
SPARQL2XQuery 2.0: Supporting Semantic-based Queries over XML Data

Ioannis Stavrakantonakis
#
, Chrisa Tsinaraki

+
, Nikos Bikakis

‡
, Nektarios Gioldasis

#
,

Stavros Christodoulakis
#

MUSIC/TUC, Technical University of Crete, Greece
+
 Department of Information Engineering and Computer Science, University of Trento, Italy

‡
 Knowledge and Database Systems Laboratory, National Technical University of Athens, Greece

gstavrak@ced.tuc.gr, chrisa@disi.unitn.it, bikakis@dblab.ntua.gr, nektarios@ced.tuc.gr,

stavros@ced.tuc.gr

Abstract

The dominant standards in multimedia content and ser-

vice description, namely the MPEG-7 and the MPEG-21,

have been expressed in XML Schema syntax. In addition,

ontologies that capture the semantics of these standards

have been developed using the semantic web languages.

Since different communities in the industry and the aca-

demia work and are familiar with the Semantic Web envi-

ronment or the XML environment, a Schema mapping

framework and a Query mapping framework are needed

that will allow querying multimedia content and service

descriptions in a uniform way in both the XML and Se-

mantic Web environments. We present in this paper

SPARQL2XQuery 2.0, a framework that allows express-

ing semantic queries on top of XML data through the

translation of SPARQL queries in XQuery syntax.

SPARQL2XQuery 2.0 may work with both existing ontol-

ogies and with automatically produced ones, formed ac-

cording to our XS2OWL 2.0 transformation model.

XS2OWL 2.0 exploits the OWL 2.0 semantics and sup-

ports the new XML constructs introduced by XML Schema

1.1.

1. Introduction

The flexibility and the advanced structure-description

capabilities of the XML Schema language [2] have made

it a de facto standard in metadata description. This is the

case in several application domains like, for example, the

multimedia domain, where both the MPEG-7 [21] and

MPEG-21 [22] standards (used, respectively, for multi-

media content and service description) have been ex-

pressed using XML Schema syntax.

The development of the Semantic Web, on the other

hand, and the advanced semantic processing capabilities

offered by the Semantic Web languages have led to the

development of ontologies [24][23][25][7] capturing the

semantics of the standards. This way, the multimedia de-

scriptions are expressed using Semantic Web language

syntax and may be enriched through inferencing. These

descriptions are then stored in RDF repositories, accessed

using the SPARQL query language. There are however

communities both in the academia and the industry that

have based their work on XML Schema. These groups

work with XML descriptions, stored in XML repositories

accessed through the XQuery language.

A similar situation exists in the cultural heritage do-

main: There are several standards expressed in XML

Schema syntax, like the TEI [27], the EAD [28] and sev-

eral others, which are used by the cultural heritage institu-

tions (libraries, archives, museums, etc.). On the other

hand, the CIDOC/CRM standard [26] has been devel-

oped, which essentially is an ontology, expressed in

OWL/RDF syntax, which subsumes the semantics of

these standards.

The above discussion shows that in both the multime-

dia and the cultural heritage domains a Schema mapping

framework and a Query mapping framework are needed

that will allow querying content and service descriptions

in a uniform way in both the XML and Semantic Web

environments.

In this paper, we present the SPARQL2XQuery 2.0

framework, which allows SPARQL queries to be ans-

wered over XML data using the XQuery query language.

To accomplish this, mappings between ontologies and

XML Schemas are defined that allow our framework to

translate SPARQL queries in XQuery syntax.

SPARQL2XQuery 2.0 may work with both existing on-

tologies and with automatically produced ones, formed

according to our XS2OWL 2.0 transformation model. The

SPARQL2XQuery 2.0 framework extends our previous

work in the SPARQL2XQuery 1.0 framework [20] so as

to exploit the OWL 2.0 [1] semantics and the new con-

structs introduced by XML Schema 1.1 [2].

The rest of the paper is structured as follows: The re-

lated work is presented in Section 2, an overview of the

SPARQL2XQuery 2.0 framework is provided in Section

3, the XS2OWL 2.0 transformation model is presented in

Section 4, the SPARQL-to-XQuery translation is outlined

in Section 5, the application of our framework in the mul-

timedia and cultural heritage domains is discussed in Sec-

mailto:nektarios@ced.tuc.gr

tion 6 and the paper concludes in Section 7, where our

future research directions are also outlined.

2. Related Work

Several approaches have been proposed in the litera-

ture, trying to bridge the gap between the XML and the

Semantic Web environments.

Transforming XML Schema to OWL and through

this, XML data to RDF, is a field that has been extensive-

ly investigated recently [3][4][5][6][7][8].

Another important research issue is that of mapping

existing ontologies which are described with XML Sche-

mas to semantic language representations, in order to

transform XML data to RDF data based on manual map-

pings [9][10].

