
Noname manuscript No.
(will be inserted by the editor)

Resource-Aware Adaptive Indexing for In-situ Visual Exploration
and Analytics

Stavros Maroulis · Nikos Bikakis · George Papastefanatos · Panos Vassiliadis ·
Yannis Vassiliou

Received: date / Accepted: date

Abstract In in-situ data management scenarios, large data
files which do not fit in main memory, must be efficiently
handled using commodity hardware, without the overhead
of a preprocessing phase or the loading of data into a database.
In this work, we study the challenges posed by the visual
analysis tasks in in-situ scenarios in the presence of mem-
ory constraints. We present an indexing scheme and adaptive
query evaluation techniques, which enable efficient categor-
ical based group-by and filter operations, combined with
2D visual interactions, such as exploration of data points
on maps or scatter plots. The indexing scheme combines a
tile-based structure, which offers efficient visual exploration
over the 2D plane, with a tree-based structure that orga-
nizes a tile’s objects based on its categorical values. The in-
dex is constructed on-the-fly, resides in main memory and is
built progressively as the user explores parts of the raw file,
whereas its structure and level of granularity are adjusted to
the user’s exploration areas and type of analysis. To handle
the cases where limited resources are available, we introduce
a resource-aware index initialization mechanism and we for-
mulate it as an NP-hard optimization problem; we propose
two efficient approximation algorithms to solve it. We con-
duct extensive experiments using real and synthetic datasets,
and demonstrate that our approach reports interactive query
response times (less than 0.04sec); and in most cases is more
than 100× faster and performs up to 2 orders of magnitude
less I/O operations compared to existing solutions. The pro-

⋆ Preprint: to appear in VLDB Journal 2022

S. Maroulis
Nat. Tech. Univ. of Athens & ATHENA Research Center, Greece

N. Bikakis and G. Papastefanatos
ATHENA Research Center, Greece

P. Vasssiliadis
Univ. of Ioannina, Greece

Y. Vassiliou
Nat. Tech. Univ. of Athens, Greece

posed methods are implemented as part of an open-source
system for in-situ visual exploration and analytics.

Keywords Data Visualization · Visual Analytics · Progres-
sive Indexing · In-situ Processing · Interactive Exploration

1 Introduction

A common task in data exploration scenarios involves in-
situ visual data analysis, in which data scientists wish to
visually interact and analyze large (and dynamic) raw data
files (e.g., CSV). These users usually have limited skills in
data management and limited resources or commodity hard-
ware for use (e.g., scientist’s laptop), in contrast to, e.g., a
distributed environment. In such scenarios, users need to
perform the analysis directly over the raw files, avoiding
the tedious tasks of loading and indexing the data in a data
management system. Still, they expect a very small data-
to-analysis time and they wish to interact via a rich set of
visual exploration and analytic operations. To this end, effi-
cient in-situ processing of raw files is a major challenge for a
large number of real-world tasks over diverse domains, such
as astronomy, business intelligence, finance, telco, etc.

Example. The data scientists working in telco companies
analyze network data in order to get insights regarding the
network quality. Such data are commonly stored in large
comma-separated data files and contain signal and latency
measurements crowdsourced from IoT mobile devices, e.g.,
connected cars, mobile phones.1

Figure 1(a) presents a sample of a raw file containing
five entries/objects (o1 - o5). Each entry represents a signal
measurement and contains information regarding the: geo-
graphic location (Lat, Long), signal strength (Signal) and
network bandwidth (Width), as well as network and device
characteristics which take categorical values such as: device
brand, network provider, and network technology (Net).

1 For example, https://www.tutela.com

https://www.tutela.com

Stavros Maroulis et al.

Raw
Data
File

On-the-fly
Processing &

Indexing

adapt

indexes

render pan zoom filter analysisdetails
?

Visual Operations

(c) Working Scenario

2D exploration

 1 4
8

ok

oj
oi

oj
oi

ok

analysis
1

2

3 4

5

6
Abrand = {Apple, Huawei, Samsg, Xiaomi}
Aprovider = {AT&T, Veriz}
Anet = {3G, 4G, 5G}

(b) Categorical Attributes Domains

(a) Raw Data File Sample

Long Lat Signal Width Brand Provider Net

 o1 21 11 3 7 Samsg Veriz 3G
 o2 29 18 1 4 Samsg Veriz 4G
 o3 11 1 7 6 Xiaomi AT&T 4G
 o4 19 7 2 3 Huawei AT&T 5G
 o5 23 18 4 8 Huawei Veriz 5G

O
bj

ec
ts

Attributes

Fig. 1: (a) Raw Data File Sample (b) Categorical Attributes Domains (c) Working Scenario Overview

Assume that a data scientist wishes to visually explore
the network data using a map. First, the user renders on
the map the signal measurements located in a specific ge-
ographic area, views details (e.g., provider) for the points
visualized, or filters out the ones that refer to AT&T. Next,
they may move (e.g., pan left) the visualized region in order
to explore a nearby area; or zoom-in/out to explore a part
of the region or a larger area, respectively. The scientist is
also interested in analyzing the data considering the points
in the visualized region by computing statistics between nu-
meric attributes, e.g., the Pearson correlation coefficient be-
tween the signal strength and the bandwidth; or visualize its
values using a scatter plot. Finally, the user may also be in-
terested to visually analyze data, exploiting also the crucial
information included in the categorical attributes; e.g., via a
heatmap to present the average signal strength per provider
and network technology, or a bar chart to present the aver-
age signal strength for each provider, or a parallel coordi-
nates chart to present the number of measures grouped by
provider, brand, and network technology.

