStatistics.html

[16] S. Berchtold, D. A. Keim, and H. Kriegel. The X-tree : An Index Structure for High-Dimensional
Data. In Intl. Conf. on Very Large Databases (VLDB), 1996.

[17] N. Bikakis. Big Data Visualization Tools. In Encyclopedia of Big Data Technologies. 2019.
[18] N. Bikakis, J. Liagouris, M. Krommyda, G. Papastefanatos, and T. Sellis. Towards Scalable Visual

Exploration of Very Large Rdf Graphs. In Extended Semantic Web Conf. (ESWC), 2015.
[19] N. Bikakis, J. Liagouris, M. Krommyda, G. Papastefanatos, and T. Sellis. Graphvizdb: A Scalable

Platform for Interactive Large Graph Visualization. In IEEE Intl. Conf. on Data Engineering (ICDE),
2016.

[20] N. Bikakis, S. Maroulis, G. Papastefanatos, and P. Vassiliadis. RawVis: Visual Exploration over Raw
Data. In Advances in Databases and Information Systems (ADBIS), 2018.

[21] N. Bikakis, G. Papastefanatos, M. Skourla, and T. Sellis. A Hierarchical Aggregation Framework for
Efficient Multilevel Visual Exploration and Analysis. Semantic Web Journal, 2017.

[22] S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani. Parallel Data Analysis Directly on Scientific
File Formats. In ACM Intl. Conf. on Management of Data (SIGMOD), 2014.

[23] D. F. Carbon, C. Henze, and B. C. Nelson. Exploring the SDSS Data Set with Linked Scatter Plots. I.
EMP, CEMP, and CV Stars. The Astrophysical Journal Supplement Series, 228(2), 2017.

[24] L. Caruccio, V. Deufemia, and G. Polese. Visual data integration based on description logic reasoning.
In IDEAS, 2014.

[25] S. Chang. Visual Languages: A Tutorial and Survey. IEEE Software, 4(1), 1987.
[26] Y. Cheng and F. Rusu. SCANRAW: a Database Meta-operator for Parallel In-situ Processing and

Loading. ACM Transactions on Database Systems (TODS), 40(3), 2015.
[27] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for Similarity Search in

Metric Spaces. In Intl. Conf. on Very Large Databases (VLDB), 1997.
[28] S. Dar, M. J. Franklin, B. THór Jónsson, D. Srivastava, and M. Tan. Semantic Data Caching and

Replacement. In Intl. Conf. on Very Large Databases (VLDB), 1996.
[29] C. A. de Lara Pahins, S. A. Stephens, C. Scheidegger, and J. L. D. Comba. Hashedcubes: Simple,

Low Memory, Real-time Visual Exploration of Big Data. IEEE Trans. Vis. Comput. Graph. (TVCG),
23(1), 2017.

[30] M. Derthick, J. Kolojejchick, and S. F. Roth. An Interactive Visualization Environment for Data
Exploration. In ACM Intl. Conf. on Knowledge Discovery and Data Mining (KDD), 1997.

[31] P. R. Doshi, E. A. Rundensteiner, and M. O. Ward. Prefetching for Visual Data Exploratio. In Intl.
Conf. on Database Systems for Advanced Applications (DASFAA), 2003.

[32] M. El-Hindi, Z. Zhao, C. Binnig, and T. Kraska. Vistrees: Fast Indexes for Interactive Data Explo-
ration. In Workshop on Human-In-the-Loop Data Analytics (HILD), 2016.

[33] J. Fekete, D. Fisher, A. Nandi, and M. Sedlmair. Progressive Data Analysis and Visualization
(Dagstuhl Seminar 18411). Dagstuhl Reports, 8(10), 2018.