 Recently, a combination of Semantic Web

(SPARQL) and XML (XQuery, XPath, XSLT) technolo-

gies [15][16][17] has been exploited in order to transform

XML data to RDF and vice versa.

Compared to SPARQL2XQuery, the above ap-

proaches focus on data transformation, they do not pro-

vide a solution for integrating and querying the existing

XML data from the Semantic Web environment and they

do not deal with the problem of "relating" the existing

XML data with the Semantic Web data.

Moreover, in [15][16][17], which are closer to our

approach, the user has to (a) interface with more than one

data models and query languages; (b) be aware of the syn-

tax and the semantics of each of these approaches in or-

der to express his queries, since every approach has

adopted its own syntax and semantics by modifying and

merging the standard technologies; and (c) be aware of

the underlying XML Schema in order to create his re-

trieval query accordingly (using XQuery or XSLT).

In our work, the user is not expected to know the un-

derlying XML Schema or even the existence of XML

data; he expresses his query only in standard SPARQL, in

terms of the ontology that he is aware of, and he is able to

transparently retrieve the XML data in his favored format.

In some older approaches, mappings between XML

Schemas (or DTDs) and ontologies are established in or-

der to support data integration [11][12][13][14]. These

approaches do not support the standard technologies (like

XML Schema, OWL, RDF, SPARQL, etc.).

Finally, compared to our previous work in the

SPARQL2XQuery 1.0 framework [20], the SPARQL2-

XQuery 2.0 framework extends it in order to exploit the

OWL 2.0 semantics and the new constructs introduced by

XML Schema 1.1. In addition, it utilizes the XS2OWL

2.0 transformation model for the automatic transformation

of XML Schemas in OWL syntax, which also exploits the

latest features of the standards that allow the automatic

specification of accurate mappings between the XML

Schema and the OWL syntax. In particular, the XML

Schema identity constraints can now be accurately

represented in OWL 2.0 syntax (which was not possible

in OWL 1.0 syntax), thus overcoming the most important

limitation of the XS2OWL 1.0 framework [3][4] and,

consequently, of the SPARQL2XQuery 1.0 framework.

3. SPARQL2XQuery 2.0 Overview

In this section we present an overview of the

SPARQL2XQuery 2.0 framework. The framework archi-

tecture is shown in Figure 1.

The SPARQL2XQuery 2.0 framework supports two

scenarios:

1. Querying XML data based on an automatically

generated OWL ontology. In this scenario, the

following actions take place:

a) Using the XS2OWL 2.0 framework, the XML

Schema according to which the XML data are

structured, is automatically expressed in OWL 2.0

syntax.

b) The SPARQL2XQuery framework takes as input

the XML Schema and the ontology generated by

XS2OWL 2.0 and automatically generates and

maintains the mappings between the ontology and

the XML Schema.

c) The SPARQL queries posed over time by the users

that see the generated ontology are translated to

XQuery expressions.

d) The query results are transformed into the desired

format (SPARQL Query Result XML Format or

RDF) and returned to the users.

2. Querying XML data based on an existing OWL

ontology. In this scenario, the following actions take

place:

a) An existing OWL ontology is manually mapped by

a domain expert to the XML Schema.

b) The SPARQL queries posed over the ontology are

translated to XQuery expressions.

c) The query results are transformed into the desired

format (SPARQL Query Result XML Format or

RDF).

In both scenarios, the Semantic Web users and the

applications that pose SPARQL queries over the ontology

are not expected to know the underlying XML Schemas

or even the existence of XML data. They express their

queries only in standard SPARQL, in terms of the ontolo-

gy that they are aware of, and they are able to retrieve the

underlying data in their favored format.

The SPARQL2XQuery 2.0 has been implemented as

an extension of the SPARQL2XQuery 1.0 framework,

using Java related technologies (Java 2SE, Axis2 and Je-

na) and the Oracle Berkeley DB XML database. The

XS2OWL 2.0 transformation model has been imple-

mented as an extension of the XS2OWL 1.0 framework,

using XSLT.

SPARQL2XQuery 2.0

XML Data

Mappings

Generator &

Encoder

Domain

Expert

User / System

XML

Schema

1.1

Mappings

(XML)

Query Translator

Query Result

Transformer

SPARQL

XQuery

XML Data

XML or

 RDF (N3 - RDF/XML)

SPARQL

Grpah

Pattern

Normalizer

Variables

Types

Specifier

Variables

Binder

Basic Graph

Pattern

Translator

Graph

Pattern

Translator

Solution Sequence

Modifiers

Translator

Query Form

Translator

Onto-

Triples

Processor

XML Data

RDF Data
XS2OWL 2.0

Mapping

Ontology

OWL 2.0

Ontology

Existing

OWL

Ontology

Uses Vocabulary

Gets Input / Generates Output

Used in Scenario 2

Used in Scenario 1

Used in Both Scenarios

Figure 1. The SPARQL2XQuery 2.0 Framework, which allows the evaluation of SPARQL Queries over
XML Data. If the queries are posed on top of existing ontologies, mappings between the ontologies and
the underlying XML Schema(s) should be manually specified. These mappings play a significant role in
the SPARQL query translation in XQuery syntax. If there is not used an existing ontology, the XS2OWL

2.0 Transformation Model is applied on the XML Schema syntax, expresses it in OWL 2.0 syntax and
the mappings are automatically generated.

