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Abstract

In the recent years establishing interoperability and supporting data integration has
become a major research challenge for the web of data. Uniform information access of
heterogeneous sources is of major importance for Semantic Web applications and end
users. We describe a methodology for SPARQL query mediation over federated OWL/
RDF knowledge bases. The query mediation exploits mappings between semantically
related entities of the global ontology and the local ontologies. A very rich set of
mappings, based on Description Logic semantics, is supported. The SPARQL queries
that are posed over the global ontology are decomposed, rewritten, and then submitted
to the federated sources. The rewritten SPARQL queries are locally evaluated and the
results are returned to the mediator. We describe the formal modeling of executable
mappings (i.e. mappings that can be used in SPARQL query rewriting), as well as the
theoretic and implementation aspects of SPARQL query rewriting. Finally we describe
the implementation of a system supporting the mediation process.
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1 Introduction

Data access from distributed autonomous web resources needs to take into account the data
semantics at the conceptual level. Assuming that the resources are organized and accessed
with the same model and language, a straightforward approach to semantic interoperability
is to adhere to a common conceptualization (i.e. a global ontological conceptualization).
However, in real-world environments, institutions often do not adhere to common standards.
Attempts to find an agreement for a common conceptualization often results in semantically
weak minimum consensus schemes (e.g. the Dublin Core [27]) or models with extensive
and complex semantics (e.g. the CIDOC/CRM [11]). Moreover, it is not often feasible
for cooperating institutions to agree on a certain model or apply an existing standard be-
cause they often already have their own proprietary conceptualizations. In this environment,
query mediation over mapped ontologies has become a major research challenge since it al-
lows uniform semantic information retrieval and at the same time permits diversification on
individual conceptualizations followed by distributed federated information sources.

A mediator architecture is a common approach in information integration systems [43].
Mediated query systems represent a uniform data access solution by providing a single point
for querying access to various data sources. A mediator contains a global query processor
which is used to send sub-queries to local data sources. The local query results are then
combined and returned back to the query processor. Its main benefit is that the query
formulation process becomes independent of the mediated data sources requiring from end-
users to be aware only of their own conceptualization of the knowledge domain.

In this paper, we describe a mediator based methodology and system for integrating infor-
mation from federated OWL/RDF knowledge bases. The mediator uses mappings between
the OWL [3] ontology of the mediator (global ontology) and the federated site ontologies (lo-
cal ontologies). SPARQL [33] queries posed over the mediator, are decomposed and rewritten
in order to be submitted over the federated sites. The SPARQL queries are locally evaluated
and the results are returned to the mediator site. In this paper we focus on the following
research issues:

e determination of the different mapping types, which can be used in SPARQL query
rewriting

e modeling of the mappings between the global ontology and the local ontologies

e rewriting of the SPARQL queries posed over the global ontology in terms of the local
ontologies

Regarding the task of mapping modeling, the focus of this work is on the semantics and
syntax of the ontology executable mappings. For identifying and describing such mappings,
we define a formal grammar for mapping definition.

Based on these mappings we provide a complete set of graph pattern rewriting functions
which are materialized as algorithms in the process of query rewriting for local ontologies.
These functions are generic and can be used for SPARQL query rewriting over any over-
lapping ontology set. We show that the provided functions are semantics preserving, in
the sense that each rewriting step that we perform (in order to rewrite the initial query)
preserves the mapping semantics.

Contribution. The main contributions of this paper are summarized as follows:

e A model for the expression of mappings between OWL ontologies in the context of
SPARQL query rewriting. This mapping model consists of a formal grammar for the
mapping definition and a formal specification of the mappings semantics.



e A generic formal methodology for the SPARQL query rewriting process, based on a
set of mappings between OWL ontologies.

e A system implementation of the proposed method.

Outline. The rest of the paper is organized as follows: The related work is discussed in
Section 2. The mapping model which has been developed in order to express the mappings
between the OWL ontologies is described in Section 3. An introduction to the SPARQL
query language is presented in Section 4. The SPARQL query rewriting process is described
comprehensively in Sections 5, 6, 7 and 8. The implementation of the system that supports
the query rewriting is discussed in Section 9. Finally, Section 10 concludes our work.

2 Related Work

In the Semantic Web environment a number of ontology based mediator architectures have
been proposed in the literature [42], [28]. In the following sections we present the most
relevant research to the issues discussed in this paper.

2.1 Ontology mapping

Ontology mapping is the task of relating the vocabulary of two ontologies by defining a set
of correspondences. The correspondences between different entities of the two ontologies
are typically expressed using some axioms described in a specific mapping language. The
discovery and specification of mappings between two ontologies, is a process which can be
achieved in three ways:

e Manually: defined by an expert who has a very good understanding of the ontologies
to be mapped.

e Automatically: using various matching algorithms and techniques which compute sim-
ilarity measures between different ontology terms.

e Semi-automatically: using various matching algorithms and techniques, as well as user
feedback.

Many strategies and tools that produce automatically or semi-automatically mappings
have been proposed and have their performance analyzed ([17], [23], [39], [9], [18], [12], [30]).
Although the automatic or semi-automatic techniques and strategies provide satisfactory
results, it is unlikely that the quality of mappings that they produce will be comparable
with manually specified mappings. The manual approach for defining mappings is a painful
process, although, it can provide declarative and expressive correspondences by exploiting
the knowledge of an expert for the two mapped ontologies in many different ways.

In addition to the mapping discovery, the mapping representation is a very important
issue for an application that implements a mediation scenario. A set of criteria that should
be taken into consideration, in order to decide which language/format should be used for
the mapping representation include the following (based on [17]):

e Web compatibility
e Language independence

e Simplicity



e Expressiveness

Purpose independence

Executability
e Mediation task

Although, many languages (OWL [3], C-OWL [7], SWRL [20], the Alignment Format [14],
MAFRA [24], EDOAL [35], [16], OMWG mapping language [36], etc.) have been proposed
for the task of mapping representation, only a few combine the previous criteria. A com-
parison of some of these languages and formats for mapping specification is available in [17].
An interesting approach for defining ontology mappings using an extension of SPARQL has
also been presented in [32]. It is declarative by exploiting CONSTRUCT queries, although,
it can be used for the specific task of instance transformation.

In this paper, we do not focus on the discovery of the mappings between two ontologies.
We are only interested in the specification and the representation of the kinds of mappings
between OWL ontologies which can be exploited by a query mediation system in order to
perform SPARQL query rewriting. In our knowledge, only [15], examines the problem of
describing such mapping types but not directly, since it describes which mapping types
cannot be used in the rewriting process. In contrast, we present in this paper concrete
mappings that can be used for SPARQL query rewriting.

2.2 SPARQL query rewriting

Within the Semantic Web community, the process of SPARQL query rewriting is gaining
attention in order to perform various tasks such as query optimization, query decomposition,
query translation, Description Logic inference, data integration and instance transformation.

SPARQL query optimization focuses on rewriting techniques that minimize the evaluation
complexity ([38], [5], [40], [19], [31]). On the other hand, in the field of Description Logic
inference, SPARQL query rewriting is basically used for performing reasoning tasks. Two
recent approaches [22] and [21] perform SPARQL query rewriting by using inference rules,
in order to query effectively OWL/RDF knowledge bases.

SPARQL query decomposition, SPARQL query translation and instance transformation
are fundamental tasks in information integration systems. Benslimane et. al [4] proposed
recently a system that performs SPARQL query decomposition in order to query distributed
heterogeneous information sources. After the decomposition, the resulted SPARQL sub-
queries are translated into SQL sub-queries but no algorithm or details are provided in the
paper. In contrast, Quilitz et. al [34] proposed SPARQL query decomposition, in order to
overcome the large overhead in network traffic produced by the SPARQL implementations
that load all the RDF graphs mentioned in a query to the local machine.

In the field of SPARQL query translation, two recent approaches [13] and [8] perform
complete SPARQL query translation into SQL queries, preserving the SPARQL semantics.
Similarly with SPARQL-to-SQL proposed methods, Bikakis et. al [6] present a framework
and a system which performs SPARQL query translation into XQuery queries, in order to
achieve data integration by querying XML data through SPARQL queries.

Regarding instance transformation, Euzenat et al. [15] proposed the use of SPARQL
CONSTRUCT statements. This approach is also followed by the commercial TopBraid Com-
poser provided by TopQuadrant'. SPARQL CONSTRUCT statements have been used in the
past for dynamically generating views over RDF graphs [37].

Thttp://composing-the-semantic-web.blogspot.com /2006 /09 /ontology-mapping-with-sparql-
construct.html



Up to now, limited studies have been made in the field of query rewriting related to posing
a SPARQL query over different RDF datasets. Akahani et. al [1] proposed a theoretical
perspective of approximate query rewriting for submitting queries to multiple ontologies. In
their approach no specific context (e.g. using SPARQL) is defined and no specific algorithms
for the query rewriting process are provided.

An approach which comes closer to ours, with some of its parts based on a preliminary
description of our work [25], has been presented recently by Correndo et al. [10]. They
present a SPARQL query rewriting methodology for achieving RDF data mediation over
linked data. Correndo et al. use transformations between RDF structures (i.e. graphs)
in order to define the mappings between two ontologies. This choice seems to restrict the
mappings expressivity and also the supported query types. Queries containing IRIs inside
FILTER expressions cannot be handled, while the mapping definition seems to be a painful
procedure. In contrast to our proposal, mappings produced by an ontology matching [17]
system, need post-processing in order to assist the mapping discovery.

3 Ontology mapping model

In order for SPARQL queries posed over a global ontology to be rewritten in terms of a
local ontology, mappings between the global and local ontologies should be specified. In
this section we present a model for the expression of mappings between OWL ontologies
in the context of SPARQL query rewriting. More specifically, in Section 3.1 we present a
motivating example. In Section 3.2 and Section 3.3 we present the supported mapping types
used for the query rewriting process, as well as their abstract syntax and semantics. Finally,
the mapping representation is discussed in Section 3.4.

3.1 DMotivating example

In this section we present a motivating example for elicitating the ontology mapping require-
ments of the mediator framework. Since our query rewriting methodology is generic, we
will be discussing for mappings between a source and a target ontology rather than between
global and local ontologies. The mapping types presented in this section have been selected
among others because they can be used for the rewriting of a SPARQL query.

In Figure 1, we show the structure of two different ontologies. The source ontology
describes a store? that sells various products including books and cd’s and the target ontology
describes a bookstore®. The rounded corner boxes represent the classes. They are followed
by their properties (object and datatype). The rectangle boxes at the bottom of the figure
represent individuals. The arrows represent the relationships between these basic OWL
constructs.

In order to map a source ontology to a target ontology, various relationship types like
equivalence and subsumption can be used. For example, in Figure 2 we present an equivalence
relationship between ontology constructs and in Figure 3 and we present a subsumption
relationship. The source ontology class Book seems to be equivalent with the target ontology
class Textbook, as these two classes seem to describe individuals of the same type. Similarly,
the source ontology class Product seems to subsume the target ontology class Textbook, as
the class Product seems to describe various types of individuals and not only Textbook
individuals.

2Store ontology namespace: src = http://www.ontologies.com/SourceOntology.owl#
3Bookstore ontology namespace: trg = http://www.ontologies.com/TargetOntology.owl#
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A source ontology class can be mapped to an expression between target ontology classes.
The expression may involve union and intersection operations between classes. For exam-
ple, in Figure 4 the class Science is mapped to the union of classes ComputerScience
and Mathematics, since it seems to describe both ComputerScience and Mathematics in-
dividuals. Similarly, in Figure 5 the class Popular is mapped to the intersection of the
class BestSeller with the union of classes ComputerScience and Mathematics. This map-
ping emerges from the fact that the class Popular seems to describe ComputerScience and
Mathematics individuals which are also of type BestSeller.

string string <—
uri uri e

ComputerScience
| ((Computerscience |

Mathematics

Figure 4: A class mapping using a union operation between classes.
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Figure 5: A class mapping using union and intersection operations between classes.

In addition, using expressions it is possible to restrict a class on some property values
in order to form a correspondence. For example, in Figure 6 the class Pocket is mapped
to the class Textbook restricted on its size property values, since the class Pocket seems
to describe Textbook individuals having a specific value for the property size (e.g. less
than or equal to 14). Similarly, in Figure 7 the class Autobiography is mapped to the
class Biography restricted to the values of the properties author and topic. This mapping
emerges from the fact that the class Autobiography seems to describe Biography individuals
having the same value for these two properties.

Similarly with classes, an individual from the source ontology can be mapped to an indi-
vidual from the target ontology (see Figure 8). In this case, only the equivalence relationship
can be taken into consideration since the subsumption relationship is used mainly with sets.

Accordingly, an object/datatype property from the source ontology can be mapped to
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an object/datatype property from the target ontology (see Figure 9).

Product Textbook

K
----- » name: string title: string <~
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Figure 9: A mapping between two datatype properties.

Domain and range restrictions can be useful for mappings between properties in order
to restrict the individuals that participate in these two sets. For example, in Figure 10 the
object property part0f from the source ontology is mapped to the object property part0f
from the target restricted on its domain values. More specifically, the domain of the property
partOf from the target ontology (i.e. class Textbook) is restricted on its size property values
in order to match with the domain of the property part0f from the source ontology.

/

parr
string <
I i o

Texthook

Figure 10: An object property mapping using a domain restriction.

In addition, an object property from the source ontology can be mapped to the inverse of
an object property from the target ontology. For example, in Figure 11 the object property
publisher is mapped to the inverse of the object property publishes, since the binary
relations described by the property publisher correspond with the inverse binary relations
described by the property publishes. Taking a closer look, we observe that the domain
of the property publisher corresponds with the range of the property publishes, and
similarly the range of the property publisher corresponds with the domain of the property
publishes.

Finally, a source ontology property can be mapped to an expression between target ontol-
ogy properties. The expression may involve union, intersection and composition operations
between properties. For example, in Figure 12 the datatype property review is mapped
to the union of the datatype properties editorialReview and customerReview, since the
binary relations described by the property review correspond with the binary relations de-
scribed by the properties editorialReview and customerReview.

Similarly, in Figure 13 the datatype property author from the source ontology is mapped
to the composition of the object property author with the datatype property name from the
target ontology. This mapping emerges from the fact that the binary relations described by
the datatype property author from the source ontology correspond with the binary relations

10
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Figure 12: A datatype property mapping using a union operation.

provided by connecting the Textbook individuals to the name property values of the class
People.

i . e— !
- author: string > author i
- string X
e id Uri name: string

Figure 13: A datatype property mapping using a composition operation.

3.2 Abstract syntax and semantics

The basic concepts of OWL, whose mappings are useful for the rewriting process, are the
classes ¢, the object properties op, the datatype properties dp and the individuals i. Since
we are working in the context of SPARQL queries, some mapping types may not be useful
for the query rewriting process. For example, a mapping containing aggregates would be
meaningless, since aggregates cannot be represented in the current SPARQL. Such mapping
types are described in [15] and many of them could be useful for post-processing the query
results but not during the query rewriting and query answering process.

11



In order to define the mapping types which are useful for the rewriting process, we use
Description Logics (DL). We treat OWL classes as DL concepts, OWL properties as DL roles
and OWL individuals as DL individuals. Following our convension, let C', D be OWL classes
(treated as atomic concepts), R, S be OWL object properties (treated as atomic roles) and
K, L be OWL datatype properties (treated as atomic roles). Similarly, let a, b, ¢, vop be
individuals and vg, be a data value.

An interpretation Z consists of a non-empty set A% (the domain of the interpretation)
and an interpretation function, which assigns to every atomic concept A a set AZ C A%, to
every atomic role B a binary relation B C A% x A and to every individual & an element
kT € AT (based on [2]).

In Table 1, Table 2 and Table 3 we present the set of class and property constructors which
we use for the definition of mappings. In these tables we introduce some new constructors
(preceded with asterisk) which should not be confused with the basic Description Logics
constructors defined in [2]. In addition to the concept/role constructors, a DL knowledge
base consists of assertional axioms which are presented in Table 4.

Table 1: Class constructors used in the definition of mappings.

Name Syntax Semantics

Intersection cnbD ctnp?

Union cubD ctuD?

*Class Restriction VC.(R p vyp) {a € CT|3b. (a,b) € REAb p vy}

(R b)

(K cp Udp) {Oz ec? | 3b. ( a, ) € KT AD cp 'Udp}

VC.(R & S) {a € CT | T, 3e. (a,b) € RE A (a,c) € ST AL o ¢}
VC.(K cp L) {a € CT | 3b,3c. (a,b) € KT A(a,¢) € LT AD cp ¢}

o E{# =}, cpe{#=5,2,<,>}

Table 2: Object property constructors used in the definition of mappings.

Name Syntax Semantics

Intersection RMOS RTNn ST

Union RUS RT U S?

Composition RoS {(a,c) | 3b. (a,b) € RT A (b,c) € ST}
*Inverse inv(R) {(b,a) | (a,b) € RT}

*Domain Restriction VR.domain(C) {(a,b) | (a,b) € RF A € CT}
*Range Restriction  VR.range(C) {(a,b) | (a,b) € RT Ab € CT}

Definition 3.1 (Class expression). A class expression is a class or any complex expres-
sion between two or more classes, using union or intersection operations. A class expres-
sion is denoted as CE and is defined recursively in (1). Any class expression can be re-
stricted to the values of one or more object property expressions OPE (Definition 3.2) or
datatype property expressions DPE (Definition 3.3), using the comparators ep € {#,=}
and cp € {#,=,<,>,<, >}, respectively. Moreover, it is possible for a class expression to
be restricted on a set of individuals having property values (either individuals v, or data
values vgp) with a specific relationship between them, defined either by €p or cp.

12



Table 3: Datatype property constructors used in the definition of mappings.

Name Syntax Semantics
Intersection KnL KInLt
Union KUL KTur?
Composition RoK {(a,¢) | 3b. (a,b) € RT A (b,c) € KT}
*Domain Restriction VK.domain(C') {(a,b) | (,b) € KT A€ CT}
€

*Range Restriction ~ VK.range(cp vap) {(a,b) | (a,b) € KT Ab cp vap}

cp € {#=52,<,>}

Table 4: Terminological and assertional axioms used in the definition of mappings.

Name Syntax Semantics

Class inclusion cch cCctcp?
caD cfop?
Object property inclusion RCS RIcCS?
RJS RfDOST
Datatype property inclusion K CT L KZ* CIL?
KJL KIoOIL*

Class equality C’ =D cCc*T=D7
Object property equality =S RI=57
Datatype property equality K =L K'=I7
Individual equality a=b at = bt

CE:= ¢|CENCE|CEUCE |VCE.(OPE 5 vyy) | VCE.(DPE p vp) ()
| VCE.(OPE, © OPE,) | VCE.(DPE; cp DPE,)

Definition 3.2 (Object property expression). An object property expression is an o0b-
ject property or any complex expression between two or more object properties, using compo-
sition, union or intersection operations. An object property expression is denoted as OPE
and is defined recursively in (2). Inverse property operations are possible to appear inside an
object property expression. Any object property expression can be restricted on its domain
and/or range by using a class expression defining the applied restrictions.

OPE := op|OPEoOPE|OPENOPE|OPEUOPE )
| inv(OPE) | VOPE.domain(CE) | VOPE.range(CE)

Definition 3.3 (Datatype property expression). A datatype property expression is a
datatype property or any complexr expression between object and datatype properties using
the composition operation, or between two or more datatype properties, using union or in-
tersection operations. A datatype property expression is denoted as DPE and is defined

13



recursively in (3). Any datatype property expression can be restricted on its domain values
by using a class expression defining the applied restrictions. In addition, the range values of a
datatype property expression can be restricted on various data values vgy, using a comparator
ep € {#,=,<,>,<,>}.

DPE:= dp|OPEoDPE|DPENDPE|DPEUDPE 3)
| VDPE.domain(CE) | YDPE.range(cp v,,)

3.3 Ontology mapping types

Although, N:M cardinality mappings can be identified between two ontologies, many prob-
lems arise in the exploitation of such mapping types in SPARQL query rewriting. The main
problem is the identification of the source ontology’s mapped expression inside a SPARQL
query, which needs special treatment in order to be overcomed.