[34] S. Few. Show Me the Numbers: Designing Tables and Graphs to Enlighten. Analytics Press, 2012.
[35] D. Fisher, I. O. Popov, S. M. Drucker, and M. C. Schraefel. Trust Me, I’m Partially Right: Incre-

mental Visualization Lets Analysts Explore Large Datasets Faster. In Intl. Conf. on Human Factors in
Computing Systems (CHI), 2012.

[36] V. Gaede and O. Günther. Multidimensional Access Methods. ACM Comput. Surv., 30(2), 1998.
[37] P. Godfrey, J. Gryz, and P. Lasek. Interactive Visualization of Large Data Sets. IEEE Transactions on

Knowledge and Data Engineering (TKDE), 28(8), 2016.
[38] G. Graefe and H. A. Kuno. Self-selecting, self-tuning, incrementally optimized indexes. In Intl. Conf.

on Extending Database Technology (EDBT), 2010.
[39] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pi-

rahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-by, Cross-Tab, and Sub
Totals. Data Min. Knowl. Discov., 1(1), 1997.

[40] F. Halim, S. Idreos, P. Karras, and R. H. C. Yap. Stochastic Database Cracking: Towards Robust
Adaptive Indexing in Main-Memory Column-Stores. VLDB Endowment, 5(6), 2012.

[41] P. Hanrahan. VizQL: A Language for Query, Analysis and Visualization. In ACM Intl. Conf. on
Management of Data (SIGMOD), 2006.

[42] J. Heer and M. Bostock. Declarative Language Design for Interactive Visualization. IEEE Trans. Vis.
Comput. Graph. (TVCG), 16(6), 2010.

[43] P. Holanda, S. Manegold, H. Mühleisen, and M. Raasveldt. Progressive Indexes: Indexing for Inter-
active Data Analysis. PVLDB, 12(13), 2019.

[44] S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki. Here Are My Data Files. Here Are My Queries.
Where Are My Results? In Conf. on Innovative Data Systems Research (CIDR), 2011.

[45] S. Idreos, M. L. Kersten, and S. Manegold. Database Cracking. In Conf. on Innovative Data Systems
Research (CIDR), 2007.

[46] S. Idreos, M. L. Kersten, and S. Manegold. Self-organizing tuple reconstruction in column-stores. In
ACM Intl. Conf. on Management of Data (SIGMOD), 2009.

[47] S. Idreos, S. Manegold, H. A. Kuno, and G. Graefe. Merging What’s Cracked, Cracking What’s
Merged: Adaptive Indexing in Main-Memory Column-Stores. VLDB Endowment, 4(9), 2011.

[48] S. Idreos, O. Papaemmanouil, and S. Chaudhuri. Overview of Data Exploration Techniques. In ACM
Intl. Conf. on Management of Data (SIGMOD), 2015.

[49] M. Ivanova, M. L. Kersten, S. Manegold, and Y. Kargin. Data Vaults: Database Technology for
Scientific File Repositories. Computing in Science and Engineering, 15(3), 2013.

[50] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. VDDa: Automatic Visualization-driven Data
Aggregation in Relational Databases. Journal on Very Large Data Bases (VLDBJ), 2015.

[51] D. V. Kalashnikov, S. Prabhakar, and S. E. Hambrusch. Main Memory Evaluation of Monitoring
Queries Over Moving Objects. Distributed and Parallel Databases, 15(2), 2004.

[52] A. Kalinin, U. Çetintemel, and S. B. Zdonik. Interactive Data Exploration Using Semantic Windows.
In ACM Intl. Conf. on Management of Data (SIGMOD), 2014.

[53] I. Kamel and C. Faloutsos. On Packing R-trees. In Intl. Conf. on Information and Knowledge Man-
agement, 1993.

[54] M. Karpathiotakis, I. Alagiannis, and A. Ailamaki. Fast Queries Over Heterogeneous Data Through
Engine Customization. VLDB Endowment, 9(12), 2016.

[55] M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki. Adaptive Query Processing on Raw
Data. VLDB Endowment, 7(12), 2014.

