
SPARQL‒RW: Transparent Query Access over Mapped

RDF Data Sources

 Konstantinos Makris
‡
 Nikos Bikakis

† ¥ Nektarios Gioldasis
‡
 Stavros Christodoulakis

‡

‡
 TUC/MUSIC Lab | Technical University of Crete | Greece

†
National Technical University of Athens | Greece

¥ IMIS Institute | "Athena" Research Center | Greece

[makris, nektarios, stavros]@ced.tuc.gr, bikakis@dblab.ntua.gr

ABSTRACT

The Web of Data is an open environment consisting of very large,

inter-linked RDF datasets from various domains (e.g., DBpedia,

GeoNames, ACM, PubMed, etc.) accessed through SPARQL

queries. Establishing interoperability in this environment has

become a major research challenge. This paper presents

SPARQL‒RW (SPARQL‒ReWriting), a framework which provides

transparent query access over mapped RDF datasets. The

SPARQL‒RW provides a generic method for SPARQL query

rewriting, with respect to a set of predefined mappings between

ontology schemas. To this end, it supports a set of rich and flexible

mapping types and it is proved to provide semantics preserving

queries.
Keywords

SPARQL query rewriting, Linked Data, Ontology mapping,

Interoperability, Semantic Web Databases, Web of Data.

1. INTRODUCTION
The Web of Data is an environment that allows publishing data on

the Web, in structured, linked, and standardized ways. It is

comprised by a great number of very large inter-linked RDF

datasets from various domains (e.g., DBPedia, ACM, PubMed,

BBC Music, GeoNames, Flickr, etc.), and initiatives like the

Linked Open Data, Open Government and Linked Life Data have

played a major role towards its development.

In this environment, it is very common for several datasets to

describe the same or overlapped domains. A plethora of such

examples can be given, starting from the DBpedia, YAGO,

WordNet and Freebase cross-domain datasets. Taking it a step

forward, we notice several other overlapping datasets, like the

ACM, IEEE, DBLP and ePrints in the domain of publications,

PubMed, GeneID, Drug Bank and Gen Bank in life science,

GeoNames, Linked GeoData and Geo Linked Data in the

geographic domain, as well as Last.FM, MySpace, BBC Music and

Music Brainz in the domain of media. Numerous other examples

can be obtained from the Web of Data graph.

Considering that data providers and consumers need to have the

ability to use their preferred schema in this kind of setting, it

becomes obvious that systems supporting transparent querying

over different datasets are essential components for a great number

of Web of Data applications. Although many state of the art

applications (e.g., LDIF [4], SPARQL++ [5], Mosto [6]) are

focused on the RDF data exchange/transformation problem, to the

best of our knowledge, there is no system supporting transparent

querying over mapped RDF data sources.

In this paper, we present the SPARQL‒RW (SPARQL‒ReWriting)

Framework. The SPARQL‒RW provides a generic method for

SPARQL query rewriting, with respect to a set of predefined

mappings between ontology schemas. It supports a set of rich and

flexible mappings types formally described using Description

Logics (DL) and it is proved to provide semantics preserving

queries.

Formally, let a source ontology OS, a target ontology OT and a set

of mappings M between OS and OT. Our framework takes as input

a SPARQL query QS expressed over OS, and rewrites it to a

semantically correspondent SPARQL query QT (expressed over

OT) with respect to M. We have formally evaluated [16] the

soundness and completeness of the proposed rewriting method

with respect to the set of mapping types supported by our

framework.

2. FRAMEWORK OVERVIEW
The architecture of the SPARQL‒RW Framework is presented in

Fig. 1. Our working scenario involves ontologies, as well as a set

of predefined mappings between them. Our system exploits these

mappings in order to rewrite an initial SPARQL query QS

expressed over the source ontology, to a semantically

correspondent SPARQL query QT, expressed over the target

ontology.

Mappings
(RDF)

SPARQL

Qt

Qs

RDF Data

Target
Ontology

SPARQL‒RW

RDF

RDF Data

Source
Ontology

Mapping Type
Determinator

Mapping Parser

Query Analyzer &
Composer

Results Visualizer
Graph Pattern Rewriter

Rewriting Rules
& Axioms

FILTER Expr.
Rewriter

Triple Pattern Rewriter

Triple Pattern Type
Determinator

Subject
Rewriter

Object
Rewriter

Predicate
Rewriter

Fig. 1. The System Architecture

The system is divided into 4 basic components: (a) Query Analyzer

& Composer, that analyzes the input SPARQL query and also

composes the rewritten one; (b) Mapping Parser, that parses the

predefined mappings; (c) Mapping Type Determinator, that

identifies the type of each mapping in order to be exploited by the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

EDBT 2012, March 26-30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00.

rewriting process; (d) Graph Pattern Rewriter, that rewrites the

Graph Pattern of the input SPARQL query based on the specified

mappings. Finally, for demonstration purposes, we have also

integrated a Results Visualizer component which is responsible for

the results presentation.