In this section we present a rich set of 1:N cardinality mapping types, in order for these
mapping types to be used for the rewriting of a SPARQL query. Since our query rewriting
methodology is generic, we will be discussing for mappings between a source and a target
ontology rather than between global and local ontologies.

Class mapping. A class from a source ontology s can be mapped to a class expression from
a target ontology ¢ (refer to (4)).

cs el CEy, rel:==|C |30 (4)

Object property mapping. An object property from a source ontology s can be mapped
to an object property expression from a target ontology ¢ (refer to (5)).

ops el OPEy, rel:==|C | 3J (5)

Datatype property mapping. A datatype property from a source ontology s can be
mapped to a datatype property expression from a target ontology t (refer to (6)).

dps rel DPEy, rel:==|C |3 (6)

We note here that the equivalence between two different properties or between a prop-
erty and a property expression, denotes equivalence between the domains and ranges of
those properties or property expressions. Similarly, the subsumption relationships between
two different properties or between a property and a property expression denote analogous
relationships between the domains and ranges of those properties or property expressions.
The proofs for the above statements are available in the Appendix B.

Individual mapping. An individual from a source ontology s can be mapped to an indi-
vidual from a target ontology t (refer to (7)).

’I:S = it (7)

14



Table 5: Class mappings based in Figure 1.

Class Mappings

src: Book = trg: Textbook

src: Product 3 trg: Textbook

src: Publisher = trg: Publisher

src: Collection T trg: Series

src: Novel T trg: Literature

src: Poetry C trg: Literature

src: Biography = trg : Biography

src: Autobiography = Vitrg : Biography.(trg : author = trg : topic)
src: NewPublication = trg: Computing M trg : NewRelease
src: Science = trg: ComputerScience U trg: Mathematics
src: Popular = (trg : ComputerScience U trg : Mathematics) I
Mtrg : BestSeller

l.  src: Pocket = Virg: Textbook.(trg : size < 14)

e ER e a0 o

Table 6: Object property mappings based in Figure 1.

Object Property Mappings

m. src: publisher = inv(trg : publishes)
n. src:partOf = Vitrg: partO f.domain(Virg : Textbook.(trg : size < 14))

Table 7: Datatype property mappings based in Figure 1.

Datatype Property Mappings

src:name  trg: title

src:id 3 trg:isbn

src:price = trg: price

srec : review trg : editorial Review U trg : customer Review
src : author trg : author o trg:mname

® oy o

Table 8: Individual mappings based in Figure 1.

Individual Mappings
t. src: CSFoundations = trg: FoundationsOfCS

15



3.4 Mapping representation

In the previous sections we presented the abstract syntax used for the mapping definition.
Using this abstract syntax we list, in Table 5, Table 6, Table 7 and Table 8, a possible set
of correspondences for the ontologies presented in Figure 1.

In order to implement our framework, the need of a serializable language is of major
importance. As mentioned in Section 2.1 many languages have been proposed for the task of
mapping representation (C-OWL [7], SWRL [20], the Alignment Format [14], MAFRA [24],
etc.). Although, the language that fulfills the majority of our requirements is EDOAL* (Ex-
pressive and Declarative Ontology Alignment Language). Previous versions of this language
have been defined in [16] and [35].

EDOAL combines the Alignment Format [14], which is used in order to represent the
output of ontology matching algorithms, and the OMWG mapping language [36], which is
an expressive ontology alignment language. The expressiveness, the simplicity, the Semantic
Web compliance (given its RDF syntax) and the capability of using any kind of ontology
language are the key features of this language.

4 The SPARQL query language

SPARQL [33] is the standard language for querying RDF [26] data. The evaluation of a
SPARQL query is based on graph pattern matching. The “Where” clause of a SPARQL query
consists of a graph pattern (see Definition 4.4), which is defined recursively and contains
triple patterns and SPARQL operators. The operators of the SPARQL algebra which can
be applied on graph patterns are: AND, UNION, OPT and FILTER. Triple patterns (see
Definition 4.3) are just like RDF triples (see Definition 4.1) except that each of the subject,
predicate and object parts may be a variable.

SPARQL allows four query forms: Select, Ask, Construct and Describe. In addition,
SPARQL provides various solution sequence modifiers which can be applied on the ini-
tial solution sequence. The supported SPARQL solution sequence modifiers are: Distinct,
Order By, Reduced, Limit, and Of fset.

In Section 4.1, we provide a set of definitions regarding the syntax of SPARQL and RDF.
Afterwards, in Section 4.2 we present the semantics of SPARQL graph pattern expressions
based on [31].

4.1 Syntax of SPARQL and RDF

Let I be the set of IRIs, L be the set of the RDF Literals, and B be the set of the blank
nodes. Assume additionally the existence of an infinite set V' of variables disjoint from the
previous sets (I, B, L).

Definition 4.1 (RDF Triple). A triple (s,p,0) € (IUB) x I x (I UBUL) is called an
RDF triple, where s, p, and o are a subject, predicate, and object, respectively.

Definition 4.2 (RDF Graph). An RDF graph G is a set of RDF triples.

4http://alignapi.gforge.inria.fr/edoal.html

16



Definition 4.3 (Triple pattern). A triple (s,p,0) € IULUV)x (IUV)x (IULUV)
1s called a triple pattern.

Definition 4.4 (Graph pattern). A SPARQL graph pattern expression is defined recur-
sively as follows:

e A triple pattern is a graph pattern.

e If Pi and Py are graph patterns, then expressions (Py AND Ps), (P OPT P), and
(P, UNION P) are graph patterns (conjunction graph pattern, optional graph pattern,
and union graph pattern, respectively).

e If P is a graph pattern and R is a SPARQL built-in condition, then the expression (P
FILTER R) is a graph pattern (a filter graph pattern,).

We note that a SPARQL built-in condition is constructed using IRIs, RDF literals, vari-
ables and constants, as well as logical connectives, operators (&&, ||, !, =, 1 =, >, <, >,
<, 4+, —, %, /) and built-in functions (e.g. bound, isIRI, isLiteral, datatype, lang, str,
reger).

Definition 4.5 (Basic graph pattern). A finite sequence of conjunctive triple patterns
and possible filters is called basic graph pattern.

4.2 Semantics of SPARQL graph pattern expressions

In this section we provide an overview of the semantics of SPARQL graph pattern expressions
defined in [31], considering a function-based representation of a graph pattern evaluation over
an RDF dataset.

In order not to confuse, the notation and the terminology followed in this section is
differentiated in some cases, compared to the notation and terminology followed in [31]. In
Table 9 we provide the notation which is used for defining the semantics of SPARQL graph
pattern expressions.

Definition 4.6 (SPARQL graph pattern solution). A graph pattern solution w :V —
(IUBUL) is a partial function that assigns RDF terms of an RDF dataset to variables of
a SPARQL graph pattern. The domain of w, dom(w), is the subset of V where w is defined.
The empty graph pattern solution wy is the graph pattern solution with empty domain. The
SPARQL graph pattern evaluation result is a set Q of graph pattern solutions w.

Two graph pattern solutions w; and wy are compatible when for all x € dom(wi) N
dom(ws), it is the case that wi(x) = wa(z). Furthermore, two graph pattern solutions with
disjoint domains are always compatible, and the empty graph pattern solution wy is compat-
ible with any other graph pattern solution.

Let €1 and Q9 be sets of graph pattern solutions and J be a set of SPARQL variables.
The join, union, difference, projection and left outer join operations between 21 and 29 are
defined as follows:
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Table 9: The notation which is used for defining the semantics of SPARQL graph pattern

expressions.
Notation Description
\% The set of variables.
1 The set of IRIs.
B The set of blank nodes.
L The set of RDF Literals.
w A graph pattern solution w : V — (IUBUL).
dom(w) Domain of a graph pattern solution w (subset

2,7y

bound

AND, OPT, UNION, FILTER
-, V, A

= S, Za <, >

of V).

The variables of a triple pattern ¢.

The triple obtained by replacing the variables
in triple pattern t according to a graph pattern
solution w (abusing notation).

A graph pattern solution w satisfies a built-in
condition R.

Graph pattern evaluation function.

Graph pattern solution-based join.

Graph pattern solution-based left outer join.
Graph pattern solution-based difference.
Graph pattern solution-based projection.
Graph pattern solution-based union.

Set intersection.

SPARQL variables.

SPARQL unary predicate.

SPARQL graph pattern operators.

Logical not, or, and.

Inequality /equality operators.
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O X Qo ={w Uwsy | wy € Oy, wy € Qy are compatible graph pattern solutions},
QU ={w|weQ orwe N},

U\ Q={we | foral w €, wand w are not compatible},

7, () ={w | €y, dom(w) = dom(w') N T and Yz € dom(w), w(z) = w'(x)},
Q™o = (21 X Q) U (21 \ Q2)

The semantics of SPARQL graph pattern expressions is defined as a function [[-]]p which
takes a graph pattern expression and an RDF dataset D and returns a set of graph pat-
tern solutions (see Definition 4.8). Refer to Definition 4.7 for the semantics of FILTER
expressions, which can be part of a SPARQL graph pattern.

Definition 4.7 (SPARQL FILTER expression evaluation). Given a graph pattern so-
lution w and a built-in condition R, we say that w satisfies R, denoted by w = R, if:

1. R is bound(?z) and ?z € dom(w);
2. Ris ?x oprt ¢,?x € dom(w) and w(?x) oprt ¢, where oprt — = | < | > | < | >;

3. Ris 7z oprt 7y, 7z € dom(w),?y € dom(w) and w(?x) oprt w(?y), where oprt — = |
<|z|<[|>

4. Ris (=R1), Ry is a built-in condition, and it is not the case that w = Ry;
5. Ris (R1V Ra2), Ry and Ry are built-in conditions, and w = Ry or w = Ra;

6. Ris (R; A R2), Ry and Rs are built-in conditions, w = R; and w = Rs.

Definition 4.8 (SPARQL graph pattern evaluation). Let D be an RDF dataset over
(IUBUL), t a triple pattern, P, Py, Py graph patterns and R a built-in condition. The
evaluation of a graph pattern over D, denoted by [[-]|p, is defined recursively as follows:

1. [[tllp = {w | dom(w) = var(t) and w(t) € D}
2. [[(Py AND P)]]p = [[PA]]lp X [[P2]]p

3. [[(Pr OPT Py)]|p = [[PA]lp™[[P2]lp

4. [[((Py UNION Py)]lp = [[P]lp U [[P2]]p

9. [[(P FILTER R)]lp ={w € [[P]]p |w = R}

For a detailed descripion of SPARQL semantics and for a complete set of illustrative
examples, refer to [31].
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5 SPARQL query rewriting overview

In this section we present an overview of the SPARQL query rewriting process. Query
rewriting is done by using a predefined set of mappings which is based on the different
mapping types described in Section 3.3.

The SPARQL query rewriting process uses only the query’s graph pattern rewriting.
The rewritten query is produced by replacing the rewritten graph pattern to the initial
query’s graph pattern. Consequently the rewriting process is independent of the query type
(i.e. SELECT, CONSTRUCT, ASK, DESCRIBE) and the SPARQL solution sequence modifiers (i.e.
ORDER BY, DISTINCT, REDUCED, LIMIT, OFFSET). Except from the above, the SPARQL graph
pattern operators (i.e. AND, UNION, OPTIONAL, FILTER) which may appear inside the initial
query’s graph pattern do not result in modifications, since they do not affect the rewriting
procedure.

Since a graph pattern consists basically of triple patterns, the most important part of a
SPARQL query rewriting is the query’s triple pattern rewriting. SPARQL triple patterns
can refer either to data or schema information. In order to present the rewriting procedure
in depth and due to the difficulty in handling all the different triple pattern types in the
same manner, we distinguish triple patterns into Data Triple Patterns (see Definition 5.1)
and Schema Triple Patterns (see Definition 5.2).

Let L be the set of literals, V' the set of variables, I the set of IRIs, Irpr the set containing
the IRIs of the RDF vocabulary (e.g. rdf : type), Irprs the set containing the IRIs of the
RDF Schema vocabulary (e.g. rdfs : subClassOf) and Iow, the set containing the IRIs of
the OWL vocabulary (e.g. owl : equivalentClass).

Definition 5.1 (Data Triple Pattern). The triple patterns that only apply to data and
not schema info are considered to be Data Triple Patterns. A tuple t € DT P (Data Triple
Pattern set - see (8)) is a Data Triple Pattern.

DTP=(I'ULUV) x (I' U{rdf : type, owl : sameAs}) x (I' ULUYV) (8)

I'=1—Igrpr —Irprs — IoweL (9)

Definition 5.2 (Schema Triple Pattern). The triple patterns that only apply to schema
and not data info are considered to be Schema Triple Patterns. A tuple t € STP (Schema
Triple Pattern set - see (10)) is a Schema Triple Pattern.

STP = ((IULUV)xIx (IULUV)) —DTP (10)

The factor which is mainly used for the categorization of a triple pattern is the triple
pattern’s predicate part. The only exception occurs when the predicate part of a triple
pattern contains the RDF property rdf : type. In this case, the object part of the triple
pattern should be checked. If a triple pattern’s object part contains an RDF/RDFS/OWL
IRI, then the triple pattern concerns schema info. In Table 10 we present the categorization
of a triple pattern set, into Data/Schema Triple Patterns. Triple patterns having a variable
on their predicate part are not taken into consideration, since they can deal either with data
or with schema info.
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Table 10: Triple pattern categorization example, based on the ontologies presented in Fig-
ure 1.

Category Triple Pattern (s, p, 0)

Data Triple Patterns (Px,rdf : type, src: Product)

(?x, src : author, Ty)

(?x, src: price,"12"""xsd : int)
Schema Triple Patterns (?x,rdf s : subClassOf, src : Product)
(src: author,rdf s : domain, ?x)
(src: Pocket, owl : equivalentClass, ?x)
(src: CSFoundations, Tx,"52" " "~xsd : int)
(sre

: Popular, 7z, src : Science)

Non-categorized (non-supported)
ST

Since a triple pattern consists of three parts (subject, predicate, object), in order to
rewrite it using the predefined mappings for each of the subject, predicate and object parts,
we have to follow a three-step procedure. Firstly, a triple pattern is rewritten using the
mapping which has been defined for its predicate part. Afterwards, the resulted graph
pattern is rewritten triple pattern by triple pattern, using the mappings of the triple patterns’
object parts. Finally, the same procedure is repeated for the triple patterns’ subject parts.
It is worth to mention that SPARQL variables, literal constants and RDF /RDFS/OWL IRIs
which may appear in the subject, predicate or object of a triple pattern remain the same
during the rewriting procedure. Consequently, the SPARQL variables of the initial query
appear also in the rewritten query.

In Section 6 and Section 7, we provide a set of functions which perform triple pattern
rewriting using predefined mappings for a triple pattern’s subject, predicate and object parts,
after taking into consideration the triple pattern’s type. In Table 11, we present the notation
used for the definition of these functions.

Table 11: The notation used for the definition of the different triple pattern rewriting func-
tions.

Symbol  Notation

T The indicator s denotes that the entity x (class, object property,
datatype property or individual) belongs to the source ontology.
Tt The indicator ¢ denotes that the entity x (class, object property,

datatype property or individual) belongs to the target ontology.

Dy (t, 1) The D function produces the resulted form of a Data Triple Pat-
tern ¢, after being rewritten by x (subject or predicate or object)
using a mapping p. The exponent = gets values from the set
{s,p,0}, in order to demonstrate the part of ¢ which is used by
the rewriting process. The indicator y gets values from the set
{c,op,dp,i,+}, in order to show the type of = (e.g. class, object
property, etc.). The asterisk is used to denote any type (class,
object property, datatype property or individual).

Sy (t,r) The S function produces the resulted form of a Schema Triple
Pattern ¢ after being rewritten. The exponent = and the indicator
y are defined above.
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In addition to the triple patterns, a graph pattern may contain filters. The SPARQL
variables, literal constants, operators (&&, ||, !, =, ! =, >, <, >=, <=, +, —, %, /) and
built-in functions (e.g. bound, isIRI, isLiteral, datatype, lang, str, regex) which may
appear inside a FILTER expression remain the same during the rewriting process. For class
IRIs and property IRIs which may appear inside a FILTER expression of a SPARQL query,
we use 1:1 cardinality mappings for the expression rewriting. This poses a minor limitation,
considering that an IRI can appear inside a FILTER expression only for equality and inequality
operations. Thus, the rewriting of a FILTER expression is performed by substituting any IRIs
that refer to a class, property, or individual, according to the specified mappings.

We note that the rewriting of a triple pattern, is not dependent on mapping relationships
(i.e. equivalence, subsumption). These relationships, affect only the evaluation results of
the rewritten query after being posed over the target ontology. A complete algorithm and
a set of examples, which show the rewriting process of a graph pattern, based on a set of
predefined mappings are presented in Section 8.

6 Data Triple Pattern rewriting

In this section, we provide the functions which perform Data Triple Pattern rewriting based
on a set of mappings. These functions are actually rewriting steps in the process of Data
Triple Pattern rewriting and are also semantics preserving (see Definition 6.1).

Let DS; and DS; be the RDF datasets of a source and a target ontology respectively.
Similarly, let DS, be the RDF dataset which is produced by merging [29] the DS, and D.S;
datasets using a set of mappings M.

Definition 6.1 (Semantics preserving rewriting). Given a complete set (i.e. a set that
contains every possible mapping) of sound (i.e. valid) mappings M between DS and DS,
the rewriting step performed for a triple pattern t, based on a mapping u € M, is semantics
preserving if and only if the evaluation result of t and the evaluation result of the rewritten
graph pattern gp' over DS,,, preserve the mapping semantics.

In other words, having a set J = var(t) of SPARQL variables, the relationship (=, C, J)
that holds for the mappings used in the rewriting process, should also hold between [[t]]|ps,,
and [[gp']|ps,, projected on J.

[tllps,, relm, ([lgr']lps,.), rel:==|E |3 (11)
J =wvar(t) Nvar(gp’) = var(t) (12)

In Section 6.1 we describe the Data Triple Pattern rewriting process using a mapping for
the triple pattern’s subject part, while in Sections 6.2 and 6.3 we present the Data Triple
Pattern rewriting process using mappings for the triple pattern’s object and predicate parts
respectively.

6.1 Rewriting by triple pattern’s subject part

Generally, when a class or a property appears on the subject part of a triple pattern we
conclude that the triple pattern involves schema info, as there is no way for a non RDF/
RDFS/OWL IRI to appear at the same time in the triple pattern’s predicate part. Thus, the
only case mentioned for the rewriting of a Data Triple Pattern by its subject part concerns
individuals appearing in the triple pattern’s subject part.
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Rewriting based on individual mapping. Let i; be an individual from the source on-
tology which is mapped to an individual i; from the target ontology. Having a Data Triple
Pattern ¢t = (is, predicate, object) with is in its subject part and anything in its predicate
and object parts, we can rewrite it by its subject part, using a predefined mapping p and
the function (13).

D (t, n) = (i, predicate, object) if p: is =144 (13)

Example 6.1. Consider the query posed over the source ontology of Figure 1: “Return the
type of the CSFoundations individual”. The SPARQL syntax of the source query is shown
below:

Q@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.
OPREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT 7x
WHERE

{
}

src:CSFoundations rdf:type 7x.

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern t = (src : C'SFoundations, rdf : type, 7z) by its subject,
predicate and object parts. Taking into consideration a mapping p of the triple pattern’s
subject part, the result of the triple pattern’s ¢ rewriting by its subject part is provided by
invoking the function (13).

t = (src: CSFoundations, rdf : type, )
w: src: CSFoundations = trg: FoundationsO fCS

Using the parameters defined above, as well as the function (13), the triple pattern ¢ is
rewritten as follows:

Di(t,u) = (trg: FoundationsOfCS,rdf : type, ?x)

In Lemma 6.1 we summarize the functions presented in this section, which are used for
the rewriting of a Data Triple Pattern based on a mapping for the triple pattern’s subject
part.