Problem Requirements and Challenges. As demonstrated,
visual exploration and analytics over raw data is essential in
many real-world scenarios. Group-by analysis is required to
generate well-known visualization types, such as bar charts,
heatmaps, parallel coordinates, binned scatter plots, radar
charts, pies, etc. Many of these charts and interactions are
largely employed in common data analysis tasks, such as
feature extraction, OLAP analysis, regression, and compar-
ative analysis of spatial data [32]. Beyond the visual ana-
lytics requiring group-by operations, filter operations over
categorical attributes, enables the support of effective explo-
ration mechanisms, such as faceted search. These types of
analysis and queries have been widely optimized in tradi-
tional data warehouse systems, via spatial and multidimen-
sional indexes. However, these methods require loading the
data and tuning the indexes.

In-situ techniques, on the contrary, attempt to avoid the
overhead of moving, loading and indexing the data in a
DBMS, and improve performance by progressively adapt-

ing an index as the user explores data. The key objective is
how to offer fast user interactions without a preprocessing
phase. In what follows, we highlight the requirements and
technical challenges we address in this work.

In in-situ scenarios the exploratory and analysis opera-
tions are directly evaluated over the raw file. Using an in-
dex will enable the efficient evaluation of these operations.
This index should be constructed on-the-fly coupled with a
small data-to-analysis time, i.e., the time to parse and create
the index should be kept small even for very large datasets.
In this respect, the challenge is how do we construct an in-
dex on-the-fly (small construction time) which can enable
efficient query evaluation in interactive scenarios (fast re-
sponse time)? Additionally, since the cost of I/O operations
has a large impact on response time, the challenge is to de-
sign the index such that access to the file is reduced, and
efficient raw file parsing is achieved.

Next, in the cases where commodity hardware is used,
the data in a large raw file, as well as its index, does not fit
in memory. Especially, in cases where categorical attributes
are involved, the memory required to index the dataset be-
comes prohibitive even for a small number of attributes. For
example, Figure 2 shows the memory allocated for the ini-
tial “crude” version of our index, over different numbers of
categorical attributes, on a relative small dataset with 100M
objects (SYNTH10 dataset, Sect.8). We can observe that
for 4 categorical attributes, the size of the index is 31GB,
while indexing 5 attributes requires more than 64G of mem-
ory. These amounts of memory are not usually available in
commodity hardware-based scenarios. The challenge here is
what part of the data do we choose to index and how do we
optimize the index given a predefined memory size?

Moreover, a challenge is related to efficient query evalu-
ation over the index in exploration scenarios. The use of the
information inferred by the user interactions and analysis
tasks allows the improvement of the index, and the selection
of metadata (e.g., statistics, aggregates) which can be used
to improve the evaluation performance. Thus, the challenge
here is how do we progressively adapt the index and enrich
it with metadata, such that queries are efficiently evaluated?

Resource-Aware Adaptive Indexing for In-situ Visual Exploration and Analytics

0

10

20

30

40

50

60

1 2 3 4 5

M
e

m
o

ry
 (

G
B

)

Number of categorical attributes

crashed

Fig. 2: Indexing Memory Requirements vs.
Number of Categorical Attributes

Adaptive Indexing and In-situ Data Management. In the
last decade, there are several adaptive indexing techniques,
which aim to incrementally adjust the indexes and/or re-
fine the physical order of data, during query processing, fol-
lowing the characteristics of the workload [21,16,48,19,34,
16,17,33,38]. In most cases the data has to be previously
loaded/indexed in the system/memory, i.e., a preprocessing
phase is considered, and such methods try to adjust the (phys-
ical) order of data, performing extensive data duplication
and large memory consumption.

On the contrary, the in-situ paradigm has been recently
adopted when analysis should be performed directly on raw
data files (e.g., CSV, JSON), avoiding the overhead of fully
loading and indexing the data in a DBMS. Similarly, to tradi-
tional in-database adaptive methods, in-situ techniques
achieve performance by building indexes on-the-fly and pro-
gressively readjusting them as the user explores data. Works
in this area have proposed techniques for progressive load-
ing and/or indexing of raw data, for “generic” in-situ query
processing (mainly range queries) [2,18,44,25,24,35], and
for 2D visual operations over numeric attributes [7]. Nev-
ertheless, in in-situ scenarios, no attention has been given
for the support of: (1) exploratory aggregate queries (i.e.,
queries that include categorical-based group-by and filter
operations) in the presence of (2) limited memory resources,
such that index parameters (e.g., structure, size) are opti-
mized to the available memory allocated for the analysis.

Our In-situ Working Scenario. Figure 1(c) presents our
scenario. Assume that a user wishes to visually explore data
using a 2D visualization technique, e.g., scatter plot, map;
and analyze it using visual analytics and statistics. 1 The
user first selects the input file and a map as the underlying
visualization layout. The file is parsed on-the-fly and an ini-
tial “crude” version of the index is constructed. 2 Then,
the user interacts and performs visual and analytic opera-
tions on the map 3 . For example, generates visual data
representations (e.g., bar charts, heatmaps), or uses statis-
tical approaches (e.g., Pearson correlation) 4 . Eventually,
each user interaction and analytical operation is mapped to a
query evaluated over the index 5 , and triggers the readjust-
ment of the index structure and the update of its contents 6 .