2.1 Mapping Model
In this section, we outline the mapping model adopted by the

SPARQL‒RW Framework in the context of SPARQL query

rewriting.

Our attempt is to identify and support the set of mapping types

which can be exploited by the SPARQL query rewriting process.

This task is highly dependent to the SPARQL expressiveness. For

instance, a mapping containing aggregates would be meaningless,

since aggregates cannot be represented in the current SPARQL.

The proposed mapping model supports a highly expressive set of

mapping types. To this end, it provides a grammar in order to

describe these mapping types, as well as a formal definition of

their semantics expressed in DL. Below we outline a fragment of

the SPARQL‒RW mapping capabilities.

In order to define the supported mapping types we introduce the

following four basic notions: (a) the Class Expression; (b) the

Object Property Expression; (c) the Datatype Property

Expression; and (d) the individual. The above notions form the

basis of our mapping model and result to n:m cardinality

mappings, using either equivalence (≡) or subsumption (⊑, ⊒)

relationships.

Regarding ontology classes, a Class Expression from the source

ontology can be mapped to a Class Expression from the target

ontology. As Class Expression we denote any complex expression

between classes, using union (⨆) and intersection (⨅) operations.

A Class Expression can be restricted to the values of one or more

Property Expressions (i.e., complex expression between

object/datatype properties) using binary and unary predicates.

Moreover, it is possible for a Class Expression to be restricted on a

set of individuals having object/datatype property values with a

specific relationship between them.

Regarding ontology object properties, an Object Property

Expression from the source ontology can be mapped to an Object

Property Expression from the target ontology. As Object Property

Expression we denote any complex expression between object

properties using union (⨆), intersection (⨅), composition (○) and

inverse (—) operations. Any Object Property Expression can be

restricted on its domain/range values using a Class Expression to

define the applied restrictions.

Similarly, a Datatype Property Expression from the source

ontology can be mapped to a Datatype Property Expression from

the target ontology. As Datatype Property Expression we denote

any complex expression between datatype properties using union

(⨆) and intersection (⨅) operations, as well as composition (○)

operations between object/datatype properties. Although Datatype

Property Expressions can be restricted on their domain values with

the same way as Object Property Expressions, their ranges can be

restricted on data values only, using various unary predicates.

Finally, an individual from the source ontology can be mapped to

an individual from the target ontology.

As noted before, we have formally described the semantics of the

aforementioned mapping types using DL [16]. Since our query

rewriting method is based on these mapping types, we provide no

limitation on the language used for the mapping representation. As

a result, any mapping language that supports the above mapping

types (or a fragment of them) can be used. Additionally, we do not

provide any limitation regarding the mapping discovery task,

which can be performed either manually or automatically.

Store X Bookstore Y

Product

name: string

price: int

author: string

review: string

publisher

Book

Pocket

Science

Popular

Autobiography

Drama

CD

Publisher

Source

Publisher

Mathematics

Textbook

Person

BestSeller

Biography

Literature

publishes

title: string

price: int

size: int

editorialReview: string

customerReview: string

authorname: string

Target

Fig. 2. The source schema "Store X" (Left Side) and the

target schema "Bookstore Y" (Right Side)

2.1.1 Mapping Examples
In most real-world situations, an ontology schema is mapped to

more than one ontology schemas. However, for the sake of

simplicity but without loss of generality, in this section we

consider two small ontology schemas, in order to present a set of

mapping cases and thus, outline a fragment of the SPARQL‒RW

mapping capabilities.

Let the two hypothetically autonomous partners, Store X and

Bookstore Y. Store X is a store providing information for its

selling products (e.g., books, CDs, etc.) and Bookstore Y is a

bookstore providing information for its book collections. In our

example, Store X is considered to be the source ontology OS,

while Bookstore Y the target ontology OT. Fig. 2 illustrates the

structure of the two aforementioned ontology schemas.

Generally, several mappings of different types can be considered

between Store X and Bookstore Y. Starting from class

mappings, we say that the class Popular can be mapped to the

intersection of the class BestSeller with the class

Mathematics (μ1). This mapping emerges from the fact that the

class Popular seems to describe Mathematics individuals which

are also of type BestSeller.