4. The XS2OWL 2.0 Transformation Model

This section describes the XS2OWL 2.0 transforma-

tion model, which is the basis for the representation of

XML Schemas in OWL syntax. The XS2OWL 2.0-based

transformation process generates two ontologies: (a) A

main ontology that represents the XML Schema con-

structs using OWL constructs and (b) A mapping ontolo-

gy that associates the names of the XML Schema con-

structs with the IDs of the equivalent main ontology con-

structs and captures any information present in the XML

Schema that cannot be captured in the main ontology due

to the expressivity limitations of the OWL 2.0 syntax. The

mapping ontology keeps information that is not usable by

the Semantic Web tools, but can be of use in other appli-

cations like, for example, the transformation of RDF data

structured according to the main ontology in XML syntax

compliant with the original XML Schemas.

XS2OWL 2.0 is an extension and update of our pre-

vious work with the XS2OWL 1.0 framework. XS2OWL

2.0 exploits the OWL 2.0 semantics (the OWL 2.0 RL

profile is used), in order to achieve a more accurate repre-

sentation of the XML Schema constructs in the main on-

tology, and supports the new XML constructs introduced

by XML Schema 1.1. In particular, XS2OWL 2.0 allows,

in addition to the XS2OWL 1.0 support, the representa-

tion of: (a) The XML simple datatypes (see Subsection

4.1 for details); (b) The XML Schema identity constraints

– i.e. key, keyref and unique – (see Subsection 4.2 for

details); and (c) The XML constructs introduced by the

XML Schema 1.1 – i.e. Error, Substitution Group 1.1,

Alternative, Assert and Override – (see subsection 4.3 for

details). A detailed comparison of XS2OWL 1.0 and

XS2OWL 2.0 is presented in Table 1 and an overview of

the XS2OWL 2.0 transformation model is provided in

Table 2.

Table 1. XS2OWL 1.0 – XS2OWL 2.0 Comparison

(Legend: supported not supported mapping ontology
only)

 XML Construct XS2OWL 1.0 XS2OWL 2.0

XML

Schema

1.0

Complex Type

Attribute

Element

Attribute

Annotation

Sequence

Choice

Substitution Group

Extension

(Nested) Simple

Type

Key

Keyref

Unique

Redefine

XML

Schema

1.1

Error

Substitution Group 1.1

Alternative

Assert

Override

Table 2. The XS2OWL 2.0 Transformation Model

XML Schema Construct OWL 2.0 Construct

Complex Type Class

Simple Datatype Datatype Definition

Element (Datatype or Object) Property

Attribute Datatype Property

Sequence Unnamed Class – Intersection

Choice Unnamed Class – Union

Annotation Comment

Extension, Restriction subClassOf axiom

Unique (Identity Constraint) HasKey axiom

Key (Identity Constraint)
HasKey axiom –

ExactCardinality axiom

Keyref (Identity Constraint)
HasKey axiom –

ExactCardinality axiom

Substitution Group SubPropertyOf axioms

Alternative On Mapping Ontology

Assert On Mapping Ontology

Override, Redefine On Mapping Ontology

Error Datatype

4.1. Simple Type Representation

We describe here how XS2OWL 2.0 handles simple

type definitions. Simple types can be either built-in XML

Schema types, such as xsd:string, or user-defined simple

types. Since OWL 2.0 introduced the DatatypeDefintion

axiom for datatype definition, this axiom is used for the

representation of the user-defined simple types in the

main ontology generated according to XS2OWL 2.0. In

the following paragraphs we describe how the simple

types defined using the different XML Schema constructs

(restriction, union and list) and the unnamed simple types

are handled by XS2OWL 2.0.

Restriction. The XML Schema restricted simple types

are formed from the restriction of an existing (built-in or

user-defined) simple type, the base type. The base type is

specified in the base attribute of the restriction element or

in the simpleType element (a sub-element of restriction)

in case of an unnamed base element. The restricted simple

types are represented in the main ontology by a Dataty-

peDefintion axiom (implemented in the OWL 2.0 RDF

syntax using rdfs:Datatype) that contains an Equiva-

lentClass axiom and in the mapping ontology by a Sim-

pleTypeInfoType individual. The major difference with

XS2OWL 1.0 is that, since OWL 1.0 only allowed the

declaration of datatypes defined in XML Schemas, in

XS2OWL 1.0 we had only datatype declarations of exter-

nally defined types while in XS2OWL 2.0 we have data-

type definitions. An example of a restricted simple XML

Schema type is the "ValidAgeType", shown in Figure 2.