Our Approach. In this work, we present an innovative in-
dexing scheme (VETI) and adaptive query evaluation tech-

niques in the context of in-situ visual analytics. Our methods
support efficient categorical-based group-by and filter oper-
ations, combined with 2D visual interactions, and statistics.
VETI is built on top of a tile-based structure which offers ef-
ficient visual exploration over the 2D plane, enhanced with
a tree-based structure that organizes a tile’s objects based
on its categorical values. The index resides in main memory
and is constructed on-the-fly given the first user query.

Further, we propose a query evaluation mechanism that
minimizes response time by: (1) progressively adjusting and
enriching the structure and metadata kept on the index to the
user’s exploration areas and type of analysis; (2) using the
index metadata for avoiding I/Os and performing memory-
based computations; and (3) accessing the the raw file in a
sequential manner.

For reducing the memory footprint during initialization,
we define a resource-aware index initialization approach,
which we formulate as an optimization problem, referred to
as SIN problem. Given the amount of available memory, the
initialization approach selects the initial index characteris-
tics (e.g., which categorical attributes to be indexed in each
tile), so that the memory allocated is lower than the avail-
able amount. We show that SIN is NP-hard, even in highly
restricted instances. To cope with the hardness of the SIN
problem, we design two efficient approximation algorithms.

In our experiments we illustrate that our approach, in
most queries, reports interactive query response times (less
than 0.04sec), over large raw files (e.g., 45GB). Compared
to the best existing solutions, our approach is more than
100× faster and performs up to 2 orders of magnitude fewer
I/O operations.

The proposed methods are integrated into RawVis [29],
an open source data visualization system for in-situ visual
exploration and analytics over big raw data. The source code
is available under GNU/GPL.2 Further, [37] combines the
proposed methods with real-time entity resolution techniques
for the analysis of raw data files of varying quality.

Contributions. The contributions of this work are summa-
rized as follows:

− We introduce a hybrid main-memory indexing scheme
for raw data that organizes the objects based on spa-
tial/numeric, as well as categorical attribute values.

− We formulate exploratory and analytical operations over
categorical attributes, that are mapped to query operators
over the underlying indexing scheme.

− We design interaction-based adaptation techniques that
progressively adjust the index structure and metadata.

− We implement a resource-aware index initialization ap-
proach, based on which the index characteristics are de-
termined w.r.t. predefined memory resources.

− We formulate the resource-aware index initialization as
an optimization problem, and we show that even in highly
restricted settings the problem is NP-hard. Also, we pro-
pose two approximation algorithms to solve it.

2 The source code is available at: github.com/VisualFacts/RawVis

https://github.com/VisualFacts/RawVis

Stavros Maroulis et al.

Table 1: Common Notation

Symbol Description

O, oi Set of objects, an object
A, ai,A Set of attributes, the value of attribute A of the object oi

Ax, Ay ,AC X Y Axis & Categorical attributes
C Ordered set of categorical attributes

Q,R Exploratory Query, its Results
I, IT VETI index; its Tiles
h, h.C CET tree; its Categorical attributes
h.N Number of CET nodes
t.h Tree h of tile t

ρt, ρh Tile & Tree utility
HPC Attributes-based Tree Powerset, given a set C

πh
t , πh

t .ω A Tile-Tree Assignment and its Utility
IΠ , Ω(IΠ) Index Assignments; Index Utility
B Initialization memory budget

πh
t .Φ Memory cost estimation for assignment πh

t

H Candidate tree set
Icost, IT cost, IHcost Memory cost of: index I, its tiles IT and its trees IH

− We implement the presented indexing scheme and the
methods in an open source visualization system.2

− We evaluate the performance and the effectiveness of our
methods using real and synthetic datasets.

Comparison to Previous Work. Some parts of this article
have been briefly presented in a preliminary version of this
work [30]. Here, we significantly extend [30] as follows.
(1) Regarding the tree structure (Sect. 3), we formally de-
fine and analyze the complexity of the tree operations; and
introduce new operations related to tree adaptation. (2) Re-
garding the query processing and index adaptation (Sect. 5),
we design and implement a mechanism that is based on the
new expand tree operation. (3) We introduce and study a
resource-aware index initialization mechanism (Sect. 6) and
design two approximation algorithms for implementing it
(Sect. 7). (4) In Section 8, we conduct extensive experiments
with several new metrics, parameters and datasets; including
experiments for the two initialization algorithms.

Compared to our previous work in the context of in-situ
visual exploration [7], here, we adapt and integrate the tile-
based index introduced in [7] into our indexing scheme. The
rest of the concepts studied in this article are not mentioned
in [7], i.e., categorical-based: (1) exploratory and analytic
operations, (2) indexing scheme, (3) query processing and
index adaptation; and resource-aware index initialization.

2 Exploration Model

This section presents the adopted exploration model. In this
work, we extend the model presented in [7] by defining three
new operations, i.e., grouping, filtering, and aggregating, over
categorical attributes. The basic concepts of this work and
notations are summarized in Table 1.

Raw Data File. We assume a raw data file F containing
a set of d-dimensional objects O. Each dimension corre-

sponds to an attribute A ∈ A, where A may be spatial,
numeric, categorical, or textual.