μ1: src : Popular ≡ trg : BestSeller ⨅ trg : Mathematics

Similarly, the class Pocket can be mapped to the class Textbook

restricted on its size property values (μ2), since the class Pocket

seems to describe Textbook individuals having a specific value

for the property size (e.g., less than or equal to 14 cm).

μ2: src : Pocket ≡ trg : Textbook ⨅ ∃trg : size.≤14

Apart from class mappings, mappings between object/datatype

properties can be also identified. For instance, the property name

seems to subsume the property title (μ3), while the object

property publisher can be mapped to the inverse of the object

property publishes (μ4), since the binary relations described by

the property publisher correspond with the inverse binary

relations described by the property publishes.

μ3: src : name ⊒ trg : title

μ4: src : publisher ≡ trg : publishes —

Fig. 3. SPARQL Graph Pattern Rewriting Process Example

Apart from these trivial property mappings, more complex ones

can be also identified. For instance, the datatype property review

can be mapped to the union of the datatype properties

editorialReview and customerReview (μ5), since the binary

relations described by the property review correspond with the

binary relations described by the properties editorialReview

and customerReview.

μ5: src : review ≡ trg : editorialReview ⨆ trg : customerReview

Similarly, the datatype property author from the source ontology

can be mapped to the composition of the object property author

with the datatype property name from the target ontology (μ6).

This mapping emerges from the fact that the binary relations

described by the datatype property author from the source

ontology correspond with the binary relations provided by

connecting the Textbook individuals to the name property values

of the class Person.

μ6: src : author ≡ trg : author ○ trg : name

2.2 Query Rewriting
The SPARQL query rewriting process lies in the query’s graph

pattern rewriting and is performed by the Graph Pattern Rewriter

component. The rewritten query is produced by replacing the

initial query’s graph pattern with the rewritten graph pattern. Any

variables appearing in the initial query’s graph pattern appear also

in the rewritten graph pattern. The rewriting process is

independent of the query type (i.e., Select, Ask, etc.), the

SPARQL solution sequence modifiers (i.e., Order By, Distinct,

etc.) and the SPARQL algebra operators (i.e., Union, Optional,

etc.).

A SPARQL graph pattern consists of triple patterns, filters and

SPARQL operators. Triple patterns may refer either to data (e.g.

relationships between instances) or schema (e.g., relationships

between classes and/or properties) information (i.e., Data Triple

Patterns and Schema Triple Patterns) [16]. The Triple Pattern

Type Determinator sub-component, identifies the type of each

triple pattern. Based on this type, the Triple Pattern Rewriter sub-

component rewrites triple patterns using a three-step procedure by

exploiting mappings for each triple pattern’s part (i.e., subject,

predicate, object). The rewriting is performed by the Subject,

Predicate and Object Rewriter sub-components by applying a set

of rewriting rules [16] according to the type of the mapping which

is exploited each time (Rewriting Rules & Axioms sub-

component). The rewriting rules applied to Data Triple Patterns

arise directly from the DL semantics defined for every different

mapping type, while the rewriting rules applied to Schema Triple

Patterns, are based on a set of common inference axioms. Filter

expressions that may occur in the input query are rewritten by the

FILTER Expression Rewriter component, using trivial expression-

based rules. The rewriting rules have been formally presented in

[16].

In Fig. 3, we outline a simple SPARQL graph pattern rewriting

example, where the graph pattern of an initial query QS posed over

the Store X ontology is rewritten to a semantically equivalent

graph pattern, in order for the rewritten query QT to be expressed

over the Bookstore Y ontology (Fig. 2). The rewriting process

exploits the mappings (i.e., μ1, μ2, etc.) specified in Section 2.1.1.

2.2.1 Semantics Preservation
In this section, we outline the process that we followed in order to

formally evaluate the soundness and completeness of the proposed

query rewriting method. Since we are working in the context of

different mapped datasets; the resulted query is heavily relied to

the mappings which have been exploited by the rewriting method.

As a result, any statement related to the soundness and

completeness of our method should also consider the mapping

semantics. In the rest of this section, we formally define the term

“semantics preserving”, and we outline the process that we

followed in order to formally evaluate our method.

Let [[·]]D be a graph pattern evaluation function which takes a

graph pattern expression and an RDF dataset D and returns a set of

graph pattern solutions, as defined in [14].

Moreover, let DS and DT be the RDF datasets of a source and a

target ontology, respectively. Similarly, let DU be the RDF dataset

which is produced by merging [15] the DS and DT datasets using a

set of mappings M.