Lemma 6.1. Having a Data Triple Patternt and a predefined mapping p for its subject part,
we can rewrite it by its subject, by invoking the function (14). Considering the semantics of
the initial triple pattern, as well as the semantics of the resulted graph pattern, this rewriting
step is semantics preserving.

D:(t, p) if t = (is, predicate, object)
Di(t,p) = (14)
) elsewhere

The proof of Lemma 6.1 is available in the Appendix B. O
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6.2 Rewriting by triple pattern’s object part

When a property appears on the object part of a triple pattern, we conclude that the triple
pattern deals with schema info as there is no way for a non RDF/RDFS/OWL IRI to appear
at the same time in the triple pattern’s predicate part. Similarly, in case that a class appears
on a triple pattern’s object part, the only factor which can be used in order to determine
the triple pattern’s type (Data or Schema Triple Pattern), is whether the RDF property
rdf : type appears on the predicate part or not. Thus, the only cases mentioned for the
rewriting of a Data Triple Pattern by its object part concern individuals appearing to the
triple pattern’s object part, as well as classes with the precondition that the RDF property
rdf : type appears on the triple pattern’s predicate part at the same time.

Rewriting based on class mapping. Let ¢; be a class from the source ontology which
is mapped to a class expression from the target ontology. Having a Data Triple Pattern
t = (subject, rdf : type, cs) with the class ¢, in its object part, the RDF property rdf : type
in its predicate and anything in its subject part, we can rewrite it by its object part, using
a predefined mapping p and the function (15).
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(subject, rdf : type,c) ifp: cs — e

D(t1, 1) UNION D9(to, p2) if p: cs — cp1 Ucyo,
where t1 = (subject, rdf : type, ct1),
p1: e =CEy,
and to = (subject, rdf : type, cia),
po i crp = CEy

DY(t1, p1) AND DZ(ta, pi2) if p: cs — cpnNeo,
where t1 = (subject, rdf : type,ci1),
p1: ¢ = CEy,
and to = (subject, rdf : type, ci2),

po i cip = CEy
D2(t1, 1) AND Db (ta, pz) if w: cs — Yeg.(opr TP Vop),
FILTER(?var Tp vop) where ¢p € {#,=},

Vop = tndividual,

t1 = (subject, rdf : type,ct),
p1 ey = CFEy,

and ty = (subject, ops, Tvar),
o2 opy = OPE;

Do(t1, 1) AND Dsp(tg,ug) if p: cs — Ver.(dpe cp vap),

DO(t,u) = { FILTER(?var cp vap) where cp € {#,=,<,>, <, >}, (15)
vgp = data value,

t1 = (subject,rdf : type, ct),

p1: ¢ = CEy,

and to = (subject, dpy, Tvar),

et dpy = DPE;

Dg(t1, 1) AND DE (2, p2) if i cs — Ver.(opu T opr2),

AND D? (t3, u3) where ¢p € {#,=},

FILTER(?var; €p Tvars) t1 = (subject,rdf : type, ct),
p1: ¢ = CEy,

to = (subject, opy1, Tvary),

pz2 2 opn = OPEy,

and t3 = (subject, opsa, Tvars),
p3 : opyp = OPE

Do(t1, 1) AND Dsp(tg,ug) if u: cs — Ver.(dpy cp dpea),

AND Dsp(tg,/ig) where cp € {#,=,<,>, <, >},

FILTER(?var; cp ?vars) t1 = (subject, rdf : type,ct),
p1: ¢ = CEy,

to = (subject,dpsr, Tvary),

po : dpy = DPEy,

and t3 = (subject, dpia, Tvarsy),
u3 : dpyp = DPEy

The functions D5, and DSP are used by the function (15) in order to provide the graph
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pattern that forms a restricted property and are defined in Section 6.3.

Example 6.2. Consider the query posed over the source ontology of Figure 1: “Return the
poetry books”. The SPARQL syntax of the source query is shown below:

OPREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.
@PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns#>.

SELECT 7x
WHERE

{
}

?x rdf:type src:Poetry.

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern t = (?z, rdf : type, src : Poetry) by its subject, predicate
and object parts. Taking into consideration a mapping p of the triple pattern’s object part,
the result of the triple pattern’s ¢ rewriting by its object part is provided by invoking the
function (15).

t = (Px,rdf : type, src: Poetry)
w: src: Poetry T trg: Literature

The mapping p is of type ¢s — ¢;. Thus, using the parameters defined above, as well as
the function (15), the triple pattern ¢ is rewritten as follows:

Do(t, ) = (Px,rdf : type,trg : Literature)

Example 6.3. Consider the query posed over the source ontology of Figure 1: “Return the
scientific books”. The SPARQL syntax of the source query is shown below:

Q@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.
OPREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT 7x
WHERE

{
}

?x rdf:type src:Science.

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern ¢ = (?x,rdf : type,src : Science) by its subject,
predicate and object parts. Taking into consideration a mapping p of the triple pattern’s
object part, the result of the triple pattern’s ¢ rewriting by its object part is provided by
invoking the function (15).
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t = (Px,rdf : type, src: Science)
w: src: Science = trg: ComputerScience U trg: Mathematics

The mapping 4 is of type ¢ — ¢z U ¢t2. Following the definition of the function (15),
two triple patterns ¢; and ¢y are created and the complex mapping p is decomposed into the
mappings p1 and pe. The triple patterns t; and ts contain the classes ¢;; and ¢ on their
object part, respectively. The mapping of the class ¢ is provided by g7, while the mapping
of the class ¢ is provided by .

t1 = Pz, rdf : type, ci1)
to = (P, rdf : type, ci2)
w1 ¢ = trg: ComputerScience
Lo cg = trg: Mathematics
Thus,
D2(t, ) = D(t, 1) UNION Dg(tz, p2)

The mappings u; and ps are of type cs — ¢;. Thus, using the parameters defined above,
as well as the function (15) for the rewriting of the triple patterns ¢; and ¢, the initial triple
pattern ¢ is rewritten as follows:

D2(t, ) = D2(t1, 1) UNION D2 (t2, pi2)

= (?z,rdf : type, trg : ComputerScience) UNION
(Px,rdf : type,trg : Mathematics)

Example 6.4. Consider the query posed over the source ontology of Figure 1: “Return the
popular scientific books”. The SPARQL syntax of the source query is shown below:

Q@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.
OPREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT 7x
WHERE

{
}

7x rdf:type src:Popular.

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern ¢ = (?z,rdf : type,src : Popular) by its subject,
predicate and object parts. Taking into consideration a mapping p of the triple pattern’s
object part, the result of the triple pattern’s ¢ rewriting by its object part is provided by
invoking the function (15).
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t = (Px,rdf : type, src : Popular)
w: src: Popular = (trg: ComputerScience U trg: Mathematics) M trg : BestSeller

The mapping p is of type ¢s — ¢ Mepe. Following the definition of the function (15),

two triple patterns ¢; and ¢, are created and the complex mapping p is decomposed into the
mappings @1 and pe. The triple patterns ¢y and to contain the classes ¢;; and ¢ on their

object part, respectively. The mapping of the class ¢;; is provided by p1, while the mapping
of the class c¢o is provided by pa.

t1 = (Tz,rdf : type, ci1)
to = (Tx,rdf : type, ci2)
w1 ¢ = trg: ComputerScience U trg : Mathematics

Lo : Cia = trg: BestSeller
Thus,

Do(t, ) =D2(tr, 1) AND DY(tz, pz)

Similarly, the resulted complex mapping w7 is of type ¢s — ¢;3 U ¢p4. Consequently, two
triple patterns t3 and t4 are created and the complex mapping p; is decomposed into the
mappings pus3 and pg. The triple patterns t3 and t4 contain the classes c;3 and ¢4 on their

object part respectively. The mapping of the class ¢;3 is provided by us, while the mapping
of the class ¢y is provided by fig.

ts = Pz, rdf : type, ci3)
ty = (Px,rdf : type, cia)
w3 ¢z = trg : ComputerScience

e ¢y = trg: Mathematics
Thus,

D2(t,n) = D(tr, 1) AND DE(ta, p2)

= (Dg(tg, Mg) UNION Dg(t4, /L4)) AND D(O:(tg, /.1,2)

The mappings ps2, ps and pg are of type c¢s — ¢;. Thus, using the parameters defined
above, as well as the function (15) for the rewriting of the triple patterns to, t3 and t4, the
initial triple pattern ¢ is rewritten as follows:

D2(t, ) = D2(t1, 1) AND DY(t2, p2)
= (Dg(t37 /,Lg) UNION Dg(t47 /,L4)) AND Dg(tg, /Lg)
= ((?xmdf : type, trg : Computer Science) UNION

(Px,rdf : type,trg : Mathematics)) AND
(?x,rdf : type,trg : BestSeller)
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Rewriting based on individual mapping. Let i; be an individual from the source on-
tology which is mapped to an individual i; from the target ontology. Having a Data Triple
Pattern ¢ = (subject, predicate, is) with is in its object part and anything in its predicate
and subject parts, we can rewrite it by its object part, using a predefined mapping p and
the function (16).

DI(t, 1) = (subject, predicate,iy) if p: is =iy (16)

Example 6.5. Consider the query posed over the source ontology of Figure 1: “Return the
individuals which are specified to be the same with the CSFoundations individual”. The
SPARQL syntax of the source query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.
@PREFIX owl: <http://www.w3.org/2002/07/owl#>.

SELECT 7x
WHERE

{
}

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern ¢t = (?z,owl : sameAs, src : CSFoundations) by its
subject, predicate and object parts. Taking into consideration a mapping p of the triple
pattern’s object part, the result of the triple pattern’s t rewriting by its object part is
provided by invoking the function (16).

?x owl:sameAs src:CSFoundations.

t = (?z,owl : sameAs, src: CSFoundations)
w: src: CSFoundations = trg: FoundationsOfCS
Using the parameters defined above, as well as the function (16), the triple pattern ¢ is
rewritten as follows:
Do(t, 1) = (Tx,owl : sameAs,trg : FoundationsO fCS)

In Lemma 6.2 we summarize the functions presented in this section, which are used for
the rewriting of a Data Triple Pattern based on a mapping for the triple pattern’s object
part.

Lemma 6.2. Having a Data Triple Patternt and a predefined mapping p for its object part,
we can rewrite it by its object, by invoking the function (17). Considering the semantics of
the initial triple pattern, as well as the semantics of the resulted graph pattern, this rewriting
step is semantics preserving.

DI (t, 1) if t = (subject, predicate, i)

DE(t) = Dty)  ift = (subject,rdf : type, c,) (17)
0 elsewhere
The proof of Lemma 6.2 is available in the Appendix B. O
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6.3 Rewriting by triple pattern’s predicate part

In order to rewrite a Data Triple Pattern by its predicate part only property mappings can
be used, since a class or an individual cannot appear on a triple pattern’s predicate part.

Rewriting based on object property mapping. Let ops be an object property from the
source ontology which is mapped to an object property expression from the target ontology.
Having a Data Triple Pattern ¢ = (subject, ops, object) with ops in its predicate part and
anything in its subject and object parts, we can rewrite it by its predicate part, using a
predefined mapping p and the function (18).

Db (t, 1)

(subject, opy, object)

Db, (t1, 11) AND DI (ta, po)

Dgp(tl, Ml) UNION Dgp(tz, /LQ)

Dgp(tla Ml) AND Dgp(t27 ,U/2)

Db (L1, p11)

Dgp(tlv Ml) AND Dg (tz, :u2)

DP,(t1, p1) AND Dg(ta, p2)

if o2 ops — opy

if p: ops — opi1 o opiz,

where t1 = (subject, ops1, Tvar),
p1: opn = OPEy,

and to = (Tvar, opia, object),
ot opya = OPFEyo

if p: ops — opu U opse,

where t; = (subject, opy1, object),
p1: opn = OPEy,

and to = (subject, opsa2, object),
p2 : opz = OPEy

if p: ops — opu Mopye,

where t; = (subject, ops1, object),

p1: opy1 = OPEy,

and to = (subject, ops2, object), (18)
H2 o OPt2 = OPEy;

if u: ops — inv(opy),
where t; = (object, op;, subject)
and p1 : op; = OPE,

if p: ops — Yopi.domain(cy),
where t; = (subject, opy, object),
p1 i opr = OPE,

and to = (subject, rdf : type, ct),
M2 i Ct = CEt

if u: ops — Yop.range(ct),
where t; = (subject, op, object),
p1: opy = OPEy,

and to = (object, rdf : type, c;),
M2 i Ct = CEt

Example 6.6. Consider the query posed over the source ontology of Figure 1: “Return the
publisher of the book CSFoundations”. The SPARQL syntax of the source query is shown
below:
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@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

SELECT 7x
WHERE

{
}

src:CSFoundations src:publisher 7x.

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern ¢t = (src : C'SFoundations, src : publisher,?x) by its
subject, predicate and object parts. Taking into consideration a mapping p of the triple
pattern’s predicate part, the result of the triple pattern’s ¢ rewriting by its predicate part is
provided by invoking the function (18).

t = (src: CSFoundations, src : publisher, 7x)
p: src: publisher = inv(trg : publishes)

The mapping p is of type ops — inv(op;). Following the definition of the function (18), a
triple patterns t; is created and the complex mapping p is transformed to the mapping p;.
The triple pattern ¢; contains an object property op; on its predicate part and its mapping
is provided by p1.

t1 = (?x, op, src : CSFoundations)
w12 opy = trg: publishes
Thus,
Dzo)p(t’ ,U,) = D;gp(tlv /4L1)
The mapping g1 is of type ops — op;. Thus, using the parameters defined above, as well

as the function (18) for the rewriting of the triple pattern ¢, the initial triple pattern ¢ is
rewritten as follows:

D;gp (t, p’) = Dgp (tla :U’l)

= (?x,trg : publishes, src : CSFoundations)

Rewriting based on datatype property mapping. Let dp, be a datatype property from
the source ontology which is mapped to a datatype property expression from the target on-
tology. Having a Data Triple Pattern ¢t = (subject, dps, object) with dps in its predicate part
and anything in its subject and object parts, we can rewrite it by its predicate part, using a
predefined mapping p and the function (19).
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(subject, dpg, object) if o : dps — dpy

D;gp(tl’ﬂl) AND Dsp(t%ﬂ’?) if M dpS — Op¢ © dpt7
where ¢, = (subject, opy, Tvar),
1 opy = OPEy,
and to = (Tvar, dp;, object),
o @ dps = DPE;

Dsp(tl,ul) UNION Dsp(tg, 12) if u: dps — dpg U dpyo,
where t1 = (subject, dps1, object),
w1 dpyn = DPE}y,
and to = (subject, dpia, object),
p2: dpy = DPEs

Dgp(tl,ul) AND Dgp(t2,u2) if p: dps — dpy Mdpyo,
Dsp(t,u) = where t1 = (subject, dps1, object),
w1 dpyn = DPEyy,

and to = (subject, dpia, object),
p2 @ dpyp = DPE

Dy, (t1, 1) AND D¢ (ta, p2) if u: dps — Vdps.domain(c;),
where ¢ = (subject, dpy, object),
p1: dpe = DPE,
and to = (subject, rdf : type,c),

po: g =CEy
DY (t1, pa) if p: dps — Vdpy.range(cp vap),
FILTER(object cp vayp) where cp € {#,=,<,>,<, >},

vap = data value,
and t1 = (subject, dpy, object),
w12 dpy = DPE,

(19)

Example 6.7. Consider the query posed over the source ontology of Figure 1: “Return the
name of the CSFoundations individual which is of type Book”. The SPARQL syntax of the
source query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

SELECT 7x
WHERE

{
}

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern ¢t = (src : CSFoundations, src : name,?z) by its

src:CSFoundations src:name 7Xx.
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subject, predicate and object parts. Taking into consideration a mapping p of the triple
pattern’s predicate part, the result of the triple pattern’s ¢ rewriting by its predicate part is
provided by invoking the function (19).

t = (src: CSFoundations, src : name, 7x)
W src:name J trg: title

The mappings p is of type dps — dp;. Thus, using the parameters defined above, as well
as the function (19), the triple pattern ¢ is rewritten as follows:

D}, (t,n) = (src: CSFoundations, trg : title, 7x)

Example 6.8. Consider the query posed over the source ontology of Figure 1: “Return the
available reviews for the book CSFoundations”. The SPARQL syntax of the source query is
shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

SELECT 7x
WHERE

{
}

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern ¢ = (src : CSFoundations, src : review,?z) by its
subject, predicate and object parts. Taking into consideration a mapping p of the triple
pattern’s predicate part, the result of the triple pattern’s ¢ rewriting by its predicate part is
provided by invoking the function (19).

src:CSFoundations src:review ?7x.

t = (src: CSFoundations, src : review, 7z)
w: src:review = trg: editorial Review U trg : customer Review

The mapping p is of type dps — dpy U dpsa. Following the definition of the function
(19), two triple patterns ¢; and to are created and the complex mapping p is decomposed
into the mappings p1 and ps. The triple patterns ¢; and to contain the datatype properties
dpy1 and dpyo on their predicate part, respectively. The mapping of the datatype property
dpy1 is provided by pq, while the mapping of the datatype property dp;s is provided by pus.

t1 = (src: CSFoundations, dpyy, ?x)
to = (src: CSFoundations, dpys, ?x)
w1 dpy = trg: editorial Review
o dpya = trg: customer Review

Thus,
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Di,(t,n) = Df,(t1, 1) UNION D (t2, j12)

The mappings 1 and po are of type dps — dp;. Thus, using the parameters defined
above, as well as the function (19) for the rewriting of the triple patterns ¢; and to, the
initial triple pattern ¢ is rewritten as follows:

DY (t,u) =D (t1, ) UNION D, (t2, o)

= (src: CSFoundations, trg : editorial Review, 7x) UNION
(src : CSFoundations, trg : customer Review, 7x)

In Lemma 6.3 we summarize the functions presented in this section, which are used for
the rewriting of a Data Triple Pattern based on a mapping for the triple pattern’s predicate
part.

Lemma 6.3. Having a Data Triple Pattern t and a predefined mapping p for its predicate
part, we can rewrite it by its predicate, by invoking the function (20). Considering the
semantics of the initial triple pattern, as well as the semantics of the resulted graph pattern,
this rewriting step is semantics preserving.

Db, (t, 1) if t = (subject, ops, object)

DE(t,u) = ¢ Dy, (t, 1) if t = (subject, dps, object) (20)
] elsewhere
The proof of Lemma 6.3 is available in the Appendix B. |

6.4 Combination examples

In this section we provide a set of examples that combine some of the functions presented in
the previous sections in order to rewrite a triple pattern based on a specific triple pattern’s
part (i.e. subject, predicate, object).

Example 6.9. Consider the query posed over the source ontology of Figure 1: “Return the
pocket-sized books”. The SPARQL syntax of the source query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.
@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT 7x
WHERE

{
}

?x rdf:type src:Pocket.