The representation of "ValidAgeType" after the applica-

tion of the XS2OWL 2.0 transformation model in the au-

tomatically generated main and mapping ontologies are

shown, respectively, in Figure 3 and Figure 4.

<xs:simpleType name="ValidAgeType">

 <xs:restriction base="xs:float">

 <xs:minInclusive value="0.0"/>

 <xs:maxInclusive value="150.0"/>

 </xs:restriction>

</xs:simpleType>

Figure 2. Restricted Simple Type Example

<rdfs:Datatype rdf:ID="ValidAgeType">

<owl:equivalentClass>

 <rdfs:Datatype>

 <owl:onDatatype rdf:resource="&xsd;#float"/>

 <owl:withRestrictions rdf:parseType="Collection">

 <rdf:Description>

 <xsd:maxInclusive rdf:datatype="&xsd;#float"> 150.0

 </xsd:maxInclusive>

 </rdf:Description>

 <rdf:Description>

 <xsd:minInclusive rdf:datatype="&xsd;#float"> 0.0

 </xsd:minInclusive>

 </rdf:Description>

 </owl:withRestrictions>

 </rdfs:Datatype>

</owl:equivalentClass>

</rdfs:Datatype>

Figure 3. Representation of the Restricted Sim-
ple Type of Figure 2 in the automatically gener-
ated Main Ontology

<ox:SimpleTypeInfoType rdf:ID="ValidAgeType_si">

 <ox:classID>validAgeType</ox:classID>

 <ox:typeID>validAgeType</ox:typeID>

 <ox:definitionType>restriction</ox:definitionType>

</ox:SimpleTypeInfoType>

Figure 4. Representation of the Restricted Sim-
ple Type of Figure 2 in the automatically gener-
ated Mapping Ontology

Union. The XML Schema union simple types are

formed from the union of existing types. Union members

are specified in the memberTypes attribute of the union

element or in the simpleType sub-elements of union (in

case of unnamed union members). The union simple types

are represented in the main ontology by a DatatypeDefin-

tion axiom that contains a unionOf axiom and in the map-

ping ontology by a SimpleTypeInfoType individual.

List. The XML Schema list simple types are com-

prised of a list of values of a specific datatype. The type

of the list members is specified in the itemType attribute

of the list element or in the simpleType sub-elements of

list (in case of unnamed list members). The list simple

types are represented in the main ontology by a Datatype

axiom that contains an EquivalentClass axiom and in the

mapping ontology by a SimpleTypeInfoType individual.

Unnamed Simple Types. An unnamed XML Schema

simple type is a simple type the definition of which is

nested in the declaration of an XML construct (element,

group, attribute group, attribute, simple type and alterna-

tive). It may be defined using any of the restriction, union

and list XML Schema constructs and is valid in the scope

of the XML construct it is nested in. The unnamed XML

Schema simple types are represented in the same way

with the named ones, but the IDs of the constructs

representing them in the main ontology and the mapping

ontology are automatically decided, following a set of

naming convention rules, in order to be unique. Since the

unnamed simple types may be nested in other unnamed

simple types, a recursive algorithm is used for the genera-

tion of the constructs that represent them in both the main

and the mapping ontology as was done in the XS2OWL

1.0. The major difference is that in XS2OWL 1.0 in the

main ontology were stored only declarations of externally

defined simple types, while in XS2OWL 2.0 the datatype

definitions are stored in the main ontology.

4.2. Identity Constraint Representation

Two types of identity constraints are supported by

XML Schema: (a) The constraints imposed by attributes

of type ID, IDREF and IDREFS; and (b) The constraints

imposed by the unique, key and keyref elements. The for-

mer have been treated by XS2OWL 1.0 and, since they

are attributes of built-in XML Schema types, they are

represented, in both XS2OWL 1.0 and 2.0, in the same

way with the other attributes. The second type of identity

constraints could not be accurately represented using

OWL 1.0 constructs and were not taken into account in

XS2OWL 1.0. In XS2OWL 2.0 they are represented us-

ing the HasKey axiom of OWL 2.0.

The identity constraints of the second type contain: (a)

A selector element, which specifies the XML Schema

elements on which the identity constraint is applied; and

(b) One or more field elements, where the XML Schema

constructs (elements or attributes) that form the constraint

value are specified. Both the selector and field elements

specify the construct(s) they refer to in their xpath

attribute. The xpath attribute uses a set of XPath expres-

sions, which should be evaluated over the XML Schema

in order to locate the XML constructs they refer to.