Definition 1. (Semantics Preserving Rewriting). Let tp be a

triple pattern and rp the graph pattern resulted from one step

rewriting of tp with respect to a mapping μ ∈ M. The rewriting

step performed for tp, with respect to the mapping μ, is

semantics preserving iff the evaluation of tp and the evaluation

of rp over DU, preserve the semantics of mapping μ.

In other words, let V be the common variable set between tp and

rp. The relationship R (i.e., ≡, ⊑, ⊒) that holds for the mapping

used in the rewriting step, should also hold between [[tp]]DU
 and

[[rp]]DU
 projected on V.

 πV ([[tp]]DU
) R πV ([[rp]]DU

), where R { ≡, ⊑, ⊒ }

Following the above definition and using the mapping type

semantics that we have defined, along with the SPARQL

semantics, we have formally proved [16] that every rewriting step

that we perform in order to rewrite an initial SPARQL query, is

semantics preserving.

?x src:name ?name .

?x src:author ?author .

?x src:publisher ?publisher .

?x rdf:type src:Popular .

?x rdf:type src:Pocket .

OPTIONAL {?x src:review ?review.}

2

3

4

5

6

1

Initial Triples Rewritten Triples by Predicate Part Rewritten Triples by Object Part
Predicate Mappings Object Mappings Subject Mappings

?x trg:title ?name .

?x trg:author ?var1 .

?var1 trg:name ?author .

?publisher trg:publishes ?x .

?x rdf:type trg:Mathematics .

?x rdf:type trg:BestSeller .

?x rdf:type trg:Textbook .

?x trg:size ?var2 .

FILTER (?var2<=14)

OPTIONAL {

{?x trg:editorialReview ?review}

UNION

{?x trg:customerReview ?review}}

1

2

3

4

5

6

7

8

μ1

μ2

1

2

3

4

5

6

7

10

8

9

11

...

?x trg:title ?name .

?x trg:author ?var1 .

?var1 trg:name ?author .

?publisher trg:publishes ?x .

?x rdf:type src:Popular .

?x rdf:type src:Pocket .

OPTIONAL {

{?x trg:editorialReview ?review}

UNION

{?x trg:customerReview ?review}}

1
μ3

2
μ6

3
μ4

4

5

6
μ5

1

2

3

6

4

5

7

8

...

3. IMPLEMENTATION & DEMONSTRATION
In what follows we provide technical information about the

implementation of our system and we outline the demonstration

scenario.

3.1 Implementation
The SPARQL‒RW Framework has been implemented using Java

2SE as a software platform, and the Jena framework for SPARQL

query manipulation. The SPARQL‒RW Framework is a part of the

Semantic Query Mediation Prototype Infrastructure (SQMPI)

developed in the TUC/MUSIC Lab. Additionally, the SQMPI has

been integrated with our XS2OWL [13] and SPARQL2XQuery [12]

frameworks, in order to support integration and interoperability

between the XML and the Semantic Web environments [17].

Finally, regarding the mapping representation and encoding, we

utilize the EDOAL language (Expressive and Declarative Ontology

Alignment Language)1, since it is expressive enough, in order to

cover all the different mapping types that our framework supports.

3.2 Demonstration Outline
In this section, we outline the scenario employed to demonstrate

the applicability of the SPARQL‒RW Framework.

In our demonstration scenario, except from a discussion regarding

the major technical and theoretical challenges we faced throughout

the development of the SPARQL‒RW Framework, attendees will

be able to have an in depth experience of mapping different RDF/S

– OWL schemas, express queries over their corresponding data

and observe the query rewriting process via an interactive user

interface.

In more detail, attendees will be able to (a) select an ontology set,

between various overlapping ontologies; (b) specify mappings

between the previously selected ontologies; (c) view/modify the

specified mappings in order to observe the affection on the

rewriting process; (d) specify SPARQL queries based on the

source ontology, in order to be rewritten, with respect to the

predefined mappings, to semantically equivalent SPARQL queries

(valid over the target ontology); (e) have a thorough look on the

SPARQL query rewriting, via the system interface which provides

interactive step-by-step navigation to the rewriting procedure; (f)

evaluate both the initial query and the rewritten query over the

source and target ontologies respectively, in order to inspect the

returned results.

4. RELATED WORK
Our work can be related to several research fields, including

(semantic) data integration, schema mediation, ontology mapping

and query rewriting. Among the aforementioned categories we

consider the fields of ontology mapping and query rewriting as the

most relevant to our work.

Ontology mapping, has received extensive attention by the

Semantic Web community especially in the tasks of mapping

discovery and mapping representation. This paper does not

contribute to neither of these tasks. Our focus is on the

specification of those types of ontology mappings which can be

exploited by the SPARQL query rewriting process (i.e., can be

supported by the SPARQL expressiveness).