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern ¢ = (7, rdf : type, src : Pocket) by its subject, predicate
and object parts. Taking into consideration a mapping p of the triple pattern’s object part,
the result of the triple pattern’s ¢ rewriting by its object part is provided by invoking the
function (15).
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t = (Px,rdf : type, src: Pocket)
w: src: Pocket = Vitrg: Textbook.(trg : size < 14)

Taking a closer look at the mapping p, we conclude that the source ontology’s class
Pocket is mapped to the target ontology’s class Textbook, restricted on its size property
values. Consequently, the mapping p is of type ¢ — Ve¢i.(dpy cp vap). Following the
definition of the function (15), two triple patterns ¢; and ¢o are created and the complex
mapping p is decomposed into the mappings p; and ps. The triple pattern ¢; contains a
class ¢; on its object part, while the triple pattern t2 contains a datatype property dp; on
its predicate part. The mapping of the class ¢; is provided by w1, while the mapping of the
property dp; is provided by us.

t1 = (Px,rdf : type, )
to = (P, dpy, Tvar)
w1 ¢ = trg: Textbook
o : dpy = trg: size
Thus,
Do(t, ;) = D2(t1, 1) AND Dgp(tg,ug) FILTER (?var < 14)

The mapping usg, as well as the triple pattern t5 are used by the function (19), in order to
form the graph pattern representing the size property. Thus, using the parameters defined
above, as well as the function (15) for the rewriting of the trile pattern ¢, the initial triple
pattern t is rewritten as follows:

D(t, ) = D(t1, 1) AND Dy (ta, p2) FILTER(?var < 14)

= (Pxz,rdf : type,trg : Textbook) AND (?x,trg : size, Tvar)
FILTER(?var < 14)

Example 6.10. Consider the query posed over the source ontology of Figure 1: “Return
the autobiography books”. The SPARQL syntax of the source query is shown below:

Q@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.
OPREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT 7x
WHERE

{
}

?x rdf:type src:Autobiography.
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In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern ¢t = (?z, rdf : type, src : Autobiography) by its subject,
predicate and object parts. Taking into consideration a mapping u of the triple pattern’s
object part, the result of the triple pattern’s ¢ rewriting by its object part is provided by
invoking the function (15).

t = (Px,rdf : type, src: Autobiography)
w: src: Autobiography = Vitrg : Biography.(trg : author = trg : topic)

Taking a closer look at the mapping p, we conclude that the source ontology’s class
Autobiography is mapped to the target ontology’s class Biography, restricted on its author
property values. The mapping u is of type ¢; — Vei.(dpy cp dpia). Following the definition
of the function (15), three triple patterns t1, t2 and t3 are created and the complex mapping
1 is decomposed into the mappings u1, po and pus. The triple pattern ¢ contains a class ¢
on its object part, while the triple patterns ¢5 and t3 contain the datatype properties dps
and dpso on their predicate part, respectively. The mapping of the class ¢; is provided by g1,
the mapping of the property dps; is provided by ps and the mapping of the property dpys is
provided by pus.

t1 = (Px,rdf : type, )
to = (Px,dpy, Tvary)
ts = (Tx, dpsa, Tvars)
w1 ¢ = trg: Biography
po : dpy1 = trg: author
w2t dps = trg : topic
Thus,

DY(t,p) = D2(tr, 1) AND D (ta, p2)
AND D} (t3, u3) FILTER(?var; =?vars)

The mapping usg, as well as the triple pattern t5 are used by the function (19), in order to
form the graph pattern representing the property author. Similarly, the mapping us, as well
as the triple pattern t3 are used by the same function, in order to form the graph pattern
representing the property topic. Finally, using the parameters defined above, as well as the
function (15) for the rewriting of the triple pattern ¢1, the initial triple pattern ¢ is rewritten
as follows:

DY(t,p) = D(tr, 1) AND D (ta, p2)
AND D} (t3, u3) FILTER(?var, =?vars)

= (Yz,rdf : type,trg : Biography) AND (?z,trg : author, 7vary)
AND (?z,trg : topic, Tvare) FILTER(?var; =?varsy)
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Example 6.11. Consider the query posed over the source ontology of Figure 1: “Return
the pocket-sized books which are part of a collection”. The SPARQL syntax of the source
query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

SELECT 7x 7y
WHERE

{
}

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern ¢t = (?z, src : partO f, ?y) by its subject, predicate and
object parts. Taking into consideration a mapping p of the triple pattern’s predicate part,
the result of the triple pattern’s ¢ rewriting by its predicate part is provided by invoking the
function (18).

?x src:part0f 7y.

t = Pz, src: partOf, y)
w: src:partOf = Virg : partO f.domain(Virg : Textbook.(trg : size < 14))

Taking a closer look at the mapping u, we conclude that the source ontology’s property
part0f is mapped to the target ontology’s property part0f, restricted on its domain values.
Consequently, the mapping u is of type ops — Vop;.domain(c;y). Following the definition of
the function (18), two triple patterns ¢; and ty are created and the complex mapping pu is
decomposed into the mappings p1 and us. The triple pattern ¢; contains an object property
op: on its predicate part and its mapping is provided by pui, while the triple pattern ¢,
contains a class ¢z on its object part and its mapping is provided by pus.

t1 = (?x, 0pe, TY)
to = (Px,rdf : type, ci1)
w1 opy = trg:partOf
po ¢y = Virg : Textbook.(trg : size < 14)

Thus,
Dgp(tv p’) - Dgp@’ :ul) AND Dg(t27 N’2)

The mapping po actually specifies a mapping between the domain of the source ontology’s
property part0Of and the target ontology’s class Textbook, restricted on its size property
values. Following the definition of the function (15), two triple patterns t3 and ¢4 are created
and the complex mapping us is decomposed into the mappings 3 and uys. The triple pattern
t3 contains a class ¢;o on its object part, while the triple pattern t, contains a datatype
property dp; on its predicate part. The mapping of the class ¢;o is provided by ps, while the
mapping of the property dp; is provided by fu4.

ts = (Px,rdf : type, ci2)
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ty = (P, dpy, Tvar)
w3 cpp = trg: Textbook
W : dpy = trg: size
Thus,

Dgp(t’ N) = Dgp(tlv :u‘1> AND Dg(t27 .u2)

= Dgp(tla ,Ltl) AND (Dg(t-?n ,U3) AND Dgp(t47 .U’4)
FILTER(?var < 14))

The mapping p4, as well as the triple pattern ¢4 are used by the function (19) in order to
form the graph pattern representing the size property. Thus, using the parameters defined
above, as well as the functions (18) and (15) for the rewriting of the triple patterns ¢; and
t3, the initial triple pattern ¢ is rewritten as follows:

Dzo)p(tﬂ /u‘) = D‘gp(th /”Ll) AND D(c)(t% MQ)

=D, (t1, 1) AND (DZ(ts, pu3) AND Dy (ta, pia)
FILTER(?var < 14))

= (?@,trg : partOf,7y) AND ((?z,rdf : type,trg : Textbook) AND
(?z,trg : size, ?var) FILTER(?var < 14))

Example 6.12. Consider the query posed over the source ontology of Figure 1: “Return
the authors of the book CSFoundations”. The SPARQL syntax of the source query is shown
below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

SELECT 7x
WHERE

{
}

src:CSFoundations src:author 7x.

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern t = (src : CSFoundations, src : author,?x) by its
subject, predicate and object parts. Taking into consideration a mapping p of the triple
pattern’s predicate part, the result of the triple pattern’s ¢ rewriting by its predicate part is
provided by invoking the function (19).

t = (src: CSFoundations, src : author, 7x)

W src:author = trg:author o trg:name
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The mapping p is of type dps — op; o dp;. Following the definition of the function (19),
two triple patterns t; and ¢, are created and the complex mapping p is decomposed into
the mappings 1 and po. The triple patterns ¢; and to contain an object property op; and
a datatype property dp; on their predicate part, respectively. The mapping of the object
property op; is provided by g1, while the mapping of the datatype property dp; is provided
by fiz.

t; = (src : CSFoundations, opg, Tvar)
to = (Tvar, dpy, 1)
w1 opy = trg: author
ot dpy = trg: name
Thus,
D, (t,pn) =D, (t1, 1) AND Dy (to, o)

The mapping pu is of type ops — op;, while the mapping us is of type dps — dp;. Thus,
using the parameters defined above, as well as the functions (18) and (19) for the rewriting
of the triple patterns ¢; and t3, the initial triple pattern ¢ is rewritten as follows:

Dgp(t, /1,) = Dgp(tlv ﬂl) AND Dsp(t27 MQ)

= (src: CSFoundations,trg : author, Tvar) AND
(?var, trg : name, 7x)

7 Schema Triple Pattern rewriting

In order to rewrite a triple pattern any mapping type presented in Section 3.3 can be used.
However, in some cases the mapped expressions should be relaxed in order for a mapping to
be used by the Schema Triple pattern rewriting process.

In the Example 7.1, we show that a mapping is used as it is in order to be exploited by
the Data Triple Pattern rewriting process, although, the same mapping should be relaxed in
order to be used for the rewriting of a Schema Triple Pattern.

Example 7.1. In Figure 1, let the source ontology’s class Pocket be mapped to the class
Textbook from the target ontology, restricted on its size property values. This correspon-
dence can be represented as follows:

w: src: Pocket = Virg: Textbook.(trg : size < 14)

Having a Data Triple Pattern ¢ = (?z,rdf : type, src : Pocket) and the mapping p, it
is clear that the entire mapping should be used in order to rewrite the triple pattern ¢.
This results from the fact that the mapping p relates a class from the source ontology with
an unnamed class (i.e. set of instances) from the target ontology, and the triple pattern ¢
concerns data info and specifically a set of instances.
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On the contrary, having the mapping p that we presented before, as well as a Schema
Triple Pattern ¢ = (src: Pocket, rdfs : subClassOf,?x), it is clear that the class restriction
cannot be used in order to rewrite it. As mentioned before, the class Pocket is mapped
to an unnamed class. Thus, using the class restriction for the rewriting of ¢, makes the
evaluation results prone to whether the target ontology defines the unnamed class, which is
very unlikely, and contains schema info about it as well. Consequently, in order to rewrite the
triple pattern ¢’ and also to avoid tricky hypothesis, the mapping p should be transformed
to a similar one, having the property restriction of the target ontology’s mapped expression
removed (i.e. p' : src: Pocket T trg : Textbook). Such a relaxation step, seems to be
reliable for Schema Triple Patterns, in the sense that it is based on some inferred facts which
are more likely to return the desirable query results.

The operations that determine whether a mapping should be relaxed in order to be used
for the rewriting of a Schema Triple Pattern are the following:

e Class expression restrictions.

e Object/datatype property expression restrictions on domain/range values.
e Composition operations between object/datatype property expressions.

e Inverse object property expression operations.

Mapped expressions containing the above operations are relaxed in order to be used for
the rewriting of a Schema Triple Pattern. In this case, a mapped class expression C'E (see
Definition 3.1) is transformed to a similar class expression CE’ (defined recursively in (21)),
having any class restrictions removed.

CE':=c|CE'NCE'|CE UCE' (21)

A mapped object property expression OPFE (see Definition 3.2) is transformed to a
similar object property expression OPE’ (defined recursively in (22)), having any domain/
range restrictions, any composed object property expressions and any inverse object property
expressions removed.

OPE' := op| OPE'MOPE' | OPE' UOPE' (22)

Similarly, a mapped datatype property expression DPE (see Definition 3.3) is trans-
formed to a similar datatype property expression DPE’ (defined recursively in (23)), having
any domain/range restrictions and any composed property expressions removed.

DPE':=dp| DPE'MDPE' | DPE'UDPE'’ (23)

Mappings containing mapped expressions that need relaxation, are transformed by substi-
tuting the mapped expression with the relaxed one and by modifying the mapping’s relation-
ship respectively. The relaxation operations presented above, can also exclude a mapping
from being used for the rewriting of a Schema Triple Pattern. For example, a mapping
between an object property and a composition of object properties is exluded, since the re-
laxation method will remove the composition operation and consequently the entire mapped
expression. It is worth to say that mappings between individuals do no need any relaxation
in order to be used for the rewriting of a Schema Triple Pattern.

Even after preprocessing the defined mappings, a Schema Triple Pattern should be rewrit-
ten differently compared to a Data Triple Pattern. The need for handling differently these
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two different triple pattern types lies on the fact that a Data Triple Pattern deals with data
info (e.g. relationships between instances or between instances and data values), while a
Schema Triple Pattern deals with schema info (e.g. hierarchies and relationships between
named classes and/or named properties).

In the Example 7.2, we show that handling the rewriting of a Schema Triple Pattern in
the same manner with a Data Triple Pattern does not preserve the mapping semantics.

Example 7.2. In Figure 1, let the source ontology’s class Science be mapped to the union
of classes ComputerScience and Mathematics from the target ontology. This correspondence
can be represented as follows:

W src: Science = trg: ComputerScience L trg : Mathematics

A Data Triple Pattern ¢t = (?x,rdf : type, src : Science), involves the instances of class
Science. Taking into consideration the mapping p, the rewritten graph pattern of ¢ should
return the instances of the class ComputerScience, as well as the instances of the class
Mathematics, using the UNION graph pattern operator.

On the contrary, a Schema Triple Pattern ' = (src : Science,rdfs : subClassOf,?x)
involves the superclasses of the class Science. Using the mapping p in order to rewrite
t', someone would expect the rewritten graph pattern to return the superclasses of the
union of classes ComputerScience and Mathematics. Although, such a rewritten graph
pattern is very unlikely to match any RDF graph (i.e. no results obtained), due to the
fact that the union of classes ComputerScience and Mathematics is not a named class
in the target ontology, in order to contain schema info about it. In addition, this differs
from returning the superclasses of the class ComputerScience, as well as the superclasses
of the class Mathematics, following the treatment which was used for Data Triple Pattern
rewriting.

One method to make a rewritten graph pattern semantically correspondent to the initial
triple pattern t’ is by using inference. In this case, a graph pattern that matches the common
superclasses of the classes ComputerScience and Mathematics forms the solution.

In order to rewrite a Schema Triple Pattern using 1:N cardinality mappings, simple
types of inference based on DL axioms are used. The Schema Triple Patterns which can
be handled using inference are those having on their predicate part one of the OWL/RDF/
RDFS properties appearing on the set SSP (Supported Schema Predicates - see (24)).

rdf : type,

rdfs : subClassO f,
rdf s : subPropertyO f,
SSP = ¢ owl: equivalentClass, (24)
owl : equivalent Property,
owl : complementO f,

owl : disjointWith

Let SSP. (see (25)) be the supported OWL/RDF/RDFS property set which can be
applied on classes, and SSP, (see (26)) be the supported OWL/RDF/RDFS property set
which can be applied on properties.
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rdf : type,
rdfs : subClassOf,
SSP, =< owl: equivalentClass, (25)
owl : complementO f,
owl : disjointWith

rdf : type,
SSP, =< rdfs: subPropertyOf, (26)
owl : equivalent Property

The sets presented above are divided further, to the sets SSP, (see (27)) and SSP; (see
(28)) respectively, for the purpose of common inference treatment.

SSP. = SSP.— {rdfs: subClassO [} (27)

SSP, = SSP, — {rdfs : subPropertyOf} (28)

Let B, C, D, G be atomic concepts (i.e. classes) and K, L, R, S be atomic roles (i.e.
properties). The Table 12 and Table 13 summarize the class and property axioms which are
used for the rewriting of Schema Triple Patterns, respectively. We note that the complement
operation is denoted by using the indicator c.

Table 12: Class axioms used for the rewriting of Schema Triple Patterns.

Type Axioms

Subsumption if BCC and G =C then BC G
#fBCCand BC Dand G=CnND then BC G
#fBCCorBCLDand G=CUD then BC G
#fBIJCand G=C then BJG
UBJCorBIJdDand G=CNDthen BJG
fBJCand BJIDand G=CUD then BJG

Equivalence if B=C and G=C then B=G
if B=Cand B=D and G=CTND then B=G
if B=Cand B=Dand G=CUD then B=G

Complementarity if B=C¢ and G = C then B = G°
if B=C¢and B=D¢and G=CnND then B = G°
if B=C¢and B=D¢and G =CUD then B = G°

Disjointness if BNC=0and G=C then BNG=10
if BNC=0and BND=0and G=CMND then BrNG =10
if BNC=0and BND=0and G=CUD then BNG =10

It is worth to say that in case of 1:1 cardinality mappings, every Schema Triple Pattern
having any OWL/RDF /RDFS property on its predicate part can be rewritten. In Section 7.1
we describe the Schema Triple Pattern rewriting process using a mapping for the triple pat-
tern’s subject part, while in Section 7.2 we present the Schema Triple Pattern rewriting
process using a mapping for the triple pattern’s object part. The rewriting of a Schema
Triple Pattern by its predicate part does not result in modifications since the triple pat-
tern’s predicate part is an RDF/RDFS/OWL property which does not affect the rewriting
procedure.
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Table 13: Property axioms used for the rewriting of Schema Triple Patterns.

Type Axioms

Subsumption if K C L and S=L then KC S
HfKCLand KCRand S=LMNRthen KC S
HfKCLorKCRand S=LURthen KCS
ifK JLand S=Lthen K318
HKIJLor K JORand S=LMRthen K I8
HfKIJLand K JRand S=LURthen KI5

Equivalence if K =Land S=L then K =5
ifK=Land K=Rand S=LMNRthen K =5
fK=Land K=Rand S=LURthen K=5

7.1 Rewriting by triple pattern’s subject part

A class or a property can appear in the subject part of a Schema Triple Pattern, as opposed
to the Data Triple Patterns.

Rewriting based on class mapping. Let ¢; be a class from the source ontology which
is mapped to a class expression from the target ontology. Having a Schema Triple Pattern
t = (cs, predicate, object) with ¢, in its subject part, an RDF/RDFS/OWL property in its
predicate and anything in its object part, we can rewrite it by its subject part, using a
predefined mapping p and the function (29).

(ct, predicate, object) ifp: cs — o

S5(t1, 1) UNION S2(to, pa) if : cs — ¢ Megy and
predicate = rdf s : subClassO f,
where ¢, = (c41, predicate, object),
p1: e =CEy,
and to = (c2, predicate, object),
po: cp =CEyp

S5t 1) = (29)

S3(t1, p1) AND S3(ta, pi2) if p: ey — e {M| U}lera and
predicate € SSP,
orif p: ¢y — ¢y Ueyo and
predicate = rdf s : subClassO f,
where t1 = (c41, predicate, object),
p1 e = CFEy,
and to = (c42, predicate, object),
p2 i cpp = CEyp

Example 7.3. Consider the query posed over the source ontology of Figure 1: “Return the
superclasses of the class Science”. The SPARQL syntax of the source query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.
@PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
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SELECT 7x
WHERE

{
}

src:Science rdfs:subClass0f 7x.

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern ¢ = (src : Science,rdfs : subClassOf,7x) by its
subject, predicate and object parts. Taking into consideration a mapping p of the triple
pattern’s subject part, the result of the triple pattern’s ¢ rewriting by its subject part is
provided by invoking the function (29).

t = (src: Science,rdf s : subClassOf,?x)
o src: Science = trg: ComputerScience Ll trg: Mathematics

The mapping 4 is of type ¢s — ¢;1 U ¢i2. Following the definition of the function (29),
two triple patterns ¢; and ¢y are created and the complex mapping p is decomposed into
the mappings 1 and po. The triple patterns ¢; and ¢, contain the classes ¢;1 and ¢ on
their subject part, respectively. The mapping of the class ¢4 is provided by w1, while the
mapping of the class ¢; is provided by po.

t1 = (e, rdf s : subClassOf, 7x)
to = (ct2,7df s : subClassOf, 7x)
11 ¢ = trg: ComputerScience
o cg = trg: Mathematics
Thus,
Si(t,p) = 82(t1, pa) AND SZ(tz, p2)
The mappings p1 and pg are of type ¢s — ¢;. Thus, using the parameters defined above,

as well as the function (29) for the rewriting of the triple patterns t; and ¢, the initial triple
pattern ¢ is rewritten as follows:

Sg(t’.u) = Scs(tl,y,l) AND Scs(t%l@)

= (trg : ComputerScience, rdf s : subClassO f,?x) AND
(trg : Mathematics, rdfs : subClassOf,?x)

Example 7.4. Consider the query posed over the source ontology of Figure 1: “Return
the superclasses of the class NewPublication”. The SPARQL syntax of the source query is
shown below:
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@PREFIX src: <http://www.owl-ontologies.com/SourceOntology.owl#>.
@PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

SELECT 7x
WHERE

{
}

src:NewPublication rdfs:subClass0Of 7x.