Objects. Each object oi is defined as a sorted list of d at-
tribute values oi = (ai,1, ai,2, ..., ai,d), and associated with
an offset fi (a hex value) pointing to the “position” of its first
attribute from the beginning of the file F . Also, the value
ai,A denotes the value of the attribute A for the object oi.

Let AC ⊆ A denote the categorical attributes of the
objects. Each categorical attribute AC is represented as a
finite set of values AC = {v1, v2, ...vn}, which defines the
domain of the attribute, i.e., dom(AC).

User Interactions. The exploration model denotes a series
of user interactions which are formulated as a set of oper-
ations (e.g., render, zoom). Given a raw data file, the users
arbitrarily select two numeric attributes Ax, Ay ∈ A, that
are mapped to the X and Y axis of a 2D visualization lay-
out (e.g., scatter plot, map). The Ax and Ay attributes are
denoted as axis attributes, while the rest as non-axis.3

The users visualize a rectangular area Φ = (Ix, Iy),
called visualized area, which is defined by the two inter-
vals Ix = [x1, x2] and Iy = [y1, y2] over the axis attributes
Ax and Ay , respectively; i.e., Φ corresponds to the 2D area
Ix × Iy . The visualized area contains the set of visible ob-
jects OΦ ⊆ O, for which the values of their axis attributes
fall within the ranges of that area.Note that the mapping of
the position (x, y) of the objects in the visualized area to
their values Ax and Ay in the data is linear, e.g., spatial co-
ordinates or any other affine mapping.

In this setting, the following operations/interactions are de-
fined: (1) render: visualizes the objects contained in the vi-
sualized area.; (2) move: changes the boundaries of the visu-
alized area, i.e., a pan operation; (3) zoom in/out : zooms the
boundaries of the visualized area keeping the center point
inside Φ fixed; (4) filter: excludes objects visualized in Φ,
based on conditions over the non-axis attributes; (5) detail:
presents information (e.g., attributes values) related to the
non-axis attributes; (6) group: finds group of objects based
on one or more categorical attributes, i.e., similar to the group-
by operation defined in SQL; (7) analyze: computes aggre-
gate or statistical functions over all objects or groups of ob-
jects in the visualized area.

These operations may be combined in a sequence; so, a
user exploration scenario is a finite sequence of operations
applied by the user.

Exploratory Query. Considering the aforementioned user
operations, we define the following data-access operators,
which compose the query applied to the data, referred as
exploratory query.

Given a set of objects O and the axis attributes Ax and
Ay , an exploratory query Q over O is defined by the tuple
⟨S,F,D,G,N⟩, where:

3 We assume that the users are familiar with the schema, the
min/max values and the domains of the attributes in the data file; other-
wise, they can have a preview of it, in terms of loading a small sample
or parsing the file once.

Resource-Aware Adaptive Indexing for In-situ Visual Exploration and Analytics

– Selection clause S: defines a 2D range query (i.e., window
query) specified by two intervals Ix and Iy over the axis
attributes Ax and Ay , respectively. The Selection clause is
denoted as S = (Ix, Iy) and its intervals are S.Ix and S.Iy .
This clause selects the objects OS ⊆ O, for which the val-
ues of their axis attributes fall within the respective inter-
vals, S.Ix and S.Iy . The Selection clause is mandatory in a
query Q, while the remaining clauses are optional.

– Filter clause F: defines a set of conjunction conditions that
are applied on the non-axis attributes. The Filter clause is
defined as F = {F1, F2, ...Fk}, where a condition Fi is a
predicate involving an atomic unary or binary operation over
object attributes and constants. The Filter clause is applied
over the selected objects OS, returning the objects OQ that
satisfy the F conditions.

– Details clause D: defines a set of non-axis attributes D =
{A1, A2, ...Ak}, for which the values of the objects OQ, will
be returned by the query.

– Group-by clause G: defines a set of categorical attributes
G = {A1, A2, ...Ak} with Ai ∈ C, which are used in a
group-by operation. Given a set of objects O and an at-
tributes set C, the group-by operation partitions O into a
set of distinct groups, denoted as GCO, based on the different
combinations of the values of the C attributes in the O ob-
jects. Thus, here, the Group-by clause G performs a group-
by operation based on its attributes, over the objects satisfy-
ing the filter OQ, resulting in the groups GG

OQ
.

– Analysis clause L: defines two sets of algebraic aggregate
functions (e.g., count, mean) [15], where each of them is
applied over a set of numeric attributes, returning a single
numeric value. Particularly, the Analysis clause defines two
sets of functions: (1) LQ that are computed over the objects
OQ returned by the query; and (2) LG that are computed
over each group of objects resulted by the group-by opera-
tions. Thus, the analysis clause is defined as: L = (LQ, LG).
Note that, the support of algebraic aggregate functions in our
model enables the computation of a large number of com-
plex statistics, e.g., Pearson correlation, covariance.4

The semantics of query execution involves the evalua-
tion of the different clauses of the query in the following
order: (1) Selection; (2) Filter; (3) Details; (4) Group-by;
(5) Analysis.