Figure 5. The “XPathEvaluator” Algorithm, which
evaluates the XPath expressions

Since the XPath expressions do not refer to the node

hierarchy of the XML Schema but in the node structure of

the XML data following it, the “XPathEvaluator” algo-

rithm (see the activity diagram of Figure 5) has been de-

veloped for XPath expression evaluation. The XPath ex-

pression evaluation returns a set of XML Schema con-

structs, which are represented as (object or datatype)

properties in the main ontology. Then, depending on the

constraint type, the constraints themselves are expressed

in OWL 2.0 syntax, as is explained in the following para-

graphs.

Unique. In a unique identity constraint U(S, F) the se-

lector S represents the XML Schema element that has a

unique combination of values of the constructs specified

in the field element(s) F of U.

For the representation of U in the main ontology, the

following actions are performed: (a) An OWL class CF is

defined, which has a set P of properties that represent the

XML constructs specified in F; (b) An object property

PCF is defined, having as domain the class CS, which

represents the type of S in the main ontology, and CF as

range; and (c) A HasKey axiom is defined from the class

CS on the PCF property.

U is represented in the mapping ontology by an Identi-

tyConstraintInfoType individual. An example of a unique

identity constraint is shown in Figure 6, and its represen-

tations in the main ontology and the mapping ontology

are shown, respectively, in Figure 7 and Figure 8.

<xs:element name="Persons" type="PersonsType">

 <xs:unique name="NameAddrUnique">

 <xs:selector xpath="Person"/>

 <xs:field xpath="Name"/>

 <xs:field xpath="Address/@city"/>

 </xs:unique>

</xs:element>

Figure 6. Unique Identity Constraint Example

<owl:Class rdf:ID="Persons_NameAddrUnique_PersonsType">

 <owl:hasKey rdf:parseType="Collection">

 <rdf:Description rdf:about="FirstName_xs_string"/>

 <rdf:Description rdf:about="city_addressGroup__xs_string"/>

 </owl:hasKey>

</owl:Class>

<owl:ObjectProperty rdf:ID="Persons__PersonsType">

 <rdfs:domain

 rdf:resource="#Persons_NameAddrUnique_PersonsType"/>

 <rdfs:range rdf:resource="#PersonsType"/>

 <rdfs:label>Persons</rdfs:label>

</owl:ObjectProperty>

Figure 7. Representation of the Unique Identity
Constraint of Figure 6 in the Main Ontology

<ox:IdentityConstraintInfoType

rdf:ID="Persons_NameAddrUnique_PersonsType_ui">

 <ox:restrictionID>

 Persons_NameAddrUnique_PersonsType

 </ox:restrictionID>

 <ox:selectorPath>Person</ox:selectorPath>

 <ox:fieldPath>Name/FirstName</ox:fieldPath>

 <ox:fieldPath>Address/@city</ox:fieldPath>

 <ox:constraintType>unique</ox:constraintType>

</ox:IdentityConstraintInfoType>

Figure 8. Representation of the Unique Identity
Constraint of Figure 6 in the Mapping Ontology

Key. The key identity constraint has the same seman-

tics with the unique with the additional requirement that

the XML Schema constructs of the field are mandatory.

Thus, the representation of the key identity constraint is

almost the same with the one of unique. The only differ-

ence is that the additional requirement is satisfied with the

definition of ObjectExactCardinality and DataExactCar-

dinality axioms on the object properties and the datatype

properties of CF respectively.

Keyref. The semantics of the keyref identity constraint

are the same with the semantics of the key identity con-

straint; The only difference is that keyref refers to an ex-

isting key definition. Thus, the representation of the keyref

identity constraint is the same with that of the key identity

constraint in both the main ontology and the mapping

ontology.

4.3. Representation of the XML Schema 1.1 Con-

structs

We present in this subsection the representation of the

constructs introduced or substantially modified in XML

Schema 1.1. In particular, in the following paragraphs

will be discussed the representation of the modified subs-

titution group and of the now introduced alternative, over-

ride, assert and error constructs.

Substitution Group. The syntax and the semantics of

the substitution group construct, which allows in XML

Schema 1.0 the use of a specific element structure using a

specific name, have been modified in XML Schema 1.1.

In particular, the same name may be used for several ele-

ment structures in XML Schema 1.1.

Since the elements are represented in the main ontolo-

gy by (object or datatype) properties, in XS2OWL 1.0 we

have represented every substitution group sg using the

subPropertyOf axiom on the property p, which represents

the element that substitutes sg. In XS2OWL 2.0 we token-

ize the list of the element names that appear in the substi-

tutionGroup attribute of sg and then we individually cope

with each of them as we did in XS2OWL 1.0.