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern t = (src : NewPublication,rdfs : subClassO f,?x) by
its subject, predicate and object parts. Taking into consideration a mapping u of the triple
pattern’s subject part, the result of the triple pattern’s ¢ rewriting by its subject part is
provided by invoking the function (29).

t = (src: NewPublication,rdf s : subClassO f, 7x)
i src: NewPublication = trg: Computing N trg: NewRelease

The mapping p is of type ¢s — ¢ M e, Following the definition of the function (29),
two triple patterns ¢; and t, are created and the complex mapping u is decomposed into
the mappings p1 and ps. The triple patterns ¢; and t2 contain the classes ¢;; and ¢ on
their subject part, respectively. The mapping of the class ¢ is provided by ui1, while the
mapping of the class c¢;5 is provided by ps.

t1 = (e, rdf s : subClassOf,7x)

to = (ct2,7df s : subClassOf, 7x)
w1 ¢y =trg: Computing
ot co =trg: NewRelease

Thus,
S(t,pu) = 82(t1, p1) UNION S2(ta, pi2)

The mappings u; and ps are of type cs — ¢;. Thus, using the parameters defined above,
as well as the function (29) for the rewriting of the triple patterns ¢; and ¢, the initial triple
pattern t is rewritten as follows:

So(t,p) = S2(t1, 1) UNION S2(t2, p2)

= (trg : Computing, rdfs : subClassO f,?x) UNION
(trg : NewRelease,rdf s : subClassOf,?x)

Example 7.5. Consider the query posed over the source ontology of Figure 1: “Return the
classes which are specified to be equivalent to the class Science”. The SPARQL syntax of
the source query is shown below:
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@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.
@PREFIX owl: <http://www.w3.org/2002/07/owl#>.

SELECT 7x
WHERE

{
}

src:Science owl:equivalentClass 7x.

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern ¢ = (src : Science, owl : equivalentClass, ?x) by its
subject, predicate and object parts. Taking into consideration a mapping p of the triple
pattern’s subject part, the result of the triple pattern’s ¢ rewriting by its subject part is
provided by invoking the function (29).

t = (src: Science, owl : equivalentClass, 7x)
W src: Science = trg: ComputerScience U trg: Mathematics

The mapping p is of type ¢s — ¢4 U ¢o. Following the definition of the function (29),
two triple patterns ¢; and ¢, are created and the complex mapping p is decomposed into
the mappings p1 and ps. The triple patterns ¢; and t2 contain the classes ¢;; and c¢i;o on
their subject part, respectively. The mapping of the class ¢ is provided by pi1, while the
mapping of the class c¢;o is provided by ps.

t1 = (en, owl : equivalentClass, 1x)
to = (g2, owl : equivalentClass, 7x)
w1 ¢ = trg: ComputerScience
o i o = trg: Mathematics
Thus,
Si(t,p) = Si(t1, ) AND S:(ta, p2)

The mappings p; and ps are of type cs — ¢;. Thus, using the parameters defined above,
as well as the function (29) for the rewriting of the triple patterns ¢; and ¢9, the initial triple
pattern ¢ is rewritten as follows:

S(t,p) = S5(t1, p1) AND S (22, p2)

= (trg : ComputerScience, owl : equivalentClass, ?x) AND
(trg : Mathematics, owl : equivalentClass, ?x)
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Rewriting based on object property mapping. Let ops be an object property from the
source ontology which is mapped to an object property expression from the target ontology.
Having a Schema Triple Pattern ¢t = (ops, predicate, object) with ops in its subject part, an
RDF/RDFS/OWL property in its predicate and anything in its object part, we can rewrite
it by its subject part, using a predefined mapping p and the function (30).

S;p(tv /’6) =

(opt, predicate, object)

Ss (th/il) UNION Sgp(t27u2)

op

Sgp(tlv /’(‘1) AND Sjp(tQa M2)

if o2 ops — opy

if w: ops — opg1 Mopss and
predicate = rdf s : subPropertyOf,
where t1 = (ops1, predicate, object),
p1: opyr = OPEy,

and to = (opse, predicate, object),
p2 : opya = OPEy

if u: ops — ops1{M | U}tops2 and
predicate € SSPy,
or if p: ops — opy U opya and
predicate = rdf s : subPropertyOf,
where t; = (opy1, predicate, object),
p1: opy = OPEy,
and to = (opse, predicate, object),
fo i opp = OPEyy

(30)

Rewriting based on datatype property mapping. Let dp, be a datatype property from
the source ontology which is mapped to a datatype property expression from the target on-
tology. Having a Schema Triple Pattern ¢ = (dps, predicate, object) with dp, in its subject
part, an RDF/RDFS/OWL property in its predicate and anything in its object part, we can
rewrite it by its subject part, using a predefined mapping p and the function (31).

Sip(t, ) =

(dpy, predicate, object)

Sjp(tla ,Ltl) UNION Sjp(tg, /1,2)

Sgp(te, p1) AND Sg, (L2, p2)
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if 2 dps — dpy

if : dps — dpy Mdpee and
predicate = rdf s : subPropertyOf,
where t1 = (dps1, predicate, object),
w1 dpynn = DPEyy,

and to = (dpyo, predicate, object),
p2 : dpyp = DPE;

if p: dps — dpu{M | U}dpse and
predicate € SSP),
or if pu: dps — dps U dpee and
predicate = rdf s : subPropertyOf,
where t1 = (dps1, predicate, object),
w1 dpynn = DPE;y,
and to = (dps2, predicate, object),
p2 : dpye = DPE

(31)



The functions (30) and (31) are used similarly with the function (29), which performs
triple pattern rewriting by subject part, based on a class mapping.

Rewriting based on individual mapping. Let i; be an individual from the source on-
tology which is mapped to an individual 7; from the target ontology. Having a Schema Triple
Pattern ¢ = (is, predicate, object) with i, in its subject part, an RDF/RDFS/OWTL property
in its predicate and anything in its object part, we can rewrite it by its subject part, using
a predefined mapping p and the function (32).

SP(t, u) = (i, predicate, object) if p: is =1s (32)

In Lemma 7.1 we summarize the functions presented in this section, which are used for
the rewriting of a Schema Triple Pattern based on a mapping for the triple pattern’s subject
part.

Lemma 7.1. Having a Schema Triple Pattern t and a predefined mapping u for its subject
part, we can rewrite it by its subject, by invoking the function (33).

SE(t, ) if t = (is, predicate, object)
S2(t, ) it t = (cs, predicate, object)
Sit.p) = (33)
s e, ) )
Sop(ts ) if t = (ops, predicate, object) |
Sap(t, 1) if t = (dps, predicate, object)

7.2 Rewriting by triple pattern’s object part

Unlike the Data Triple Patterns, a property can appear in the object part of a Schema Triple
Pattern.

Rewriting based on class mapping. Let ¢, be a class from the source ontology which
is mapped to a class expression from the target ontology. Having a Schema Triple Pattern
t = (subject, predicate, cs) with ¢ in its object part, an RDF/RDFS/OWL property in its
predicate and anything in its subject part, we can rewrite it by its object part, using a
predefined mapping p and the function (34).
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(subject, predicate, ;) ifp: cs — o

82(ty, 1) UNION 82(ta, p2) if p: cg — ¢y Ucyo and
predicate = rdf s : subClassO f,
where t1; = (subject, predicate, ¢y1),
p1: e = CEy,
and to = (subject, predicate, ¢i2),
po i cip = CEy

St p) = (34)

S2(t1, p1) AND S2(ta, p2) if : cg — e {M| U}era and
predicate € SSP.,
orif p: cs — ¢y Meyo and
predicate = rdf s : subClassOf,
where t1 = (subject, predicate, c11),
p1 e =CEy,
and to = (subject, predicate, ¢i2),
Ho : cpp = CEyg

Example 7.6. Consider the query posed over the source ontology of Figure 1: “Return the
subclasses of the class Science”. The SPARQL syntax of the source query is shown below:

OPREFIX src: <http://www.owl-ontologies.com/SourceOntology.owl#>.
@PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

SELECT 7x
WHERE

{
}

?x rdfs:subClass0f src:Science.

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern ¢t = (?x, rdfs : subClassO f, src : Science) by its subject,
predicate and object parts. Taking into consideration a mapping u of the triple pattern’s
object part, the result of the triple pattern’s ¢ rewriting by its object part is provided by
invoking the function (34).

t = (?x,rdfs : subClassOf, src: Science)
o src: Science = trg: ComputerScience Ll trg : Mathematics

The mapping p is of type ¢s — ¢;1 U ¢t2. Following the definition of the function (34),
two triple patterns ¢; and ¢y are created and the complex mapping p is decomposed into the
mappings p1 and pe. The triple patterns t; and to contain the classes ¢;; and ¢ on their
object part, respectively. The mapping of the class ¢ is provided by g7, while the mapping
of the class ¢;o is provided by ps.

t1 = (Px,rdf s : subClassOf, ct1)

to = (Tx,rdf s : subClassOf, c2)
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11 ¢ =trg: ComputerScience
et cg =trg: Mathematics
Thus,
So(t,pu) = 82(t1, 1) UNION S¢(ta, p2)

The mappings pq and ps are of type cs — ¢;. Thus, using the parameters defined above,
as well as the function (34) for the rewriting of the triple patterns ¢; and ¢9, the initial triple
pattern ¢ is rewritten as follows:

So(t,p) = 82(tr, pa) UNION S2(t2, p2)

= (?z,rdf s : subClassOf,trg : ComputerScience) UNION
(?x,rdf s : subClassOf,trg : Mathematics)

Example 7.7. Consider the query posed over the source ontology of Figure 1: “Return the
subclasses of the class NewPublication”. The SPARQL syntax of the source query is shown
below:

@PREFIX src: <http://www.owl-ontologies.com/SourceOntology.owl#>.
@PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

SELECT 7x
WHERE

{
}

?x rdfs:subClass0f src:NewPublication.

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern ¢t = (?z,rdfs : subClassOf,src : NewPublication)
by its subject, predicate and object parts. Taking into consideration a mapping u of the
triple pattern’s object part, the result of the triple pattern’s ¢ rewriting by its object part is
provided by invoking the function (34).

t = (?z,rdfs: subClassOf, src: NewPublication)
w: src: NewPublication = trg: Computing M trg: NewRelease

The mapping p is of type ¢s — ¢ Mepe. Following the definition of the function (34),
two triple patterns ¢; and ¢y are created and the complex mapping p is decomposed into the
mappings @1 and pe. The triple patterns t; and ts contain the classes ¢;; and ¢ on their
object part, respectively. The mapping of the class ¢;; is provided by u1, while the mapping
of the class ¢;o is provided by .

t1 = Pz, rdf s : subClassOf, ci1)

to = (Px,rdf s : subClassOf, c2)
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p1: ¢ =trg: Computing
e cg =trg: NewRelease

Thus,
S2(t,p) = 82(t1, 1) AND S¢(t2, pi2)

The mappings p; and ps are of type cs — ¢;. Thus, using the parameters defined above,
as well as the function (34) for the rewriting of the triple patterns ¢; and ¢9, the initial triple
pattern ¢ is rewritten as follows:

Se(t,p) = S2(tr, pa) AND S2(ta, pa)

= (Px,rdf s : subClassOf,trg : Computing) AND
(Px,rdf s : subClassO f,trg : NewRelease)

Example 7.8. Consider the query posed over the source ontology of Figure 1: “Return
the classes which have been specified to be disjoint with the class Science”. The SPARQL
syntax of the source query is shown below:

@PREFIX src: <http://www.owl-ontologies.com/SourceOntology.owl#>.
@PREFIX owl: <http://www.w3.org/2002/07/owl#>.

SELECT 7x
WHERE

{
}

?x owl:disjointWith src:Science.

In order to rewrite the SPARQL query for posing it over the target ontology of Figure 1,
we have to rewrite the triple pattern ¢t = (?z,owl : disjointWith, src : Science) by its
subject, predicate and object parts. Taking into consideration a mapping p of the triple
pattern’s object part, the result of the triple pattern’s t rewriting by its object part is
provided by invoking the function (34).

t = (?z,owl : disjointWith, src : Science)
w: src: Science = trg: ComputerScience L trg: Mathematics

The mapping p is of type ¢s — ¢ U ¢o. Following the definition of the function (34),
two triple patterns ¢; and ¢y are created and the complex mapping p is decomposed into the
mappings @1 and pe. The triple patterns t; and to contain the classes ¢;; and ¢ on their
object part, respectively. The mapping of the class ¢;; is provided by u1, while the mapping
of the class ¢;o is provided by .

t1 = (Px, owl : disjointWith, ci1)

to = (Px, owl : disjointWith, cia)
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11 ¢ =trg: ComputerScience
o ca =trg: Mathematics
Thus,
Se(t,p) = 82(tr, n) AND S82(t2, pi2)

The mappings p1 and pg are of type ¢s — ¢;. Thus, using the parameters defined above,
as well as the function (34) for the rewriting of the triple patterns ¢; and ¢, the initial triple
pattern ¢ is rewritten as follows:

Se(t,p) = 82t pa) AND S2(ta, pia)

= (Tx,owl : disjointWith, trg : ComputerScience) AND
(?x, owl : disjointWith, trg : Mathematics)

Rewriting based on object property mapping. Let ops be an object property from the
source ontology which is mapped to an object property expression from the target ontology.
Having a Schema Triple Pattern t = (subject, predicate, ops) with ops in its object part, an
RDF/RDFS/OWL property in its predicate and anything in its subject part, we can rewrite
it by its object part, using a predefined mapping u and the function (35).

(subject, predicate, opy) if : ops — opy

Sop(t1, 1) UNION 87 (t2, p2) if p: ops — opy U ope and
predicate = rdf s : subPropertyOf,
where t; = (subject, predicate, ops1),
w1 : opy = OPEyy,
and to = (subject, predicate, op;2),
po : opyg = OPEy

Sgp(t’ :u) =

Sop(t1, u1) AND 89, (t2, p2) if u: ops — opu1{M | U}ope2 and
predicate € SSPy,
or if p: ops — ops Mopye and
predicate = rdf s : subPropertyO f,
where t1 = (subject, predicate, opt1),
p1: opy = OPEy,
and to = (subject, predicate, op;s),
p2 : opyz = OPEy

(35)

Rewriting based on datatype property mapping. Let dp, be a datatype property from
the source ontology which is mapped to a datatype property expression from the target on-
tology. Having a Schema Triple Pattern t = (subject, predicate, dps) with dps in its object
part, an RDF/RDFS/OWL property in its predicate and anything in its subject part, we
can rewrite it by its object part, using a predefined mapping p and the function (36).
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(subject, predicate, dp;) if p: dps — dpy

Sgp(tl,ul) UNION Sgp(t27u2) if p: dps — dpy1 U dpss and
predicate = rdf s : subPropertyOf,
where ¢ = (subject, predicate, dp),
p1: dpy = DPEy,
and to = (subject, predicate, dpa),
po : dpyp = DPE;

Sap(tin) =

Sgp(tl,m) AND Sgp(tg,,ug) if p: dps — dpu{N | U}dpso and
predicate € SSPy,
or if p: dps — dpy Mdpye and
predicate = rdf s : subPropertyOf,
where t; = (subject, predicate, dpyy ),
p1: dpy = DPEy,
and to = (subject, predicate, dps),
po : dpyy = DPEy

(36)

The functions (35) and (36) are used similarly with the function (34), which performs
triple pattern rewriting by object part, based on a class mapping.

Rewriting based on individual mapping. Let is be an individual from the source on-
tology which is mapped to an individual i; from the target ontology. Having a Schema Triple
Pattern ¢ = (subject, predicate, is) with 44 in its object part, an RDF /RDFS/OWL property
in its predicate and anything in its subject part, we can rewrite it by its object part, using
a predefined mapping p and the function (37).

S7(t, 1) = (subject, predicate,iy) if p: is =1, (37)

In Lemma 7.2 we summarize the functions presented in this section, which are used for
the rewriting of a Schema Triple Pattern based on a mapping for the triple pattern’s object
part.

Lemma 7.2. Having a Schema Triple Pattern t and a predefined mapping p for its object
part, we can rewrite it by its object, by invoking the function (38).

S?(t, 1) if t = (subject, predicate, i)
S2(t, 1) if t = (subject, predicate, cs)
S2(tm) = (38)
o —— . .
Sop(t, 1) if t = (subject, predicate, ops) O
Sa,(t, 1) if t = (subject, predicate, dps)

8 Graph pattern rewriting

In this section, we present the algorithms performing graph pattern rewriting, based on a set
of predefined mappings. Algorithm 1 takes as input a SPARQL query’s graph pattern G P;,,,
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as well as a set of mappings M. Firstly, it rewrites every FILTER expression inside the graph
pattern. Afterwards, it rewrites the graph pattern triple pattern by triple pattern, using the
mappings of the triple patterns’ predicate parts. Similarly, it rewrites the resulted graph
pattern, using the mappings of the triple patterns’ object parts and then using the mappings
of their subject parts. Finally, after removing any unnecessary brackets the resulted graph
pattern is ready to replace the initial query’s graph pattern (posed over the source ontology)
in order for the resulted query to be posed over the target ontology.

Algorithm 1 Graph Pattern Rewriting (GP;,: input graph pattern, M: mapping set)
1: let GP,y; be the rewriting result of GP;,

: GP,yt — GP;, after replacing any user defined IRIs (class, property, individual) inside
FILTER expressions using the 1:1 cardinality mappings of M

: GP,y « Triple Pattern Rewriting (G Py, M, predicate)

: GP,y; « Triple Pattern Rewriting (G Py, M, object)

: GP,y; < Triple Pattern Rewriting (G Py, M, subject)

: GP, — GP,,; after removing any unnecessary brackets

: return GP,;

[\

N O Ot Ww

Algorithm 2 rewrites each triple pattern of a graph pattern, using the mappings of the
triple pattern’s subject, predicate or object parts. It takes as input a SPARQL graph pattern
GP;,, a set of mappings M, as well as the part of the triple pattern = (subject, predicate
or object) which will be used for the rewriting. The initial graph pattern’s operators (AND,
UNION, OPTIONAL, FILTER) remain the same during the rewriting process, while SPARQL
variables, literal constants and RDF/RDFS/OWL IRIs which may appear in the subject,
predicate or object of a triple pattern do not affect the rewriting procedure. This means
that the SPARQL variables of the initial query also appear in the rewritten query.

Example 8.1. Consider the query posed over the source ontology of Figure 1: “Return the
ids of the products named Linux”. The SPARQL syntax of the source query is shown below:

OPREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.
@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT 7id

WHERE

{
?x rdf:type src:Product.
?x src:id 7id.
?x src:name 7name.
FILTER(?name="Linux")

In order to rewrite the SPARQL query’s graph pattern, we have to use Algorithm 1, as
well as a set of predefined mappings. Let the available predefined mappings be the mappings
11, po and pg presented below. The inputs of Algorithm 1 are GP;, and M.

GP;,, = (Tz,rdf : type, src: Product) AND (?x, src: id, 7id) AND
(?x, src : name, Tname) FILTER(?name = “Linux”)
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Algorithm 2 Triple Pattern Rewriting (GP;,,: input graph pattern, M: mapping set, x:
triple pattern part)

Require: z € {subject, predicate, object}

1:
2:
3:
4:
5:
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

42:
43:

44:
45:

let subject(t) be the subject of a triple pattern ¢
let predicate(t) be the predicate of a triple pattern ¢
let object(t) be the object of a triple pattern ¢
let relax(p) be the relaxed mapping used for Schema Triple Pattern rewriting
let GP,,; be the rewriting result of GP;,
for each basic graph pattern BGP in GP;, do
let GPiemp1 be the rewriting result of BG'P
for each triple pattern ¢ in BGP do
let G Piemp2 be the rewriting result of ¢
if x(t) is a variable, or a literal constant, or an RDF/RDFS/OWL property then
GPtemp2 —1
else
if t € DTP then {in case that ¢ is a Data Triple Pattern}
if z = subject then
let s € M be the mapping of t’s subject
GPtemp2 — Di (t> //45)
else if © = predicate then
let p, € M be the mapping of t’s predicate
GPteme — Df(t7 p,p)
else
let p, € M be the mapping of ¢’s object
GPtemp2 — D:f(ty ,U/o)
end if
else {in case that ¢ is a Schema Triple Pattern}
if z = subject then
let s € M be the mapping of t’s subject
i, — relax(j,)
CPremps — S3(t. 1)
else
if x = object then
let p, € M be the mapping of ¢’s object
o < relax(p,)
GPtemp2 — S:(t, Mo)
end if
end if
end if
end if
GPiempt < GPiemp1 after appending G Premp2
end for
GPiempt < G Piemp1 after applying any filters according to the BGP form
GPiemp1 < {GPiemp1 } after applying any brackets in order to form the graph pattern
precendence according to the G Py, form
GP,yt — GP,y: after appending G Piemp1
GP,u+ — GP,,; after appending any operators/filters to the rewritten graph pattern
according to the GP;, form
end for
return GP,,;
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w1 src: Product 3 trg : Textbook,
M=1< po: src:id 3 trg:isbn,
w3 2 src:name J trg: title

GP;,, contains a FILTER operation which does not affect the rewriting procedure since
the filter’s expression consists of SPARQL variables and literal constants. Consequently, the
algorithm proceeds to the invocation of Algorithm 2 in order to rewrite each triple pattern of
GP;,,, using the mappings of the triple patterns’ predicate parts. The input of Algorithm 2
is the initial graph pattern GP;,, as well as the set of mappings M.