[56] W. Labio and H. Garcia-Molina. Efficient Snapshot Differential Algorithms for Data Warehousing.
In VLDB, 1996.

[57] H. Lenz and B. Thalheim. OLAP Databases and Aggregation Functions. In SSDBM, 2001.
[58] S. T. Leutenegger, J. M. Edgington, and M. A. López. STR: A Simple and Efficient Algorithm for

R-Tree Packing. In IEEE Intl. Conf. on Data Engineering (ICDE), 1997.
[59] L. D. Lins, J. T. Klosowski, and C. E. Scheidegger. Nanocubes for Real-Time Exploration of Spa-

tiotemporal Datasets. IEEE Trans. Vis. Comput. Graph. (TVCG), 19:2456–2465, 2013.
[60] C. Liu, C. Wu, H. Shao, and X. Yuan. Smartcube: An adaptive data management architecture for the

real-time visualization of spatiotemporal datasets. IEEE Trans. Vis. Comput. Graph. (TVCG), 26(1),
2020.

[61] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis. R-Trees: Theory and
Applications. Springer, 2006.

[62] A. Massari, S. Pavani, L. Saladini, and P. K. Chrysanthis. Qbi: Query by icons. In ACM SIGMOD
Record, volume 24, 1995.

[63] F. Miranda, L. Lins, J. T. Klosowski, and C. T. Silva. TopKube: A Rank-Aware Data Cube for Real-
Time Exploration of Spatiotemporal Data. IEEE Trans. Vis. Comput. Graph. (TVCG), 24:1394–1407,
2017.

[64] G. Moerkotte. Small Materialized Aggregates: A Light Weight Index Structure for Data Warehousing.
In Intl. Conf. on Very Large Databases (VLDB), 1998.

[65] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska. Learning multi-dimensional indexes. In ACM Intl.
Conf. on Management of Data (SIGMOD), 2020.

[66] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The Grid File: An Adaptable, Symmetric Multikey
File Structure. ACM Trans. Database Syst., 9(1), 1984.

[67] M. Olma, M. Karpathiotakis, I. Alagiannis, M. Athanassoulis, and A. Ailamaki. Slalom: Coasting
through Raw Data Via Adaptive Partitioning and Indexing. VLDB Endowment, 10(10), 2017.

[68] M. Olma, M. Karpathiotakis, I. Alagiannis, M. Athanassoulis, and A. Ailamaki. Adaptive partitioning
and indexing for in situ query processing. The VLDB Journal, 2019.

[69] E. Petraki, S. Idreos, and S. Manegold. Holistic Indexing in Main-memory Column-stores. In ACM
Intl. Conf. on Management of Data (SIGMOD), 2015.

[70] X. Qin, Y. Luo, N. Tang, and G. Li. Making data visualization more efficient and effective: a survey.
Journal on Very Large Data Bases (VLDBJ), 2020.

[71] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, 2018.

[72] P. Rahman, L. Jiang, and A. Nandi. Evaluating Interactive Data Systems. VLDB J., 29(1), 2020.
[73] S. Rahman, M. Aliakbarpour, H. Kong, E. Blais, K. Karahalios, A. G. Parameswaran, and R. Rubin-

feld. I’ve Seen ”Enough”: Incrementally Improving Visualizations to Support Rapid Decision Making.
VLDB Endowment, 10(11), 2017.

[74] S. Richter, J. Quiané-Ruiz, S. Schuh, and J. Dittrich. Towards zero-overhead static and adaptive
indexing in Hadoop. Journal on Very Large Data Bases (VLDBJ), 23(3), 2014.

[75] D. Sidlauskas and C. S. Jensen. Spatial Joins in Main Memory: Implementation Matters! VLDB
Endowment, 8(1), 2014.