Alternative, Override and Assert. Since the syntax

of OWL 2.0 does not support the definition of structures

with semantics equivalent or similar to the semantics of

alternative, override and assert, these constructs are not

represented, according to XS2OWL 2.0, in the main on-

tology but only in the mapping ontology by instances of

the classes AlternativeInfoType, OverrideInfoType and

AssertInfoType respectively.

Error. The XML Schema 1.1 built-in datatype error

is used in conditional type assignment, in order to inform

the XML Schema validator when an error message should

be issued. The XS2OWL 2.0 transformation model treats

error in the same way with any other built-in datatype.

5. SPARQL to XQuery Translation

In this section, we provide an overview of the

SPARQL-to-XQuery translation supported by the

SPARQL2XQuery 2.0 framework.

The SPARQL2XQuery 2.0 Query Translator compo-

nent comprises of the following sub-components:

 The SPARQL Graph Pattern Normalizer, which re-

writes the Graph-Pattern (GP) of the input SPARQL

query in an equivalent normal form, based on equiva-

lence rules. This makes the GP translation process

simpler and more efficient.

 The Variable Type Specifier, which identifies the types

of the variables in order to detect any conflict arising

from the syntax provided by the user as well as to iden-

tify the form of the results for each variable. Moreover,

the variable types are used by the Onto-triples Proces-

sor and the Variable Binder sub-components.

 The Onto-Triples Processor, which processes onto-

triples (actually referring to the ontology structure

and/or semantics) against the ontology and, based on

this analysis, binds the correct XPaths to variables con-

tained in the onto-triples. These bindings are going to

be used in the next steps as input to the Variable Binder

sub-component.

 The Variable Binder, which is used in the translation

process for the assignment of the correct XPaths to the

variables referenced in a given Basic Graph Pattern

(BGP, a sequence of triple patterns and filters), thus

enabling the translation of BGPs to XQuery expres-

sions.

 The Basic Graph Pattern Translator, which performs

the translation of a BGP into semantically equivalent

XQuery expressions, thus allowing the evaluation of a

BGP on a set of XML data. The translation is based on

the BGP2XQyuery algorithm, which takes as input the

mappings between the ontology and the XML schema,

the BGP, the determined variable types and the variable

bindings and generates XQuery expressions.

 The Graph Pattern Translator, which translates a GP

into semantically equivalent XQuery expressions. The

concept of a GP is defined recursively. The Basic

Graph Pattern Translator sub-component translates the

basic components of a GP (i.e. BGPs) into semantically

equivalent XQuery expressions, which however have to

be properly associated in the context of a GP. This

means to apply the SPARQL operators (i.e. AND,

OPT, UNION and FILTER) among them using

XQuery expressions and functions.

 The Solution Sequence Modifiers Translator, which

translates the SPARQL solution sequence modifiers us-

ing XQuery clauses (Order By, For, Let, etc.) and

XQuery built-in functions. Solution Modifiers are ap-

plied on a solution sequence in order to create another,

user desired, sequence. The modifiers supported by

SPARQL are Distinct, Reduced, OrderBy, Limit, and

Offset.

 The Query Forms Translator, which is responsible for

the final step of the SPARQL query translation in

XQuery expressions. SPARQL has four forms of que-

ries (Select, Ask, Construct and Describe). According

to the query form, the structure of the final result is dif-

ferent. In particular, after the translation of any solution

modifier is done, the generated XQuery is enhanced

with appropriate expressions in order to achieve the de-

sired result structure (e.g. to construct an RDF graph,

or a result set) according to the query form.

We have extended the SPARQL-to-XQuery transla-

tion presented in [20] for the SPARQL2XQuery 1.0

framework, in order to exploit the OWL 2.0 semantics

and the new constructs introduced by XML Schema 1.1.

In particular, the SPARQL-to-XQuery translation has

been extended in order to support the XML Schema data-

types and the XML Schema Identity constraints.

5.1. XML Schema datatypes

 The SPARQL query language supports queries,

where datatype references could be exploited in order to

define the type of a literal. For example, consider the lit-

eral "42". Using the syntax "42"^^xsd:integer, "42" is

stated to be an integer, while with the syntax

"42"^^xsd:string, "42" is stated to be a string and with the

syntax "42"^^ns:ValidAgeType "42" is stated to be of a

user-defined type (ValidAgeType). According to the

SPARQL specification, literals and datatype references

could appear in the object part of a Triple Pattern or in a

Filter Expression of an SPARQL query.

Using the XS2OWL 2.0 transformation model, the

XML Schema simple datatypes are represented using the

OWL 2.0 semantics as presented in Section 4. Exploiting

the information of the generated mappings between the

ontology produced by XS2OWL 2.0 and the initial XML

Schema, the SPARQL2XQuery framework can handle

queries that include datatype references in their literals.