The graph pattern GP;,, is actually a basic graph pattern since it consists of a triple
pattern sequence followed by a FILTER operation. Thus, Algorithm 2 firstly rewrites (in step
3) the basic graph pattern GP;, triple pattern by triple pattern, using the mappings of the
triple patterns’ predicate parts.

The triple pattern t; = (?z, rdf : type, src : Product) remains the same after the rewriting
process, since its predicate part consists of the RDF property rdf : type. On the contrary,
the rewriting result of the triple pattern to = (?z, src: id, 7id), as well as the rewriting result
of the triple pattern t3 = (7, src : name, ?name) are provided by invoking the function
(20).

Di(to, p2) = Dy ((Tw, sre:id, 7id), p2)

= (?x,trg : isbn, 7id)

Di(ts, pu3) =Dy, ((?w,s7c : name, Tname), u3)

= (?x,trg : title, Tname)

Consequently, the output of Algorithm 2 is a graph pattern, having its triple patterns
rewritten by their predicate part and is presented below:

GP, = (?z,rdf : type, src: Product) AND (?z,trg : isbn, 7id) AND
(Px,trg : title, Tname) FILTER(?name = “Linuz”)

Similarly, Algorithm 1 uses Algorithm 2 in order to rewrite the triple patterns of GP, by
their object parts. All the triple patterns except of ¢; remain the same, since they contain
a SPARQL variable on their object part. The rewriting result of the triple pattern tq, is
provided by invoking the function (17).

Do(t1, 1) = D2((?x,rdf : type, src: Product), uy)
= (Px,rdf : type,trg : Textbook)

Consequently, the output of second invocation of Algorithm 2 is a graph pattern, having
its triple patterns rewritten by their object part and is presented below:

GP, = (Tz,rdf : type,trg : Textbook) AND (?z,trg : isbn, 7id) AND
(?x,trg : title, Tname) FILTER(?name = “Linuz”)
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Finally, Algorithm 1 proceeds to step 5 (Algorithm 2 invocation) in order to rewrite the
triple patterns of GP, by their subject parts. Although, the graph patern remains the same
since every triple pattern of GP, consists of a SPARQL variable in its subject part.

GP, = (Px,rdf : type,trg : Textbook) AND (?x,trg : isbn, 7id) AND
(?x,trg : title, Tname) FILTER(?name = “Linux”)

Taking into consideration the graph pattern G Ps, which is the output of the last invo-
cation of Algorithm 2, the rewritten SPARQL query which will be posed over the target
ontology of Figure 1 is presented below:

@PREFIX trg: <http://www.ontologies.com/TargetOntology.owl#>.
@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT 7id

WHERE

{
?x rdf:type trg:Textbook.
?x trg:isbn 7id.
7x trg:title 7name.
FILTER(?name="Linux")

Example 8.2. Consider the query posed over the source ontology of Figure 1: “Return the
individuals of every class which is specified to be subclass of the class NewPublication”.
The SPARQL syntax of the source query is shown below:

OPREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.
@PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT 7x
WHERE

{
?x rdf:type 7y.
?y rdfs:subClass0f src:NewPublication.

In order to rewrite the SPARQL query’s graph pattern, we have to use Algorithm 1, as
well as a set of predefined mappings. Let the available predefined mappings be the mapping
1 presented below. The inputs of Algorithm 1 are GP;, and M.

GP;, = (Tx,rdf : type,?y) AND (?z,rdf s : subClassOf, src : Science)

M = { w: src: NewPublication = trg: Computing M trg : NewRelease }
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G P;;, does not contain any FILTER operations, thus the algorithm proceeds to the invo-
cation of Algorithm 2 in order to rewrite each triple pattern of GP;,, using the mappings
of the triple patterns’ predicate parts. The input of Algorithm 2 is the initial graph pattern
GP;,, as well as the set of mappings M.

The graph pattern GP;,, is actually a basic graph pattern since it consists of a triple
pattern sequence. Thus, Algorithm 2 firstly rewrites (in step 3) the basic graph pattern
GP;, triple pattern by triple pattern, using the mappings of the triple patterns’ predicate
parts.

Although, all the triple patterns remain the same, since they contain an RDF /S property
on their predicate part. Consequently, the output of Algorithm 2 is presented below:

GP, = (z,rdf : type, 7y) AND (?y,rdfs : subClassOf, src: NewPublication)

Similarly, Algorithm 1 uses Algorithm 2 in order to rewrite the triple patterns of GP, by
their object parts. The rewriting result of the triple pattern to = (?y, rdfs : subClassOf, src :
NewPublication), is provided by invoking the function (38), while the triple pattern ¢; =
(?x,rdf : type,?y) remains the same, since it contains a SPARQL variable on its object part.

So(ta, ) = 82((?y,rdf s : subClassOf, src : NewPublication), i)

= (Py,rdfs : subClassOf,trg : Computing) AND
(?y,rdf s : subClassO f,trg : NewRelease)

Consequently, the output of the second invocation of Algorithm 2 is a graph pattern,
having its triple patterns rewritten by their object part and is presented below:

GP, = (?z,rdf : type,?y) AND
(?y,rdf s : subClassOf,trg : Computing) AND
(?y,rdf s : subClassOf,trg : NewRelease)

Finally, Algorithm 1 proceeds to step 5 (Algorithm 2 invocation) in order to rewrite the
triple patterns of GP, by their subject parts. Although, the graph patern remains the same
since every triple pattern of GP, contains a SPARQL variable in its subject part.

GP; = (Txz,rdf : type, 7y) AND
(?y,rdf s : subClassOf,trg : Computing) AND
(?y,rdf s : subClassO f,trg : NewRelease)

Taking into consideration the graph pattern G Ps, which is the output of the last invo-
cation of Algorithm 2, the rewritten SPARQL query which will be posed over the target
ontology of Figure 1 is presented below:

Q@PREFIX trg: <http://www.ontologies.com/TargetOntology.owl#>.
OPREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
OPREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT 7x
WHERE
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?x rdf:type 7y.
?y rdfs:subClass0f trg:Computing.
?y rdfs:subClass0f trg:NewRelease.

Example 8.3. Consider the query posed over the source ontology of Figure 1: “Return the
titles of the pocket-sized scientific books”. The SPARQL syntax of the source query is shown
below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.
Q@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT 7name

WHERE

{
?X src:name 7name.
?x rdf:type src:Science.
7x rdf:type src:Pocket.

In order to rewrite the SPARQL query’s graph pattern, we have to use Algorithm 1, as
well as a set of predefined mappings. Let the available predefined mappings be the mappings
11, o and psz presented below. The inputs of Algorithm 1 are GP;, and M.

GP;, = (?z,src: name,name) AND (?z,rdf : type, src : Science)
AND (?x,rdf : type, src: Pocket)

w12 src:name J trg: title,
M =< po: src: Science trg : ComputerScience U trg: Mathematics,
us @ src: Pocket = Vitrg : Textbook.(trg : size < 14)

GP;,, does not contain any FILTER operations, thus the algorithm proceeds to the invo-
cation of Algorithm 2 in order to rewrite each triple pattern of GPy,, using the mappings
of the triple patterns’ predicate parts. The input of Algorithm 2 is the initial graph pattern
GP;,, as well as the set of mappings M.

The graph pattern GP;,, is actually a basic graph pattern since it consists of a triple
pattern sequence. Thus, Algorithm 2 firstly rewrites (in step 3) the basic graph pattern
GP;, triple pattern by triple pattern, using the mappings of the triple patterns’ predicate
parts.

The triple patterns to = (?z,rdf : type,src : Science) and t3 = (?z,rdf : type,src :
Pocket) remain the same since their predicate parts consist of the RDF property rdf : type.
On the contrary, the rewriting result of the triple pattern t; = (?x, src : name, ?name), is
provided by invoking the function (20).

Di(ti, ) =Dy, ((?x,src: name, Tname), p1)

= (?z,trg : title, Tname)
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Consequently, the output of Algorithm 2 is a graph pattern, having its triple patterns
rewritten by their predicate part and is presented below:

GP, = (1z,trg: title, 'name) AND (?x,rdf : type, src : Science)
AND (?x,rdf : type, src: Pocket)

Similarly, Algorithm 1 uses Algorithm 2 in order to rewrite the triple patterns of GP, by
their object parts. All the triple patterns except of ¢t and t3 remain the same, since they
contain a SPARQL variable on their object part. The rewriting result of the triple patterns
to and ts3, is provided by invoking the function (17).

Do(ta, p2) = Do((?x,rdf : type, src: Science), pi2)

= (Tx,rdf : type,trg : ComputerScience)
UNION (?z,rdf : type,trg : Mathematics)

DO(ts, u3) = Do((?x,rdf : type, src: Pocket), u3)

= (Px,rdf : type, trg : Textbook)
AND (?z,trg : size, 7var) FILTER(?var < 14)

Consequently, the output of the second invocation of Algorithm 2 is a graph pattern,
having its triple patterns rewritten by their object part and is presented below:

GP, = (?x,trg: title, Tname) AND
((?33, rdf : type, trg : ComputerScience) UNION
(Px,rdf : type,trg : Mathematics)) AND (?z,rdf : type,trg : Textbook)
AND(?z,trg : size, 7var) FILTER(?var < 14)

Finally, Algorithm 1 proceeds to step 5 (Algorithm 2 invocation) in order to rewrite the
triple patterns of GP, by their subject parts. Although, the graph patern remains the same
since every triple pattern of GP, contains a SPARQL variable in its subject part.

GP;, = (z,trg: title, ?Tname) AND
((?x, rdf : type, trg : ComputerScience) UNION
(Px,rdf : type,trg : Mathematics)) AND (?z,rdf : type,trg : Textbook)
AND(?x,trg : size, Tvar) FILTER(?var < 14)

Taking into consideration the graph pattern GP,, which is the output of the last invo-
cation of Algorithm 2, the rewritten SPARQL query which will be posed over the target
ontology of Figure 1 is presented below:

OPREFIX trg: <http://www.ontologies.com/TargetOntology.owl#>.
OPREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT 7name
WHERE
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7x trg:title 7name.

{
{?x rdf:type trg:ComputerScience}
UNION
{?x rdf:type trg:Mathematics}

}

7x rdf:type trg:Textbook.

7xX trg:size 7var.

FILTER(?var <= 14)

Example 8.4. Consider the query posed over the source ontology of Figure 1: “Return the
titles (at most 10) of the poetry or autobiography books written by Dante”. The SPARQL
syntax of the source query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.
O@PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.

SELECT 7name
WHERE
{
{
{?x rdf:type src:Poetry}
UNION
{?x rdf:type src:Autobiography}
}
?x src:author 7author.
?X src:name 7name.
FILTER regex(?author, "Dante")

}

LIMIT 10

In order to rewrite the SPARQL query’s graph pattern, we have to use Algorithm 1, as
well as a set of predefined mappings. Let the available predefined mappings be the mappings
11, pa, ps and pg presented below. The inputs of Algorithm 1 are G Py, and M.

GP;,, = ((7x, rdf : type, src: Poetry) UNION (?z,rdf : type, src : Autobiography))
AND (?z, src: author, Tauthor) AND (?z, src : name, Tname)
FILTER (regex(?author,” Dante”))

w1 src: Poetry T trg: Literature,

wa = src: Autobiography = Virg : Biography.(trg : author = trg : topic),
w3 1 src:author = trg: author o trg:name,

g src:name J trg: title

G P;, contains a FILTER operation which does not affect the rewriting procedure since
the filter’s expression consists of SPARQL variables, literal constants and built-in functions.
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Consequently, the algorithm proceeds to the invocation of Algorithm 2 in order to rewrite
each triple pattern of GP;,, using the mappings of the triple patterns’ predicate parts. The
input of Algorithm 2 is the initial graph pattern GP;,, as well as the set of mappings M.

Firstly, the Algorithm 2 rewrites (in step 3) every basic graph pattern of GP;, triple
pattern by triple pattern, using the mappings of the triple patterns’ predicate parts.

The triple patterns t; = (Yz,rdf : type,src : Poetry) and ty = (x,rdf : type,src :
Autobiography) remain the same after the rewriting process, since their predicate part con-
sists of the RDF property rdf : type. On the contrary, the rewriting result of the triple
pattern t3 = (?x, src : author, Tauthor), as well as the rewriting result of the triple pattern
ta = (?x, src: name, Tname) are provided by invoking the function (20).

Di(ts, pu3) = Dy, (7w, src : author, Tauthor), yi3)

= (Yx,trg : author, 7var) AND
(Tvar, trg : name, Tauthor)

Di(ta, pa) =Dy, ((?w,s7c : name, Tname), )

= (Tx,trg : title, Tname)

Consequently, the output of Algorithm 2 is a graph pattern, having its triple patterns
rewritten by their predicate part and is presented below:

GP, = ((?:E,rdf : type, src: Poetry) UNION (?z,rdf : type, src: Autobiogmphy))
AND (?z,trg : author, 7vary) AND (Tvary,trg : name, Tauthor)
AND (?z,trg : title, Tname) FILTER (regex(?author,” Dante”))

Similarly, Algorithm 1 uses Algorithm 2 in order to rewrite the triple patterns of G P, by
their object parts. All the triple patterns except of ¢; and ¢, remain the same, since they
contain a SPARQL variable on their object part. The rewriting result of the triple patterns
t1 and t9, is provided by invoking the function (17).

Do(ty, 1) = D2((?x,rdf : type, src: Poetry), 1)

= (Px,rdf : type,trg : Literature)

Do(ta, pu2) = D2((?x,rdf : type, src: Autobiography), )
= (?z,rdf : type, trg : Biography) AND

(?x,trg : author, Tvary) AND
(?x,trg : topic, Tvars) FILTER(?vare =?vars)

Consequently, the output of second invocation of Algorithm 2 is a graph pattern, having
its triple patterns rewritten by their object part and is presented below:
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GP, = ((7m, rdf : type, trg : Literature) UNION ((?x,rdf : type, trg : Biography)
AND (?z,trg : author, Tvary) AND (?x,trg : topic, Tvars)
FILTER(?vary :?varg))) AND (?z,trg : author, Tvary)

AND (?vary,trg : name, ?author) AND (?z,trg : title, Tname)
FILTER (regex(?author,” Dante”))

Finally, Algorithm 1 proceeds to step 5 (Algorithm 2 invocation) in order to rewrite the
triple patterns of GP, by their subject parts. Although, the graph patern remains the same
since every triple pattern of GP, consists of a SPARQL variable in its subject part.

GP, = ((?x,rdf : type, trg : Literature) UNION ((?x, rdf : type,trg : Biography)
AND (?z,trg : author, 7vare) AND (?z,trg : topic, Tvars)
FILTER(?vars :?UGT‘3>)) AND (?z,trg : author, Tvary)

AND (?vary, trg : name, Tauthor) AND (?z,trg : title, Tname)
FILTER (regex(?author,” Dante”))

Taking into consideration the graph pattern G Ps, which is the output of the last invo-
cation of Algorithm 2, the rewritten SPARQL query which will be posed over the target
ontology of Figure 1 is presented below:

Q@PREFIX trg: <http://www.ontologies.com/TargetOntology.owl#>.
OPREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT 7name

WHERE
{
{
{?x rdf:type trg:Literature}
UNION
{?x rdf:type trg:Biography.
?x trg:author 7var_2.
7X trg:name 7var_3.
FILTER(?var_2 = ?var_3)}
}

?x trg:author 7var_1.

?var_1 trg:name 7author.

7x trg:title 7name.

FILTER regex(7author, "Dante")

}

LIMIT 10

9 Implementation

The SPARQL query rewriting methodology presented in this paper has been implemented as
part of a Semantic Query Mediation Prototype Infrastructure developed in the TUC-MUSIC
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Lab. The system has been implemented using Java 2SE as a software platform, and the Jena
Software framework for SPARQL query parsing. The architecture of this infrastructure is
shown in Figure 14 where many of the Mediator’s implementation details are not presented
for simplicity reasons.
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Figure 14: System reference architecture.

For each federated source, a dedicated Query Rewriting component is dynamically created
by a Query Rewriting Factory. Such a component is able to rewrite an input SPARQL query
based on some predefined mappings. As a representation language for the mappings between
two overlapping ontologies we use the language discussed in Section 3.4.

During the system’s start-up each component is initialized with the mappings between
the mediator’s global ontology and the (local) ontology used in the federated source for which
this component is responsible.

At run time, when a SPARQL query is posed to the Mediator, it is processed, decomposed,
and rewritten for each federated source by the corresponding query rewriting component.
Afterwards, the rewritten queries are submitted (routed) to the federated sites for local
evaluation. Finally, the returned results from the local sources (to which queries have been
routed to) are merged, and optionally visualized (taking into account which part of the initial
SPARQL query was answered by each resource) for presentation to the end users.

10 Conclusion

The web of data is heterogeneous, distributed and highly structured. Querying mechanisms
in this environment have to overcome the problems arising from the heterogeneous and
distributed nature of data, and they have to allow the expression of complex and structured
queries. The ontology mappings and SPARQL query mediation presented in this paper aim
to satisfy those requirements in the Semantic Web environment.
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The mediator uses mappings between the global OWL ontology of the mediator and
the local ontologies of the federated knowledge bases. SPARQL queries of end users and
applications which are posed over the mediator, are decomposed and rewritten in order to
be submitted to the federated sources. The rewritten SPARQL queries are locally evaluated
and the results are returned to the mediator. Two aspects of this system were discussed in
this paper:

e A formal model for describing executable ontology mappings (i.e. mappings which can
be used in SPARQL query rewriting) that satisfy real-world requirements and can be
exploited in query rewriting. We have presented a mapping model that allows the
definition of a rich set of ontology mappings and we have shown real-world examples
of its functionality.

e A complete set of SPARQL query rewriting functions and algorithms that allow SPARQL
queries which are expressed based on the mediator’s global ontology to be rewritten in
terms of the local ontologies. These functions are semantics preserving (i.e. preserve
the mapping semantics).

Our current research focuses on evaluating the system performance, exploiting advanced
reasoning techniques during the query rewriting, and developing methodologies for the op-
timization of the query mediation process. Moreover, this work is going to be integrated
with our XS20WL [41] and SPARQL2XQuery [6] frameworks, in order to allow access to
heterogeneous web repositories.
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A Semantics of property relationships

A.1 Equivalence/subsumption between properties in OWL

Lemma A.1. The subsumption between two properties using the RDFS property rdfs :
subPropertyO f implies subsumption between their domains, as well as subsumption between
their ranges. O

Proof. Let p1, pa be object/datatype properties with domains domain,,, domain,, and
ranges rangep,, rangep,, respectively. The subsumption between these two properties
(p1 C po) is interpreted in OWL by using the RDF triple (p1,7dfs : subPropertyOf,ps).
Considering that a € domain,, and b € range,,, each RDF triple of the form (a,p1,b)
implies the RDF triple («, po,b).