Mapping User Interactions to Exploratory Queries. A
user interaction can be mapped to clauses of an exploratory
query. Particularly, the render, move, and zoom operations
are implemented by the Selection clause; the render oper-
ation sets the Selection intervals Ix and Iy equal to the re-
gion of the visualized area, move sets the intervals equal to
the new intervals of the shifted area and zoom in/out op-
erations set the Selection intervals to the new coordinates
of the contained/containing visualized regions, respectively.
Finally, the filter, details, group, and analyze operations are

4 More than 90% and 75% of the statistics supported by SciPy and
Wolfram, respectively, are defined as algebraic aggregate functions
[46].

implemented by the query’s Filter, Details, Group-by and
Analysis clauses, respectively.

Query Result. The result R of an exploratory query Q over
O is defined as R = (Vx,y,D,VLQ

,VG), where:
(1) Vx,y,D is a set of tuples corresponding to the objects OQ

returned by the query. For each object, its tuple contains:
(a) the values of the axis attributes Ax and Ay; and (b) the
values of the attributes D defined in the Details clause. For-
mally, Vx,y,D = {⟨oi : αi,x, αi,y, αi,A1

, ...αi,Ak
⟩,∀oi ∈ OQ},

where {A1, ...Ak} = D.

(2) VLQ
is a list of the numeric values produced by the ag-

gregate functions LQ over the objects OQ. Formally,
VLQ

= {ℓ1(OQ), ℓ2(OQ), ...ℓk(OQ)}, ∀ℓi ∈ LQ.

(3) VG contains the results of the group-by clause. Particu-
larly, VG is a set of tuples, where each tuple corresponds to
a gi group from GG

OQ
. Each tuple contains: (a) the values of

the attributes G defined in the group-by clause; and (b) the
results of the aggregate functions LG (computed over gi).
Formally, VG = {⟨gi : ai,A1 , ...ai,Ak

, ℓ1(gi), ...ℓz(gi)⟩,∀gi ∈
GG
OQ

}, where {A1, ...Ak} = G and {ℓ1, ...ℓz} = LG.

3 CET Tree: An Index for Categorical Attributes

In this section, we present a tree structure that organizes
objects based on their categorical attribute values, named
CET (Categorical Exploration Tree). CET is designed as a
lightweight, memory-oriented, trie-like tree structure. In a
nutshell, each tree level corresponds to a different categori-
cal attribute, and edges to attribute values. Based on the tree
hierarchy, each node is associated with a set of objects, that
are determined based on the node path. These objects are
stored in the leaf nodes.

Overall, the design of the CET tree relies on the follow-
ing principles and challenges. First, considering the number
of attribute-value combinations which are required for cate-
gorical indexing, a significant amount of memory is required
(Fig. 2). Hence, the design of a memory-efficient categorical
structure is a major challenge, especially in our scenario,
where we consider limited available resources. To reduce
the memory footprint of the tree, we implement the follow-
ing techniques: (1) Each object allocates three numeric val-
ues: (a) two numeric values for the axis attributes; and (b)
one numeric value (i.e., file offset) that offers object-based,
precise “connection” between object and raw file (2) Statis-
tics are stored only in one tree level (in leaves), while the
hierarchical structure of CET allows the efficient compu-
tation of statistics over different levels, by performing ef-
ficient, in-memory aggregate operations. (3) The number of
tree elements is reduced (i.e., nodes/edges) during tree con-
struction, by considering attribute characteristics, i.e., size
of the attributes’ domain (see Sect. 3.1).

A second challenge is to reduce the cost of I/O oper-
ations which are crucial in such I/O-sensitive settings. Ex-
ploiting the way CET stores the objects during the initializa-
tion phase (Sect. 4.3), we are able to access the raw file in

Stavros Maroulis et al.

AT&TVeriz

Apple

Samsg Huawei

Xiaomi

Apple

Samsg
Huawei

Xiaomi

Pr
ov

id
er

le
ve

r
Br

an
d

le
ve

l

o1 o2 o5 o3 o4

a

b c

d e f g h i j k

c.S = AT&T, *
c.𝒪 = {o3, o4}

(a) CET Tree

d.S = Veriz, Samsg
d.𝒪 = {o1, o2}

object entries d.ℰ

o1 : ⟨21 11 f1 ⟩

o2 : ⟨29 18 f2 ⟩

 Long Lat File off.

metadata d.ℳ

 max(Width)=7
 ∑Width=11
 ∑Width2=65

 min(Signal)=1
 ∑Signal=4
 ∑Signal2 =10

Signal Width

n = 2
#Obj Signal & Width

∑Signal ∗ Width=25

(b) Contents of Leaf d

Leaf d

Fig. 3: CET Tree Overview

a sequential manner. The sequential file scan increases the
number of I/Os over contiguous disk blocks and improves
the utilization of the look-ahead disk cache. Note that, in
our experiments, the sequential access results in about 8×
faster I/O operations (more details in Sect. 5.1).

CET Structure. Given a set of objects O and an ordered
set (list) of categorical attributes C = {AC0 , AC1 , ...ACk

},
a CET tree h organizes the objects h.O based on the values
of the categorical attributes h.C. The height of h is |C|, so it
has |C|+1 levels (from 0 to |C|), with the leaf nodes storing
the objects.

CET follows a “level-based” organization, where each
level corresponds to a different attribute. Specifically, based
on the given order of the attributes C, the nodes at level i
have edges that correspond to a different value of the at-
tribute ACi

∈ C, i.e., dom(ACi
).