5.2. XML Identity constraints

Since OWL 2.0 allows the representation of the XML

Schema identity constraints and the XS2OWL 2.0 trans-

formation model supports their representation, the

SPARQL-to-XQuery translation of the SPARQL2XQuery

1.0 framework has been extended in SPARQL2XQuery

2.0 to exploit the XML Schema identity constraints dur-

ing the translation. The identity constraints can be ex-

ploited in queries which contain the same variables be-

tween more than one Triple Patterns in a SPARQL query

Graph Pattern. The SPARQL2XQuery 2.0 framework

can handle this class of SPARQL queries, since it exploits

the identity constraint information and the mappings be-

tween the generated ontology and the XML Schema.

6. Application in the Multimedia and Cultur-

al Heritage Domains

We demonstrate in this section how our framework can

be used in real-world applications of the multimedia and

the cultural heritage domains.

Multimedia Domain. As already mentioned, the do-

minant standards for content and service description

(MPEG-7 and MPEG-21 respectively) in the multimedia

domain have been expressed in XML Schema syntax. As

a consequence, several groups have been working with

these standards and a great number of MPEG-7 and

MPEG 21 descriptions have been created. The develop-

ment of the Semantic Web, though, has made many re-

search groups to adopt the Semantic Web technologies,

develop ontologies that capture (fully or partially) the

semantics of the standards and work with OWL/RDF de-

scriptions formed according to the ontologies. Since there

exist standard-based XML descriptions as well as groups

working with the XML Schema based syntax of the stan-

dards, the capability of transparently posing queries on

both the RDF and the XML Schema repositories is neces-

sary. This can be achieved using the SPARQL2XQuery

2.0 framework in two different usage scenarios:

(a) An existing ontology like [23], which captures the

semantics of the standard(s), is used and mappings

between the ontology and the XML Schemas are ma-

nually defined. Then, the end-users pose their

SPARQL queries over the ontology and the

SPARQL2XQuery 2.0 framework expresses the que-

ries in XQuery syntax, evaluates them and returns the

query results.

(b) The XS2OWL 2.0 framework is used to automatical-

ly express the semantics of the standards in OWL 2.0

syntax. Then, the SPARQL2XQuery 2.0 framework

automatically specifies the mappings between the

generated ontology and the XML Schema(s) and may

support user queries expressed in SPARQL syntax

over the generated ontology in the same way it sup-

ports the queries of scenario (a).

Cultural Heritage Domain. There are several stan-

dards (over 100) for content description in the cultural

heritage domain expressed in XML Schema syntax, like

the TEI, the EAD and several others. On the other hand,

the CIDOC/CRM standard has been developed, which

essentially is an ontology, expressed in OWL/RDF syn-

tax, that subsumes the semantics of the above-referred

standards. Since the cultural heritage institutions have

invested a great amount of time in the specification of

descriptions that are formed according to the XML-based

standards and they may have even developed software

that manages them, the SPARQL2XQuery 2.0 framework

can be used in order to make their contents accessible to

users aware of the CIDOC/CRM without having to

change their working environment. In particular, map-

pings between the CIDOC/CRM ontology and the XML

Schemas of the standards should be manually defined.

Then, the end-users may pose their SPARQL queries over

the CIDOC/CRM ontology and the SPARQL2XQuery 2.0

framework expresses the queries in XQuery syntax, eva-

luates them and returns the query results.

7. Conclusions and Future Work

We have presented the SPARQL2XQuery 2.0 frame-

work that we have developed [29], which allows

SPARQL queries to be answered over XML data using

the XQuery query language. To accomplish this, map-

pings between ontologies and XML Schemas are defined

that allow our framework to translate SPARQL queries in

XQuery syntax. SPARQL2XQuery 2.0 may work with

both existing ontologies and with automatically produced

ones, formed according to our XS2OWL 2.0 transforma-

tion model. XS2OWL 2.0 exploits the OWL 2.0 seman-

tics and supports the new XML constructs introduced by

XML Schema 1.1.

The functionality offered by SPARQL2XQuery 2.0 is

important, among other application domains, for the mul-

timedia domain, since it allows multimedia applications

of the Semantic Web and the XML environments to inte-

roperate.

The SPARQL2XQuery 2.0 framework is going to be

integrated in an ontology-based mediator [18] [19]

framework that we are developing now and is going to

provide semantic interoperability and integration between

distributed heterogeneous sources using the standard Se-

mantic Web and XML technologies.

8. References

[1] Motik B., Schneider P.F.P., Parsia B. (eds.): "OWL 2 Web

Ontology Language: Structural Specification and Function-

al-Style Syntax", W3C Recommendation, 27 Oct. 2009,

http://www.w3.org/TR/owl2-syntax/.

[2] Gao S., Sperberg-McQueen C. M., Thompson H.S. (eds.)