Consequently, for the correspondences between the domains and ranges of the properties
p1 and po, we reach the following conclusions:

o Yz, [domainy, () = domain,,(x)], thus: domain,, C domain,,
o Yy, [rangep, (y) = range,,(y)], thus: range,, T range,, ]

Lemma A.2. The equivalence between two properties using the OWL property owl : equivalent Property
implies equivalence between their domains, as well as equivalence between their ranges. O

Proof. Let p1, p2 be object/datatype properties with domains domain,,, domain,, and
ranges range,, , rangep,, respectively. The equivalence between these two properties (p1 =
p2) is interpreted in OWL by using the RDF triple (p1, owl : equivalent Property, p2), which
indirectly implies the following RDF triples:

1. (p1,rdfs : subPropertyO f,ps)
2. (p2,rdfs: subPropertyOf,p1)

Let o € domain,,, b € range,,, ¢ € domaing, and d € range,,, the RDF triples above,
provide the following implications:

1. Each RDF triple of the form (o, p1,b) implies the RDF triple («, po, b).
2. Each RDF triple of the form (¢, p2, d) implies the RDF triple (¢, p1,d).

Consequently, for the correspondences between the domains and ranges of the properties
p1 and pa, we reach the following conclusions:

o Yz, [domainy, (z) < domain,,(x)], thus: domain,, = domain,,

o Yy, [rangep, (y) < rangep,(y)], thus: range,, = range,, n

A.2 Equivalence/subsumption between properties in our framework

Among the mapping types defined in Section 3.3, there are correspondences between prop-
erties and property expressions. The statements below are directly implied by the semantics
presented in Section 3.2.

Lemma A.3. An object property expression is an object property, having its domain and
range dependent on the expression’s type. |
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Lemma A.4. A datatype property expression is a datatype property, having its domain and
range dependent on the expression’s type. |

Taking into consideration the OWL equivalence and subsumption semantics between
properties (presented in Section A.1), as well as the fact that a property expression is actually
a property having a domain and range, we reach the following conclusions which are also
adapted in our framework:

e The subsumption (C) between a property and a property expression implies subsump-
tion between their domains, as well as subsumption between their ranges.

e The equivalence (=) between a property and a property expression implies equivalence
between their domains, as well as equivalence between their ranges.
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B Data triple pattern rewriting proofs

In this appendix we provide the proofs of the lemmas presented in Section 6. In Table 14
we present the notation which is used for these proofs. The majority of the functions and

operations presented in Table 14 have been defined in Section 4.2.

In what follows, let DS and DS; be the RDF datasets of a source and a target ontology
respectively. Similarly, let DS,, be the RDF dataset which is produced by merging [29] the
DS, and DS, datasets using a set of mappings M. Let Z be the interpretation that consists
of the non-empty set AZ, and contains the classes, the object/datatype properties and the
individuals of the RDF dataset D.S,,. The interpretation 7 consists also of an interpretation
function which assigns to every atomic concept A a set AZ C A, to every atomic role B a
binary relation B C A% x A% and to every individual k an element kZ € AT (based on [2]).

Table 14: The notation which is used for the Data triple pattern rewriting proofs.

Notation Description
w A graph pattern solution w : V — (IUBUL).
dom(w) Domain of a graph pattern solution w (subset

ND, OPT, UNION, FILTER

O
A
2,

1 =D C

’ \/7
= S) <7 >

of V).

The triple obtained by replacing the variables
in triple pattern t according to a graph pattern
solution w (abusing notation).

The subject part of the triple obtained by re-
placing the variables in triple pattern ¢ accord-
ing to a graph pattern solution w.

The predicate part of the triple obtained by
replacing the variables in triple pattern ¢ ac-
cording to a graph pattern solution w.

The object part of the triple obtained by re-
placing the variables in triple pattern ¢ accord-
ing to a graph pattern solution w.

A graph pattern solution w satisfies a built-in
condition R.

Graph pattern evaluation function.

The variables of a graph pattern GP.

Graph pattern solution-based join.

Graph pattern solution-based left outer join.
Graph pattern solution-based difference.
Graph pattern solution-based projection.
Graph pattern solution-based union.

Set intersection.

SPARQL graph pattern operators.

Logical not, or, and.

Inequality /equality operators.

Proof Overview. The proofs presented in this section and deal with Data Triple Patterns
follow a common approach. We consider mappings containing equivalence relationship (=)
and we do not provide the proofs for the other mapping types since the approach is very

similar for all types.
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Let ¢t be the initial triple pattern, gp’ be the rewritten graph pattern and J the set of
SPARQL variables appearing in ¢. First, we use the mapping semantics in order to show
that every graph pattern solution of t over the RDF dataset D.S,, is a graph pattern solution
of gp’ over DS,,, for the common graph pattern solution domain J = var(t), inferring that:

([t ps.,. E 7, ([l9p]ps..) (39)

Then, we show that every graph pattern solution of gp’ over the RDF dataset DS, is
a graph pattern solution of t over D.S,,, for the common graph pattern solution domain 7,
inferring that:

[tllps,. 37, ([l9pl]ps..) (40)

From (39) and (40) we derive that [[t]ps,, = 7, ([[9p']]ps,.). Considering that the
mapping used for the rewriting process has the same relationship (equivalence), we conclude
the proof. Similarly, for mapping types containing subsumption relationships (C, J), we
reach either to (39) or to (40) using the mapping semantics, proving that the rewriting step
is semantics preserving (i.e. preserves the mappings semantics).

B.1 Proof of Lemma 6.1

In this section, we prove that the rewriting step performed for a Data Triple Pattern, based
on a mapping of its subject part, is semantics preserving. According to Lemma 6.1, the only
case that we examine concerns individuals appearing in the triple pattern’s subject part.

Let is be an individual from the source ontology, t = (is, predicate, object) be a Data
Triple Pattern and J be the set of SPARQL variables appearing in ¢. The evaluation of the
triple pattern t over the RDF dataset DS, is presented below:

[tllps,, = [[(is, predicate, object)]|ps,,

We consider the following case:

1. Let i; be an individual from the target ontology. Having a mapping pu : is = i; (i.e.

i = iT) the rewritten (based on t’s subject part) graph pattern gp’ and its evaluation

over the RDF dataset DS, are the following:

gp' = Di(t,u) = (i, predicate, object)

llgP]lps,. = [[(it, predicate, object)]]ps,,

We consider two premises:
(a) Vw € [[tllps,, : 3Jz,3Jy, such that (is,z,y) € DSy, wP(t) = = and w°(t) = y.
Moreover, since i = i; then (i;,z,y) € DS,,, inferring that w € 7, ([[gp']|ps,,. )-

(b) Vw € 7, ([[gp’]]DSm) : Jx,Jy, such that (ig,x,y) € DSy, wP(gp’) = x and
w°(gp’) = y. Moreover, since is = iy then (is,z,y) € DSy, inferring that w €
[[t]lDs,, -
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From the two premises above, we conclude that:

([tllps,. ==, ([l9r]ps.,)

This concludes the proof that the rewriting step of a Data Triple Pattern, based on a
mapping of its subject part, is semantics preserving.

B.2 Proof of Lemma 6.2

In this section, we prove that the rewriting step performed for a Data Triple Pattern, based
on a mapping of its object part, is semantics preserving. According to Lemma 6.2, the only
cases that we examine concern individuals and classes appearing in the triple pattern’s object
part.

To begin with, we prove that the rewriting step performed for a Data Triple Pattern,
based on an individual mapping of its object part, is semantics preserving. Let is; be an
individual from the source ontology, t = (subject, predicate,is) be a Data Triple Pattern
and J be the set of SPARQL variables appearing in ¢. The evaluation of the triple pattern
t over the RDF dataset DS, is presented below:

[([tllps,, = [[(subject,predicate,is)]|ps,,

We consider the following case:

1. Let i¢ be an individual from the target ontology. Having a mapping pu : is = i; (i.e.

it = 47), the rewritten (based on t’s object part) graph pattern gp’ and its evaluation

over the RDF dataset DS, are the following:

g’ = Di(t,u) = (subject, predicate, i;)

lgp'lps,, = [[(subject, predicate,i)||ps,,

We consider two premises:

(a) Yw € [[tllps,, : Tz, Ty, such that (z,y,is) € DSp, w®(t) = z and wP(t) = y.
Moreover, since i = i; then (z,y,4;) € DS,,, inferring that w € 7, ([[gp']|ps,,. )-

(b) Vw € 7, ([[g¢lps,.) : 3w,3y, such that (z,y,i;) € DSy, w*(gp') = & and
wP(gp') = y. Moreover, since i; = iy then (z,y,is) € DSy, inferring that w €
([t]ps,.-

From the two premises above, we conclude that:

([t]lps,. ==, ([l9r]ps.,)
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This concludes the proof that the rewriting step of a Data Triple Pattern, based on an
individual mapping of its object part, is semantics preserving.

Similarly, we prove that the rewriting step performed for a Data Triple Pattern, based on a
class mapping of its object part, is semantics preserving. Let cs be a class from the source
ontology, t = (subject, rdf : type, cs) be a Data Triple Pattern and J be the set of SPARQL
variables appearing in t. The evaluation of the triple pattern ¢ over the RDF dataset DS,,
is presented below:

[tlps,, = [[(subject,rdf : type, c)llps,,

For the different types of class mappings, we consider the following cases:

1. Let ¢; be a class from the target ontology. Having a mapping p : cs = ¢; (ie. ¢ = ¢f),
the rewritten (based on t’s object part) graph pattern gp’ and its evaluation over the
RDF dataset D.S,, are the following:

gp’  =Do(t,u) = (subject, rdf : type, c:)

9P Ips,, = [[(subject, rdf : type,ci)]ps,,

We consider two premises:

(a) Yw € [[tllps,, : 3=, such that (z,rdf : type,cs) € DSy, and w®(t) = . Thus,

r € ¢ and since ¢f = ¢f then (z,rdf : type,c;) € DS, inferring that w €

T (ngIHDSm)-

(b) VYw € 7, ([[9p']ps,.) : =, such that (z,rdf : type,c;) € DSy, and w*(gp’) = x.
Thus, » € ¢ and since ¢Z = ¢ then (z,rdf : type,cs) € DS,,, inferring that
w € [[tl]ps,,-

From the two premises above, we conclude that:

([tllps,, ==, ([l9r]ps.,)

2. Let ¢;1 and ¢4 be classes from the target ontology. Having a mapping p : ¢s = ¢ Uco
(i.e. ¢t =cf Uch), the rewritten (based on t’s object part) graph pattern gp’ and its
evaluation over the RDF dataset DS, are the following:

gp’ =Do(t, ) = (subject, rdf : type, ct1) UNION (subject, rdf : type, cia)

lop'lps,. = [[(subject,rdf : type,cs1) UNION (subject,rdf : type, c2)]|ps,,
= [[(subject, rdf : type, ci1)]|ps,, U [[(subject, rdf : type, ci2)]|ps,,

= [[]lps,. U[lt2]]ps.,
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We consider two premises:

(a) Yw € [[tllps,, : Iz, such that (x,rdf : type,cs) € DSy, and w?(t) = x. Thus,
r € ¢& and since ¢f = ¢4 Uk then (x,rdf : type,ci) € DSy, or (z,rdf :
type, ci2) € DS,y,, inferring that w € 7, ([[gp’]]Dsm).

(b) Yw € 7, ([lgp']lps,.) : Jx, such that (z,rdf : type,c1) € DSy, or (z,rdf :
type, cra) € DSy, and w®(th) = x or w*(th) = x. Thus, x € cf; Uk, and since
et =cf uck then (x,rdf : type, cs) € DS, inferring that w € [[t]] ps,, -

From the two premises above, we conclude that:

[tps,. =7, (lorps..)

. Let ¢41 and ¢4 be classes from the target ontology. Having a mapping p : ¢y = ¢4 Mo
(i.e. X =k Nck), the rewritten (based on t’s object part) graph pattern gp’ and its
evaluation over the RDF dataset D.S,, are the following:

gp' =D2(t,u) = (subject, rdf : type,cy1) AND (subject, rdf : type, cia)

[lgp'llps,, = [[(subject,rdf : type,ce) AND (subject,rdf : type, c2)|ps,,
= [[(subject,rdf : type, c11)]]ps,, M [[(subject, rdf : type, ci2)]]Ds,,

= [[llps,, X [[ta]l s,

We consider two premises:

(a) Vw € [[tllps,, : 3z, such that (x,rdf : type,cs) € DSy, and w?®(t) = x. Thus,
z € & and since ¢ = ¢, Nk, then (z,rdf : type,cy1) € DSy, and (x,rdf :
type, ci2) € DSy, inferring that w € 7, ([[gp']]ps.,.)-

(b) VYw € 7, ([[9r']] ps,.) : T, such that (z, rdf : type, c;1) € DSy, (z,7df : type, ci2) €
DS, and w*(t}) = w*(ty) = . Thus, x € ¢4 Nck, and since ¢& = ¢&; N ¢, then
(x,rdf : type, cs) € DS,y, inferring that w € [[t]]ps,, -

From the two premises above, we conclude that:

[tllps,, ==, ([l9p]ps.,)

. Let ¢; be a class, op; be an object property from the target ontology, v,, be an individual
and ¢p € {#, =}. Having a mapping y : ¢s — Vei.(0py ©p vop) (ie. & = {a € ¢l |
Jb. (a,b) € opf Ab & Vop}), the rewritten (based on #’s object part) graph pattern gp’
and its evaluation over the RDF dataset DJS,, are the following:

gp’  =D(t,pu) = (subject, rdf : type,c:) AND (subject, op, Tvar)
FILTER(?var Tp vop)
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[lgp'llps,. = [[(subject,rdf : type,c;) AND (subject, opt, Tvar)
FILTER(?var Tp vop)llDs

m

={we ([[(subject, rdf : type, ¢t)]|ps,, X [[(subject, opy, ?var)]]DSm)
| w E=Tvar TP vop}

= {w e ([[t]]ps,. ¥ [t4]]ps,.) | w E?var € vop}

Let £ = {a € cf | 3. (a,b) € opf ANb ©p vop}. We consider two premises:

(a) Vw € [[tllps,, : 3z, such that (x,rdf : type,cs) € DSy, and w?(t) = x. Thus,
x € ¢& and since ¢Z = L then (z,rdf : type,c;) € DSy, Jy such that (z,0ps,y) €
DS, and y TP oy, inferring that w € 7, ([[9p']]ps., )-

(b) Vw € WJ(HQP/HDSM) : ez, such that (z,rdf : type,c;) € DS,,, Jy such that
(x,0pt,y) € DS, y TP vop and w*(t)) = w*(th) = . Thus, € £ and since
¢t = L then (z,rdf : type,cs) € DS,,, inferring that w € [[t]]ps,, -

From the two premises above, we conclude that:

([t]lps,, ==, ([l9r]ps.,)

. Let ¢; be a class, dp; be a datatype property from the target ontology, vq4, be a data
value and cp € {#, =, >, <, >, <}. Having a mapping u : ¢s — Vei.(dpe cp vap)
(ie. ¢ ={a e cf |3 (a,b) € dpf Nb cp vgp}), the rewritten (based on t’s object
part) graph pattern gp’ and its evaluation over the RDF dataset DS, are the following;:

gp’  =Do(t,u) = (subject, rdf : type,c:) AND (subject, dp;, Tvar)
FILTER(?var cp vqp)

lgp'lps,, = [[(subject,rdf : type,c:) AND (subject,dps, Tvar)
FILTER(?var cp vap)llps

m

={we ([[(subject,rdf s type, ct)]]ps,, M [[(SUbjffCt,dptv?vaT)HDSm)
| w ="var cp vap}

={w € ([t1]ps,. ¥ [t3llps,.) | w ETvar cp vay}

Let £ ={a € cf | 3. (a,b) € dpf Ab cp vgp}. We consider two premises:

(a) Vw € [[tllps,, : 3z, such that (x,rdf : type,cs) € DSy, and w?(t) = x. Thus,
x € ¢& and since ¢ = L then (x,rdf : type,c;) € DS,,, Jy such that (z,dps,y) €
DS, and y cp vap, inferring that w € 7, ([[9p']]ps,.)-

(b) Yw € ﬂ'J(ng/HDSm) : e, such that (z,rdf : type,c;) € DS,,, Jy such that
(x,dpt,y) € DSp, y cp vap and w®(t)) = w®(ty) = z. Thus, € £ and since
¢t = L then (z,rdf : type,cs) € DS,,, inferring that w € [[t]]ps,, -
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From the two premises above, we conclude that:

([tllps,. ==, ([l9r]ps.,)

6. Let ¢; be a class, ops1, opiz be object properties from the target ontology and ¢p €
{#, =}. Having a mapping p : ¢ — Vei.(ops €p ope) (ie. & = {a € ¢ |
3b, 3e. (o, b) € oph A (a,¢) € oph, Ab ep c}), the rewritten (based on t’s object part)

graph pattern gp’ and its evaluation over the RDF dataset DS, are the following:

gp’  =D(t,pu) = (subject,rdf : type,c:) AND (subject, ops1, Tvary)
AND (subject, opsa, Tvars) FILTER(?var, €p Tvars)

lg0']lps,, = [[(subject,rdf : type,c;) AND (subject,ops1, Tvary)
AND (subject, ops2, Tvare) FILTER(?vary €p ?vars)||ps,,

={we ([[(subject,rdf s type, ci)lps,, M [[(subject, opi1, Tvart)]]ps,,
X [[(subject,oth,?varg)]]Dsm) | w E?vary €p Tvars}

={w € ([t1]]ps.. ¥ (3]s, X [[t]lps,.) | w Ervary S5 Tvara}

Let £ = {a € ¢ | 3b,3c. (a,b) € oph A (a,¢) € ophy Ab e c}. We consider two
premises:

(a) Vw € [[tllps,, : 3z, such that (x,rdf : type,cs) € DSy, and w?(t) = x. Thus,
x € ¢ and since ¢Z = L then (x,7df : type,c;) € DSy, Iy such that (x,0pi1,y) €
DS,y,, 3z such that (z, ops2, 2) € DSy, andy ©p 2z, inferring that w € 7, ([[9p']] ps,,. )-
(b) Yw € 7, ([lgp']]Ds,.) : Tz, such that (z,rdf : type,c;) € DSy, Jy such that
(x,0p11,y) € DSy, 3z such that (z, 0pi2, 2) € DSy, y ©p z and wi(t]) = w*(th) =
w*(th) = x. Thus, x € £ and since ¢Z = L then (z, rdf : type, cs) € DSy, inferring
that w € [[t”DSm'

From the two premises above, we conclude that:

([tllps,, ==, ([l9r]ps.,)

7. Let ¢; be a class, dp;;, dpss be datatype properties from the target ontology and
cp € {#, =, >, <, >, <}. Having a mapping p1 : ¢, — Vei.(dpy cp dpsa) (ie. ¢ =
{a € ¢ | 3, 3e. (a,b) € dphy A (a,¢) € dph, Ab cp c}), the rewritten (based on t's
object part) graph pattern gp’ and its evaluation over the RDF dataset DS, are the
following:

gp' =D2(t,u) = (subject, rdf : type, c;) AND (subject, dpy, Tvary)
AND (subject, dpsa, Tvary) FILTER(?var, cp Tvars)
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lgp'lps,, = [[(subject,rdf : type,c:) AND (subject,dps1, Tvary)
AND (subject, dpia, Tvary) FILTER(?var; cp ?vars)]lps

m

w ([[(subject,rdf s type, ¢i)|]ps,, W [[(subject, dpi1, Tvart)]]ps,,

{we
X [[(subject, dps2, 7vara)]|ps,,) | w ETvary cp Tvars}

={w e ([tillps,. ™ [[t5llps,, X [[t5]]ps,.) | w E?vary cp Tvara}

Let £ = {a € ¢ | 3b,3c. (a,b) € dph A (a,¢) € dphy Ab cp ¢}. We consider two
premises:

(a) Yw € [[tllps,, : Iz, such that (x,rdf : type,cs) € DSy, and w?(t) = x. Thus,
x € ¢ and since ¢ = L then (x,rdf : type, c;) € DS,,, Iy such that (z, dp1,y) €
DS, 3z such that (z,dpi2, 2) € DSy, and y cp z, inferring that w € 7, ([[9p]] ps,,. )-

(b) Yw € 7, ([lgp']]Ds,.) : Tz, such that (z,rdf : type,c;) € DSy, Jy such that
(x,dpi1,y) € DS, 3z such that (x,dpi2,z) € DSy, y cp z and w®(t}) =
wi(th) = w*(th) = x. Thus, z € £ and since ¢Z = L then (x, rdf : type,cs) € DSy,
inferring that w € [[t]|ps,, -

From the two premises above, we conclude that:

[tps,. =7, (lorps..)