Each node n, is associated with a sequence of attribute
values n.S = ⟨v0, v1..., vk⟩, that is defined by the path from
the root to node n. The sequence contains |C| values, where
the value vi corresponds to a value of the attribute in level i.
Specifically, for a node n at the level i, the first ith values in
n.S are the attributes values found in the path from the root
to n, while the rest |C|− i values are assigned with the value
any, denoted as ∗.

Based on the sequence of values n.S, a node is associ-
ated with a set of objects n.O ∈ O, where its attribute values
are equal to the sequence’s values. As a result, the tree de-
fines an aggregation structure, where in each node, the asso-
ciated objects are the union of the objects associated with its
child nodes. Note that, to reduce the memory requirements
of the index, we maintain a hash table for each categorical
attribute mapping its values to numeric hashes.

Object Entries. Leaf nodes contain references to the data
objects, i.e., object entries. Note that, object entries are not
included in internal nodes. For each object oi ∈ n.O, an
object entry ei is defined as ⟨ai,x, ai,y, fi⟩, where ai,x, ai,y
are the values of the axis attributes and fi the offset (a hex
value) of oi in the raw file. As n.E we denote the set of ob-
ject entries stored in the leaf node n. In any case, an object
entry has a constant size that is not affected by the object’s
characteristics (e.g, number of attributes), and is equal to
three numeric values: the object’s Ax and Ay (e.g., two dou-
ble), and the object’s offset from the beginning of the file,
e.g., a long. The file offset fi defines a “direct and precise”
object-based connection between an object and the raw file.

Synopsis Metadata. Apart from object entries, each leaf
node n is associated with a set of synopsis metadata n.M,
which are (numeric) values calculated by algebraic aggre-
gate functions [15] over one or more attributes of the n.E
objects. Combining the algebraic aggregate functions allows
us to support a large number of statistics, e.g., Pearson corre-
lation, covariance.4 For example, we employ functions like
sum, mean, sum of squares of deltas over the objects of a
leaf. Using leaf metadata, we are able to compute the meta-
data of any internal node n, by aggregating the metadata of
the descendant nodes of n, in a bottom-up fashion.

Example 1. [CET Tree] Figure 3a presents the CET index
constructed for the categorical attributes C = {AProvider,
ABrand}. The dotted lines indicate parts of the tree that will
not be constructed for the particular dataset.

Considering the level-based organization, the level 0 cor-
responds to the Provider attribute (the first attribute in C),
and level 1 to Brand. The nodes in each level have as edges
the values of the level’s corresponding attribute, e.g., edges
of node a are the Provider values: Provider = {Ver, AT&T}.

Also, the node c has the associated sequence values c.S =
⟨AT&T, ∗⟩, where AT&T corresponds to the path of c, and
the value any is produced by the absence of the Brand at-
tribute (in the path). Further, c is associated with the objects
c.O = {o3, o4} that “match” with the c.S values, i.e., have
as Provider the value AT&T and the value any for Brand.

Regarding the leaf nodes, the leaf d stores the object en-
tries d.E and the metadata d.M for the objects
d.O = {o1, o2} that matches its values d.S = ⟨Veriz, Samsg⟩
(Fig. 3b). Here, metadata stores statistics regarding the Sig-
nal and the Width numeric attributes.

3.1 CET Operations & Analysis

Insert & Tree Construction. Insertion takes as input, a tree
h, an object o, and an ordered set of categorical attributes
C = {AC0

, AC1
, ...ACk

} and inserts o in a leaf node based
on the values ACi of its categorical attributes, constructing
new edges and nodes for the values that do not exist in the
tree. Also, the leaf metadata is updated w.r.t. the o numeric
attributes. The tree construction is implemented via sequen-
tial insert operations of its objects.

The computation complexity of the insert operation is
O(|C|), and that of construction considering n objects is
O(n |C|)).

Resource-Aware Adaptive Indexing for In-situ Visual Exploration and Analytics

Get Leaves/Objects Based on Filter Conditions. The get
leaves operation returns the leaf nodes L of a tree h. Based
on the conditions in the Filter clause F of a query, the op-
eration constructs paths p starting from the root to the leaf
nodes and returns the leaves L reached by all paths. The get
objects operation returns the object entries of the leaves L.

Regarding the computation complexity of the get leaves
and get objects operations, the worst case occurs when we
have to access all the leaf nodes in the tree. In that case, the
complexity is O(h.N) and O(h.N + |h.O|) respectively,
where h.N is the number of nodes in the tree and h.O its
objects.

Expand Tree with New Attributes. The expand tree oper-
ation adds new levels in the tree and reorganizes the objects
in the leaves. It is used when a query requests attributes not
existing in the tree. In such cases, the values of the missing
attributes retrieved from the file expand the tree (see Sect. 5).
The operation takes as input the new categorical attributes C,
and a subset of leaf nodes L of a tree h, which should be re-
organized based on C. For each leaf node li ∈ L, a subtree
hi having li as root is constructed, where hi has one level
for each attribute AC ∈ C and leaf nodes Lhi

. The objects
of each leaf node li are organized based on C attributes and
stored to the leaf nodes Lhi

of the generated tree hi. Further,
the metadata of the new leaf nodes Lhi

are computed.
Note that after the expand tree operation, the leaf nodes

of the tree may appear at different levels, as only the sub-
set of leaf nodes needed to evaluate a query are expanded
with the new attributes. This way, we avoid unnecessary I/O
operations by reading only the attributes for the objects in-
cluded in the query. Otherwise, we would need to read the
new attributes for every object in the tree in order to fully
create the new attribute levels.