Regarding SPARQL query rewriting, few published studies

examine the problem of posing a SPARQL query over different

RDF datasets. An approach [9] which comes closer to ours, with

some of its parts based on a preliminary description of our work

1 http://alignapi.gforge.inria.fr/edoal.html

[10], proposes a method that exploits transformations between

RDF graphs in order to perform SPARQL query rewriting.

Compared to our method, this approach seems to restrict the

mappings expressiveness and also the supported query types.

Finally, some recent efforts address the problem of federated

SPARQL query evaluation over linked data [1][2][3], while others

[7][8] examine the problem of query rewriting using views in

semantic web databases.

5. CONCLUSIONS
Systems supporting transparent querying over different datasets

managed by different organizations and accessed through

SPARQL are essential for many Web of Data applications. Such a

system was presented in this paper. The SPARQL‒RW Framework

supports SPARQL query rewriting with respect to a set of

predefined mappings between ontologies. Using this infrastructure,

users can express SPARQL queries based on their own OWL‒

RDF/S schema and automatically access data across a federation

of RDF resources over the Web.

Acknowledgment. This work was partially supported by the FP7 project
Natural Europe (Project Ref. No 250579, Area CIP-ICT-PSP.2009.2.5 –

Digital Libraries), where we investigated how we can apply the SQM

Prototype Infrastructure in the context of the Natural Europe federation.

6. REFERENCES
[1] Schwarte A., Haase P., Hose K., Schenkel R., Schmidt M.: "FedX:

Optimization Techniques for Federated Query Processing on Linked

Data". In ISWC 2011.
[2] Quilitz, B., Leser, U.: "Querying distributed RDF data sources with

SPARQL". In ESWC 2008.

[3] Hartig O., Bizer C., Freytag J.C.: "Executing SPARQL queries over
the web of linked data". In ISWC 2009.

[4] Schultz A., Matteini A., Isele R., Bizer C., Becker C.: "LDIF -

Linked Data Integration Framework". In 2nd International Workshop
on Consuming Linked Data 2011.

[5] Polleres A., Scharffe F., Schindlauer R.: "SPARQL++ for Mapping

Between RDF Vocabularies". In ODBASE 2007.

[6] Rivero C. R., Hernandez I., Ruiz D., Corchuelo R.: "Generating

SPARQL Executable Mappings to Integrate Ontologies". In ER 2011
[7] Goasdoue F., Karanasos K., Leblay J., Manolescu I.: "View selection

in semantic web databases". In PVLDB, 5(1), 2012.

[8] Le W., Duan S., Kementsietsidis A., Li F., Wang M.: "Re-writing
queries on SPARQL views". In WWW 2011.

[9] Correndo, G., Salvadores, M., Millard, et al.: "SPARQL Query

Rewriting for Implementing Data Integration over Linked Data". In
1st Int. Workshop on Data Semantics 2010.

[10] Makris K., Bikakis N., Gioldasis N., Christodoulakis S.: "Towards a

mediator based on OWL and SPARQL". In WSKS 2009.
[11] Makris K., Gioldasis N., Bikakis N., Christodoulakis S.: "Ontology

Mapping and SPARQL Rewriting for Querying Federated RDF Data

Sources". In ODBASE 2010.
[12] Bikakis N., Gioldasis N., Tsinaraki C., Christodoulakis, S.:

"Querying XML Data with SPARQL". In DEXA 2009.

[13] Tsinaraki C., Christodoulakis S.: "Interoperability of XML Schema

Applications with OWL Domain Knowledge and Semantic Web

Tools". In ODBASE 2007.

[14] Perez J., Arenas M., Gutierrez C.: "Semantics and Complexity of
SPARQL". ACM Trans. Database Syst. (TODS) 34(3) 2009.

[15] Noy N.F., Musen M.A.: "PROMPT: Algorithm and tool for

automated ontology merging and alignment". In: AAAI/IAAI 2000.
[16] Makris K., Gioldasis N., Bikakis N., Christodoulakis S.: "SPARQL

Rewriting for Query Mediation over Mapped Ontologies". T.R. 2010

http://www.music.tuc.gr/reports/SPARQLREWRITING.PDF
[17] Bikakis N., Tsinaraki C., Gioldasis N., Stavrakantonakis I.,

Christodoulakis S.: "The XML and Semantic Web Worlds:

Technologies, Interoperability and Integration. A survey of the State
of the Art" In Semantic Hyper/Multi-media Adaptation: Schemes and

Applications, Springer 2012 (to appear).