This concludes the proof that the rewriting step of a Data Triple Pattern, based on a
class mapping of its object part, is semantics preserving.

B.3 Proof of Lemma 6.3

In this section, we prove that the rewriting step performed for a Data Triple Pattern, based
on a mapping of its predicate part, is semantics preserving. According to Lemma 6.3, the
only cases that we examine concern object and datatype properties appearing in the triple
pattern’s predicate part.

To begin with, we prove that the rewriting step performed for a Data Triple Pattern,
based on an object property mapping of its predicate part, is semantics preserving. Let op;
be an object property from the source ontology, t = (subject, ops, object) be a Data Triple
Pattern and J be the set of SPARQL variables appearing in ¢t. The evaluation of the triple
pattern ¢ over the RDF dataset D.S,, is presented below:

([tl]ps,, = [[(subject, ops, object)]ps,,

For the different types of object property mappings, we consider the following cases:

1. Let op; be an object property from the target ontology. Having a mapping u : ops = opy
(i.e. opt = opl), the rewritten (based on t’s predicate part) graph pattern gp’ and its
evaluation over the RDF dataset D.S,, are the following:

gp =DE,(t, p) = (subject, opy, object)
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lop'llps,, = [[(subject, opy, object)]|ps,,

We consider two premises:
(a) Vw € [[tllps,, : Tz,3y, such that (z,0ps,y) € DSy, w*(t) = x and w°(t) = y.
Thus, (x,y) € op? and since op? = op! then (z,0p;,y) € DS,,, inferring that
w e 7, (99 Ips..)-

(b) Yw € FJ(ng/]]DSm) : Jx,Jy, such that (z,0ps,y) € DSy, w®(gp’) = x and
w°(gp’) = y. Thus, (z,y) € opf and since op? = op? then (z,0ps,y) € DSy,
inferring that w € [[t]|ps,, -

m

From the two premises above, we conclude that:

([tps,, ==, ([lgr]ps..)

2. Let ops1 and opiz be object properties from the target ontology. Having a mapping
p 2 ops = opgy o opya (ie. opt = {(a,¢) | 3b. (o, b) € oph A (b, ¢) € oph}), the rewritten
(based on t’s predicate part) graph pattern gp’ and its evaluation over the RDF dataset
DS, are the following:

gp’ =D, (t,p) = (subject, ops1, Tvar) AND (Tvar, opsa, object)

lgp|ps,. = [[(subject,opu, Tvar) AND (?var, oy, object)|]ps

= [[(subject, ops1, Tvar)]|ps,, X [[(?var, opsa, object)]|ps,,

= [[llps,. X [[t2]lps,,

Let £ = {(a,c) | 3b. (o, b) € op} A (b, c) € ophy}. We consider two premises:

(a) Yw € [[tllps,, : Jz,Jy, such that (x,0ps,y) € DSy, w*(t) = x and w°(t) = y.
Thus, (z,y) € op? and since op? = £ then 3z such that (z,0p;,2) € DS, and
(2,0ps2,y) € DS,y,, inferring that w € 7, ([[gp']]Dsm).

(b) Vw € Wy([[gp/]]osm) : Jx, 3y, 3z, such that (x,0pu,2) € DSm, (2,0pi2,y) €
DS, wi(t)) = @, wo(t)) = wi(th) = z and w°(ty) = y. Thus, (z,y) € L and since
opt = L then (z,0ps,y) € DS,,, inferring that w € [[t]|ps

m*

From the two premises above, we conclude that:

[tps,. =, (llorps..)

3. Let opy; and opiz be object properties from the target ontology. Having a mapping
1 : ops = opy Uopgs (ie. op? = opf Uopk,), the rewritten (based on t’s predicate part)
graph pattern gp’ and its evaluation over the RDF dataset DS, are the following:

79



gp’ =D, (t,pu) = (subject, ops1, object) UNION (subject, opia, object)

lgp'lps,, = [[(subject,ops1,0bject) UNION (subject, opia, object)]|ps,,
= [[(subject, ops1, 0bject)]|ps,, U [[(subject, opia, object)]|ps,,

= [[tillps.. U [[t2]lps...

We consider two premises:

(a) Yw € [[tllps,, : 3z, Ty, such that (z,0ps,y) € DSy, w*(t) = x and w°(t) =
y. Thus, (7,y) € op? and since op? = op} U opL, then (z,0pii,y) € DS, or
(z,0pi2,y) € DSy, inferring that w € 7, ([[9p]]ps,, )-

(b) Vwem, ([[gp’]]Dsm) : Jx, Jy, such that (z,0ps1,y) € DS, or (z,0pi2,y) € DS,
wi(th) = x or wi(th) = x, and w(t}) = y or w°(th) = y. Thus, (z,y) € oph Uopk,
and since op? = op#; U op%, then (z,0ps,y) € DS,y, inferring that w € [[t]]ps,, -

From the two premises above, we conclude that:

[tps,. =7, (lorps..)

4. Let ops; and opgo be object properties from the target ontology. Having a mapping
L ops = opy1 Mopea (iee. opf = optfl N optIQ)7 the rewritten (based on t’s predicate part)
graph pattern gp’ and its evaluation over the RDF dataset DS,, are the following:

gp’ =Db,(t,pu) = (subject, ops1, object) AND (subject, opia, object)

[lgp'lps,, = [[(subject, ops1,o0bject) AND (subject, opia, object)]|ps,,
— ([(subject, opu1, object)]|ps,, X [[(subject, opua, object)]| s,

= [tillps,. X [[ta]lps..

We consider two premises:

(a) Yw € [[tllps,, : Jz,Jy, such that (x,0ps,y) € DSy, w*(t) = x and w°(t) = y.
Thus, (x,y) € opf and since op? = oph N opk, then (x,0p;1,y) € DS, and
(@, 0pt2,y) € DSy, inferring that w € 7, ([[gp’]}Dsm).

(b) Vw € s ([[gpl]]DSm) : 3’13, Ely7 such that (-T,()ptl,y) € DSm7 (.’B,Oth,y) € DSWM
wi(th) = wi(th) = x and w°(t}) = w°(th) = y. Thus, (z,y) € opf; Nopk, and since
opt = op}, Nopk, then (z,0ps,y) € DSy, inferring that w € [[t]]ps,, -

From the two premises above, we conclude that:

[tps,. =, (lorps..)
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5. Let op; be an object property from the target ontology. Having a mapping u : ops =
inv(op;) (i.e. opf = {(b,a) | (a,b) € opt}), the rewritten (based on t’s predicate part)
graph pattern gp’ and its evaluation over the RDF dataset DS,, are the following:

gp’ =1IDY,(t, 1) = (object, op;, subject)

[l9p'Ips,, = [[(object, opy, subject)]]ps,,

Let £ = {(b,a) | (a,b) € op?}. We consider two premises:

(a) Yw € [[tllps,, : Jz,Jy, such that (x,0ps,y) € DSy, w*(t) = x and w°(t) = y.
Thus, (z,y) € op? and since op? = L then (y,op;,x) € DS,,, inferring that
w € 7, ([lgp']]ps,)-

(b) Vw € 7, ([lgp]lps,.) : Tw,3Jy, such that (x,0ps,y) € DSy, w*(gp') = x and
w°(gp') =y. Thus, (x,y) € L and since op? = L then (y, ops,z) € DS,,, inferring
that w € [[t]] ps,, -

From the two premises above, we conclude that:

[tps,. =, (lorps..)

6. Let op; be an object property and c; be a class from the target ontology. Having a
mapping p : ops = Yops.domain(c;) (i.e. opf = {(a,b) | (o, b) € opf A a € cF}), the
rewritten (based on t’s object part) graph pattern gp’ and its evaluation over the RDF
dataset DS, are the following:

gp' = Dh,(t, ) = (subject, opy, object) AND (subject,rdf : type,ct)

lgp'lps,, = [[(subject,ops, object) AND (subject, rdf : type, ci)l|ps,,
= [[(subject, ops, object)]|ps,, ™M [[(subject,rdf : type,ct)]]ps,,

= [[t1]lps.. X [[t2]]ps,,

Let £ = {(a,b) | (a,b) € op? A € ¢}. We consider two premises:

(a) Vw € [[tllps,, : Tz,3y, such that (z,0ps,y) € DSy, w*(t) = x and w°(t) = y.
Thus, (r,y) € opt and since op? = L then (x,0p:,y) € DS, and (z,rdf :
type,c;) € DSy, inferring that w € 7, ([[9p']]ps,. )-

(b) Yw € 7, ([[gp"]|ps,.) : Tz, Ty, such that (z,0p;,y) € DSy, (z,rdf : type,c;) €
DS,,, w*(t)) = w?(th) = x and w°(t}) = y. Thus, (z,y) € £ and since op? = L
then (z,o0ps,y) € DS, inferring that w € [[t]|ps,, -

From the two premises above, we conclude that:
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[tps,. =m;(lorps..)

7. Let op; be an object property and c¢; be a class from the target ontology. Having a
mapping u : ops = Yopg.range(c;) (ie. opt = {(a,b) | (a,b) € opf Ab € ¢t}), the
rewritten (based on t’s object part) graph pattern gp’ and its evaluation over the RDF
dataset DS, are the following:

g’ =Dh,(t, ) = (subject, opy, object) AND (object, rdf : type, ct)

[lgp'lps,, = [[(subject,op:, object) AND (object,rdf : type,ct)]ps,,
= [[(subject, ops, object)||ps,, W [[(object, rdf : type,c:i)]|ps,,

= [[t1]lps,. X [[t3]]ps,,

Let £ = {(a,b) | (a,b) € op Ab € cf}. We consider two premises:

(a) Vw € [[tllps,, : 3Jz,3y, such that (x,0ps,y) € DSp, w?(t) = x and w°(t) =
y. Thus, (z,y) € op? and since op? = L then (z,0p:,y) € DS, and (y,rdf :
type,c;) € DSy, inferring that w € 7, ([[9p']]ps,. )-

(b) Yw € 7, ([[9p']]ps,.) : Tz, Ty, such that (z,0ps,y) € DS, (y,rdf : type,c;) €
DSy, wi(t)) = 2 and wO(t)) = w*(th) = y. Thus, (x,y) € L and since op? = L
then (z,o0ps,y) € DS, inferring that w € [[t]|ps,, -

From the two premises above, we conclude that:

([t]lps,. ==, ([l9r]ps.,)

This concludes the proof that the rewriting step of a Data Triple Pattern, based on an
object property mapping of its predicate part, is semantics preserving.

Similarly, we prove that the rewriting step performed for a Data Triple Pattern, based on
a datatype property mapping of its predicate part, is semantics preserving. Let dps be an
object property from the source ontology, t = (subject, dps, object) be a Data Triple Pattern
and J be the set of SPARQL variables appearing in ¢. The evaluation of the triple pattern
t over the RDF dataset D.S,, is presented below:

[t)ps,. = [[(subject, dps, object)]|ps,,

For the different types of datatype property mappings, we consider the following cases:

1. Let dp; be a datatype property from the target ontology. Having a mapping u : dps =
dp; (i.e. dpf = dpl), the rewritten (based on t’s predicate part) graph pattern gp’ and
its evaluation over the RDF dataset DS, are the following:
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gp’ =D}, (t, ) = (subject, dpy, object)

llgp'Ips,, = [[(subject,dpy,object)]|ps,,

We consider two premises:

(a) Yw € [[t]lps,, : Jx,Ty, such that (z,dps,y) € DS, w*(t) = x and w°(t) = y.
Thus, (z,y) € dp? and since dp? = dp? then (x,dps,y) € DS,,, inferring that
w € 7, ([lgp]ps.,.)-

(b) Vw € ﬂj([[gp’]]psm) : Jwx,Jy, such that (z,dps,y) € DS, w®(gp’) = = and
w°(gp’) = y. Thus, (z,y) € dpf and since dpt = dp? then (z,dps,y) € DS,
inferring that w € [[t]|ps,, -

From the two premises above, we conclude that:

[tllps,. =, (llgr']lps..)

. Let op; be an object property and dp; be a datatype property from the target ontology.
Having a mapping p : dps = op; o dp; (i.e. dpf = {(a,¢) | Ib. (a,b) € opf A (bye) €
dpl}), the rewritten (based on t’s predicate part) graph pattern gp’ and its evaluation
over the RDF dataset DJS,, are the following:

g = Dsp(t,u) = (subject, op;, Tvar) AND (?var, dp:, object)

lgp'llps,, = [[(subject, ops, Tvar) AND (?var, dps, object)]|ps,,
= [[(subject, opy, Tvar)|]ps,, X [[(?var, dpt, object)]]ps,,

= [[t1]lps.,. X [[t3]]Ds,.

Let £ = {(a,c) | 3b. (o, b) € opF A (b, ) € dpt}. We consider two premises:

(a) Vw € [[tllps,, : Jx,Jy, such that (r,dps,y) € DSy, w?(t) = x and w°(t) = y.
Thus, (x,y) € dp? and since dp? = £ then 3z such that (z,0p:, 2) € DS, and
(z,dpt,y) € DSy, inferring that w € 7, ([[gp’]]DSm).

(b) Vw e 7, ([[gp']]ng) : Ja, 3y, 3z, such that (x,0p, z) € DSy, (2,dpt,y) € DSy,
wE(t)) = z, wo(t)) = wi(th) = z and w°(th) = y. Thus, (z,y) € L and since
dpf = L then (z,dps,y) € DSy, inferring that w € [[t]] ps,, -

From the two premises above, we conclude that:

([tllps, ==, ([l9r]ps.,)
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3. Let dp;; and dpgo be datatype properties from the target ontology. Having a mapping
p: dps = dpy Udpys (i.e. dpt = dph UdpL), the rewritten (based on t’s predicate part)
graph pattern gp’ and its evaluation over the RDF dataset DS,, are the following:

g = Dgp(t,u) = (subject, dpy1, object) UNION (subject, dpa, object)

[[gp'lps,, = [[(subject,dps1,object) UNION (subject, dpia, object)]| ps

= [[(subject, dpi1, object)]| ps,, U [[(subject, dpsa, object)]| ps,,

= [tillps,. U[ta]ps,.

We consider two premises:

(a) Yw € [[t]lps,, : 3=, Ty, such that (z,dps,y) € DSp, w*(t) = x and w°(t) =
y. Thus, (z,y) € dpt and since dpf = dp} U dpZ, then (z,dps1,y) € DS, or
(z,dps2,y) € DSy, inferring that w € 7, ([[gp']]ps,, )-

(b) Vwem, ([[gp’]]DSm) : Jx, Jy, such that (x,dps1,y) € DSy, or (x,dpia,y) € DSy,
wi(th) = x or wi(th) = x, and WO(t})) = y or w°(th) = y. Thus, (z,y) € dph Udpk,
and since dp = dp}, U dp%, then (z,dps,y) € DSy, inferring that w € [[t]] ps,, -

From the two premises above, we conclude that:

[tlps,, ==, (lgr'lps,.)

4. Let dp;; and dpso be datatype properties from the target ontology. Having a mapping
p: dps = dpg Ndpea (ie. dpf = dph Ndph), the rewritten (based on t’s predicate part)
graph pattern gp’ and its evaluation over the RDF dataset DS, are the following:

gp = Dgp(hp) = (subject, dpy1, object) AND (subject, dpia, object)

lgp'lps,, = [[(subject,dps1,object) AND (subject, dpsa, object)]|ps,,
= [[(subject, dps1, object)|| ps,, W [[(subject, dpsa, object)]|ps,,

= [[llps,, X [[ta]lps,,

We consider two premises:

(a) Yw € [[t]lps,, : Jx,Ty, such that (z,dps,y) € DS, w*(t) = x and w°(t) = y.
Thus, (z,y) € dp and since dpf = dph N dpL, then (x,dpy,y) € DS, and
(@, dps2,y) € DS,y,, inferring that w € 7, ([[gp’]]DSm).

(b) Yw € 7, ([[9P]]ps,.) : 3w, 3y, such that (z,dpy1,y) € DSm, (z,dps2,y) € DSp,
wi(th) = wi(th) = x and w°(t}) = w°(th) = y. Thus, (z,y) € dpf Ndpk, and since
dpf = dp¥, N dpl, then (z,dps,y) € DSy, inferring that w € [[t]]ps,, -
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From the two premises above, we conclude that:

[#ps,, ==, ([lgrps..)

. Let dp; be a datatype property and c¢; be a class from the target ontology. Having a
mapping p : dps = Vdp;.domain(c;) (i.e. dpf = {(a,b) | (o, b) € dpf A« € ¢F}), the
rewritten (based on ¢’s object part) graph pattern gp’ and its evaluation over the RDF
dataset DS, are the following:

g = Dgp(t,,u) = (subject, dp;, object) AND (subject,rdf : type,ct)

lgp'lps,, = [[(subject,dp;,object) AND (subject,rdf : type,ct)]|ps,,
= [[(subject, dp;, object)|| ps,, X [[(subject, rdf : type, c:)||ps,,

= [[t1l]ps,, X [[t5]]ps

Let £ = {(a,b) | (a,b) € dpf A v € c¢F'}. We consider two premises:

(a) Vw € [[t]lps,, : Jx,Ty, such that (z,dps,y) € DSy, w*(t) = x and w°(t) = y.
Thus, (z,y) € dpf and since dpf = L then (x,dp;,y) € DS,, and (z,rdf :
type, ct) € DSm, inferring that w € 7, ([[9p']] s, )-

(b) Vw e 7 ([ lIps.. ) : Jx, 3y, such that (z,dp,y) € DSy, (x,rdf : type,c;) €
DS, w*(t)) = w*(th) = z and w°(t}) = y. Thus, (x,y) € L and since dp? = L
then (x,dps,y) € DS,,, inferring that w € [[t]|ps,, -

From the two premises above, we conclude that:

[tps,, ==, ([lgrps..)

. Let dp; be a datatype property from the target ontology, vg, be a data value and
cp € {# =, >, <, >, <}. Having a mapping p : dp, = Vdpi.range(cp vap) (i-e.
dpt = {(a,b) | (a,b) € dpf Ab cp vap}), the rewritten (based on ¢’s object part) graph
pattern gp’ and its evaluation over the RDF dataset D.S,, are the following:

gp’ =Dl (t,p) = (subject, dpy, object) FILTER(object cp vap)

g’ llps,. = [[(subject,dp;,object) FILTER (object cp vap)l|ps,,
= {w € [[(subject, dp;, object)]|ps,, | w = object cp vgp}

={w € [[!'llps,, | w = object cp vgp}

Let £ = {(a,b) | (a,b) € dpf Ab cp vgp}. We consider two premises:
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(a) Yw € [[tllps,, : Jz,Ty, such that (z,dps,y) € DSy, w*(t) = x and w°(t) = y.
Thus, (z,y) € dp? and since dp? = L then (z,dp;,y) € DS, and y cp vap,
inferring that w € 7, ([[gp]]ps.,.)-

(b) Yw € 7, ([l[gp']]Ds,.) : 3,3y, such that (z,dps,y) € DSp, y cp vap, w*(t') =z
and w°(t') = y. Thus, (z,y) € £ and since dp? = L then (z,dps,y) € DSy,
inferring that w € [[t]|ps,, -

From the two premises above, we conclude that:

([tllps,, ==, ([l9r]ps.,)

This concludes the proof that the rewriting step of a Data Triple Pattern, based on a
datatype property mapping of its predicate part, is semantics preserving.
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