Regarding, the computational complexity, the worst case
appears when the leafs L to expand, enclose all the tree ob-
jects h.O. In such a case, the complexity is O(|h.O| |C|).

Tree Space Complexity Analysis. Considering the CET in-
sertion process, nodes are created based on the values of
the objects being inserted in the tree. We can easily verify
that the maximum number of nodes in a CET tree occurs
when all possible combinations of values for its attributes
appear in the objects it contains. Given the tree attributes
h.C = {AC0

, AC1
, ...ACk

}, the maximum number of nodes
h.N is: 1+ |dom(AC0

)|+ |dom(AC0
)| · |dom(AC1

)|+ ...+
|dom(AC0

)| · |dom(AC1
)| · ... · |dom(ACk

)| =

1 +
|h.C|−1∑
i=0

i∏
j=0

|dom(ACj
)|. Note that the term “1” corre-

sponds to the root node.
Considering that a leaf node is created only if it is as-

sociated with at least one object, the maximum number of
leaf nodes is equal to the number of objects. Similarly, at
each level of the tree the number of nodes cannot be larger
than the number of objects. In what follows, we consider the
number of objects, in order to define a tighter upper bound
for the total number of nodes.

The maximum number of nodes can be determined using
the following recursive formula: Γ0 = 1 and
Γi = min(Γi−1 ·|dom(ACi−1)|, |h.O|), with 1 ≤ i ≤ |h.C|.
So, if we consider the number of objects is much greater than
the product of the size of the attribute domains, we have that

the maximum number of nodes is: 1+
|h.C|∑
i=1

Γi.

Since the memory for each node is almost the same (ex-
cept for the leaves where metadata is stored), here, for sim-
plicity, we assume that all nodes allocate equal memory. Fur-
thermore, all object entries have the same size (about four
numeric values). Therefore, the space complexity of CET is:

O(α+α
|h.C|∑
i=1

Γi + β |h.O|), where α and β are the memory

allocated by a node and an object entry, respectively.

Attributes Ordering vs. Tree Space. Based on the com-
plexity analysis, we can easily verify that the number of
nodes in a tree h depends on the mapping of its attributes h.C
to the levels of the tree and the size of their domain. Assum-
ing that the data follow a uniform distribution over the do-
main values of each attribute, we can reduce the number of
nodes (and edges) in the tree, by placing the attributes at the
levels of the tree in a top-down way based on their domain
size, i.e., smaller domains are placed closer to the root. So,
constructing a tree following this attribute order, will result
in lower space requirements. In our experiments, this at-
tribute order led to up to 10% reduction in total index mem-
ory requirements, compared to a random order (Fig. 15).

4 VETI: A Tile-Tree Adaptive Index

In this section, we present the VETI indexing scheme (Visual
Exploration Tile-Tree Index), that combines the tile-based
index presented in [7] and the CET tree structure. The design
of VETI relies on the basic challenges posed by the in-situ
exploration scenarios. First, the index construction should
entail a small overhead in the raw data-to-analysis time. To
this end, a lightweight, “crude” version of VETI is initially
constructed on-the-fly, by parsing the raw file once. More-
over, the characteristics of this initial VETI version are de-
fined by considering query and data-related factors in order
to improve the performance of the initial user interactions.
Second, during the exploration, the index should support ef-
ficient exploratory and analytic operations. Thus, based on
user exploration, efficient structure adaptation and object re-
organization are employed to adjust the index to user inter-
actions. Third, considering the limited available resources,
VETI uses lightweight tree and tile structures with prede-
fined memory resources allocated to them (Sect. 6).

4.1 Tile Structure

Our work is built on top of a variation of the VALINOR tile-
based index, referred also as tile-structure [7].

VALINOR is a hierarchical tile-based index, which is
stored in memory and organizes the data objects into hier-

Stavros Maroulis et al.

Lat

 10 20 30 Long

o1

o2

o5

o4

o3

10

20

tZ

Tile tz

tz.ILong = [10, 20)
tz.ILong = [0, 10)

intervals

child tiles =

Tree tz.h

Huawei

AT&T

Xiaomi

a

c

o3
j o4

k

tk
object entries k.

Contents of leaf k

...

metadata k.
...

Fig. 4: VETI Index Overview

archies of non-overlapping rectangle tiles. The index’s tiles
are defined over the domains of the Ax and Ay attributes
and a tile t in the grid is defined from two ranges t.Ix and
t.Iy , in the same domains, respectively. Each tile encloses a
set of objects t.O, when the values ai,x and ai,y of an object
oi ∈ t.O fall within the intervals, t.Ix and t.Iy of the tile,
respectively.

T is the set of tiles defined in the structure. The index is
initialized with an initial set of tiles (see Sect. 4.3) and pro-
gressively adjusts itself to the user interactions, by splitting
the tiles visited into more fine-grained ones, thus forming a
hierarchy of tiles.