[76] D. Sidlauskas, S. Saltenis, C. W. Christiansen, J. M. Johansen, and D. Saulys. Trees or grids?: in-
dexing moving objects in main memory. In ACM SIGSPATIAL Intl. Conf. on Advances in Geographic
Information Systems, 2009.

[77] F. Tauheed, L. Biveinis, T. Heinis, F. Schürmann, H. Markram, and A. Ailamaki. Accelerating Range
Queries for Brain Simulations. In IEEE Intl. Conf. on Data Engineering (ICDE), 2012.

[78] F. Tauheed, T. Heinis, F. Schürmann, H. Markram, and A. Ailamaki. SCOUT: Prefetching for Latent
Feature Following Queries. VLDB Endowment, 5(11), 2012.

[79] Y. Tian, I. Alagiannis, E. Liarou, A. Ailamaki, P. Michiardi, and M. Vukolic. Dinodb: An Interactive-
speed Query Engine for Ad-hoc Queries on Temporary Data. IEEE Transactions on Big Data, 2017.

[80] Z. Wang, N. Ferreira, Y. Wei, A. S. Bhaskar, and C. Scheidegger. Gaussian cubes: Real-time modeling
for visual exploration of large multidimensional datasets. IEEE Trans. Vis. Comput. Graph. (TVCG),
23(1), 2017.

[81] C. Ware. Visual Thinking: for Design. Morgan Kaufmann, 2008.
[82] A. Wasay, X. Wei, N. Dayan, and S. Idreos. Data Canopy: Accelerating Exploratory Statistical

Analysis. In ACM Intl. Conf. on Management of Data (SIGMOD), 2017.
[83] E. Wu, L. Battle, and S. R. Madden. The Case for Data Visualization Management Systems. VLDB

Endowment, 7(10), 2014.

[84] S. Yesilmurat and V. Isler. Retrospective adaptive prefetching for interactive Web GIS applications.
GeoInformatica, 16(3), 2012.

[85] E. T. Zacharatou, D. Sidlauskas, F. Tauheed, T. Heinis, and A. Ailamaki. Efficient Bundled Spatial
Range Queries. In ACM SIGSPATIAL Intl. Conf. on Advances in Geographic Information Systems,
2019.

[86] E. Zgraggen, A. Galakatos, A. Crotty, J. Fekete, and T. Kraska. How Progressive Visualizations Affect
Exploratory Analysis. IEEE Trans. Vis. Comput. Graph., 23(8), 2017.

[87] W. Zhao, F. Rusu, B. Dong, and K. Wu. Similarity Join over Array Data. In ACM Intl. Conf. on
Management of Data (SIGMOD), 2016.

[88] W. Zhao, F. Rusu, B. Dong, K. Wu, A. Y. Q. Ho, and P. Nugent. Distributed caching for processing
raw arrays. In Intl. Conf. on Scientific and Statistical Database Management (SSDBM), 2018.

[89] W. Zhao, F. Rusu, B. Dong, K. Wu, and P. Nugent. Incremental View Maintenance over Array Data.
In ACM Intl. Conf. on Management of Data (SIGMOD), 2017.

[90] M. M. Zloof. Query-by-example: A data base language. IBM systems Journal, 16(4), 1977.

	Introduction
	Basic Concepts
	The VALINOR Index
	Query Processing over VALINOR Index
	Index Initialization & First Query Evaluation
	Query Processing Overview
	Select Part Evaluation
	Determining the Tiles that Require File Access
	Progressive Index Adaptation
	File Access
	Aggregate Metadata Management
	Filter, Details & Analysis Parts Evaluation

	Advanced Methods for Index Management – Initialization & Adaptation
	Query-driven Index Initialization
	Query-driven Index Adaptation
	Splitting Model Analysis

	Operating VALINOR Index under Memory Constraints
	Eviction During Query Processing
	Eviction during the Initialization Phase

	Experimental Analysis
	Experimental Setup
	Results

	Related Work
	Conclusions and Future Directions