"W3C XML Schema Definition Language (XSD) 1.1 Part

1: Structures", W3C Working Draft, 3 Dec. 2009,

http://www.w3.org/TR/xmlschema11-1/

[3] Tsinaraki C., Christodoulakis S., "Interoperability of XML

Schema Applications with OWL Domain Knowledge and

Semantic Web Tools". In Proc. of ODBASE 2007.

[4] Tsinaraki C., Christodoulakis S., "Support for Interopera-

bility between OWL based and XML Schema based Appli-

cations". In the Proc. of DELOS Conference II, 2007.

[5] Ferdinand M., Zirpins C., Trastour D.: "Lifting XML

Schema to OWL". In Proc. of ICWE 2004

[6] Bohring H., Auer S.: "Mapping XML to OWL Ontologies"

Leipziger Informatik-Tage 2005: 147-156

[7] Garcia R., Celma O.: "Semantic integration and retrieval of

multimedia metadata". In Proc. of SemAnnot 2005

[8] Bedini I., Gardarin G., Nguyen B. "Deriving Ontologies

from XML Schema". In Proc. of EDA 2008 Vol. B-4, 3-17.

[9] Rodrigues T., Rosa P., Cardoso J.: "Mapping XML to Exit-

ing OWL ontologies", International Conference

WWW/Internet 2006

[10] Cruz C., Nicolle C.: "Ontology Enrichment and Automatic

Population from XML Data", In Proc. of ODBIS 2008.

[11] Cruz I., Huiyong X., Hsu F.: "An Ontology-Based Frame-

work for XML Semantic Integration". In Proc of IDEAS

2004

[12] Lehti P., Fankhauser P. "XML data integration with OWL:

Experiences and challenges". In Proc. of SAINT 2004

[13] Bernd A., Beeri C., Fundulaki I., Scholl M.: "Ontology-

Based Integration of XML Web Resources". In Proc. of

ISWC 2002

[14] Christophides V., Karvounarakis G., et.al. "The ICS-

FORTH Semantic Web Integration Middleware (SWIM)".

IEEE Data Eng. Bull. 26(4):11-18 (2003)

[15] Groppe S., Groppe J., Linnemann V., Kukulenz D., Hoeller

N., Reinke C., "Embedding SPARQL into XQuery/XSLT".

In Proc. of ACM SAC 2008

[16] Droop M., Flarer M., et.al. "Embedding XPATH Queries

into SPARQL Queries". In Proc. of ICEIS 2008

[17] Akhtar W., Kopecký J., et.al. "XSPARQL: Traveling be-

tween the XML and RDF Worlds and Avoiding the XSLT

Pilgrimage". In Proc. of ESWC 2008

[18] Makris K., Bikakis N., Gioldasis N., Tsinaraki C., Christo-

doulakis S.: "Towards a Mediator based on OWL and

SPARQL". In Proc. of WSKS 2009

[19] Makris K., Gioldasis N., Bikakis N., Christodoulakis S.:

"Ontology Mapping and SPARQL Rewriting for Querying

Federated RDF Data Sources". In Proc. of ODBASE 2010.

[20] Bikakis N., Gioldasis N., Tsinaraki C., Christodoulakis S.:

"Querying XML Data with SPARQL". In Proc. of DEXA

2009.

[21] Chang, S.F., Sikora, T., Puri, A.: Overview of the MPEG-7

standard. In IEEE Transactions on Circuits and Systems for

Video Technology 11:688–695, 2001.

[22] Pereira, F.: The MPEG-21 standard: Why an open multi-

media framework?. In the Proc. of the 8th IDMS, 2001

[23] Tsinaraki C., Polydoros P., Christodoulakis S.. Interopera-

bility support between MPEG-7/21 and OWL in DS-MIRF.

In Transactions on Knowledge and Data Engineering

(TKDE), Special Issue on the Semantic Web Era,

19(2):219–232, 2007.

[24] Hunter J.: Adding Multimedia to the Semantic Web -

Building an MPEG-7 Ontology. In Proc. of ISWC 2001.

[25] Troncy R., Bailer W., Hausenblas M., Hofmair P., Schlatte

R.: Enabling Multimedia Metadata Interoperability by De-

fining Formal Semantics of MPEG-7 Profiles. In Proc. of

SAMT 2006.

[26] ISO 21127:2006 Information and documentation – A refer-

ence ontology for the interchange of cultural heritage in-

formation (CIDOC/CRM)

[27] The TEI site, http://www.tei-c.org /

[28] Official EAD Version 2002 Web Site,

http://www.loc.gov/ead/

[29] Stavrakantonakis I.: “Interoperability support between

OWL 2.0 and XML environments”, Diploma Thesis, Tech-

nical University of Crete, Dept. of Electronics and Com-

puter Engineering, 2010 (to appear).

http://www.w3.org/TR/owl2-syntax/