In each level of the hierarchy, there are no overlaps be-
tween the tile intervals of the same level, i.e., disjoint tiles.
A non-leaf tile t can have an arbitrary number of child tiles,
enclosing the intervals of its children. That is, given a non-
leaf tile t defined by the intervals t.Ix = [x1, x2) and t.Iy =
[y1, y2); for each child tile t′ of t, with t′.Ix = [x′1, x

′
2) and

t′.Iy = [y′1, y
′
2), it holds that x1 ≤ x′1, x2 ≥ x′2, y1 ≤ y′1

and y2 ≥ y′2. The Leaf tiles correspond to tiles without chil-
dren and can appear at different levels in the hierarchy.

Figure 4 presents the tile-structure of the data in Fig-
ure 1, which divides the 2D space into 4 × 3 equally sized
disjoint tiles, and a tile tk is further divided into 2× 2 subti-
tles of arbitrary sizes, forming a tile hierarchy.

4.2 VETI: Combining Tiles and Trees

In this section we present the VETI index (Visual Exploration
Tile-Tree Index) which combines the tile-structure with CET
trees. VETI is defines as follows: given a raw data file F ,
two axis attributes Ax and Ay , and a set C of categori-
cal attributes of the objects stored in F , the VETI index I
organizes the objects stored in F into hierarchies of non-
overlapping tiles based on its Ax, Ay values, where tiles are
also associated with CET trees which organize objects based
on categorical attributes from C.

Let IT be the tiles of I. Each leaf tile t ∈ IT is associated
with a CET tree h, denoted as t.h. The associated tree t.h of
a tile t, organizes the objects t.O enclosed by t, based on
a set of categorical attributes C′ ⊂ C, i.e., h.O = t.O and
h.C = C′. Thus, trees of different tiles may organize their
objects based on different sets of categorical attributes.

The objects t.O enclosed in a tile t are stored in the leaf
nodes of the associated tree t.h and can be accessed via a

Algorithm 1. Initialization (F , Ax, Ay , C, Q0, B)
Input: F : raw data file; Ax, Ay : axis attributes;

C: categorical attributes; Q0: first query
Output: I: initialized index; R0: result of query Q0

1 IT ← IT.constructTiles(Ax, Ay,AC, Q0) //determine the number, size &

intervals of the tiles, and construct them

2 IΠ ← find tile-tree assignments //see Sect. 6

3 foreach oi ∈ F do //read objects from file, insert them to trees & evaluate Q0

4 read from F the values of axis and categorical C, and the attributes
required to evaluate the Q0 Analysis clause

5 use the oi attributes to evaluate Q0

6 ti ← find the tile ti ∈ IT that encloses oi based on its axis attributes values

7 insertToTree(ti.h, C, oi) //insert oi to tree ti.h (Proc. 1, Sect. 3.1)

8 return I, R0

pointer to the root node of the tree t.h. In case the objects of
a tile are not indexed based on any categorical attribute (i.e.,
h.C = ∅), the tree h corresponds to a node (root) that stores
all the object entries.

The VETI index I is defined by a tuple ⟨IT , IT, IH,AS⟩,
where IT is the tile structure (along with the its trees) de-
fined in the index; IT is the tiles initialization strategy defin-
ing the methods that determine the characteristics of the tile
structure; IH is the tree initialization strategy defining the
methods that determine the characteristics of the tree struc-
tures over the tiles; AS is the adaptation strategy defining
the methods for reconstructing the tiles and trees based on
user interaction.

The basic operations of VETI are: initialization (Sect. 4.3),
query evaluation (Sect. 5), and adaptation (Sect. 5.2).

Example 2. [VETI Index] Figure 4 presents the contents of
tile tz , highlighted with grey color in the index, that contains
objects o3 and o4. For tile tz , the index stores its intervals
tz.ILat and tz.ILong , its child tiles tz.C, and a pointer to its
tree tz.h, which contains nodes a, c, j, and k. Finally, the
contents of the leaf node k are shown in the figure (we omit
presenting the detailed object entry and the metadata).

4.3 VETI Initialization

In our approach, we do not require any preprocessing or
loading phase. The index is constructed on-the-fly when the
user first requests to visualize the file. During the initializa-
tion phase, the following tasks are realized. First, the char-

Resource-Aware Adaptive Indexing for In-situ Visual Exploration and Analytics

acteristics of the index are determined, i.e., the initial set of
tiles and the structure of each tree assigned to each tile are
defined; then, the file is parsed and the index is populated;
finally, the first user query is evaluated.

Algorithm 1 outlines the initialization phase. It takes as
input, the raw file F , the axis and categorical attributes Ax,
Ay and AC , and the first exploratory query Q0; and returns
the initialized index I and the results R0 of the Q0.

Initially, the tile structure characteristics are determined
(i.e., number, size and intervals of the tiles) and the tiles IT
are constructed (line 1). Next, based on the constructed tile
structure, the assignments IΠ of trees to tiles IT are deter-
mined (line 2). Details about the assignment selection meth-
ods are presented in Section 6.

In the next part (loop in line 3), the algorithm scans the
file F and reads, for each object oi, the values of the axis
attributes ai,x, ai,y , the categorical attributes, and the at-
tributes which are required to evaluate the Analysis clause
of Q0 (line 4). Next, the tile ti that encloses oi is found
(line 6), and the insertToTree method (Procedure 1), inserts
oi into the tree ti.h (line 7). During the insertion, the object
entry is constructed, the tree metadata are updated, and new
parts (i.e., nodes, edges) of the tree may be constructed.

Tile Structure Initialization. The constructTiles method is
defined by the tile initialization strategy IT, and determines
the tile structure characteristics, e.g., number, size and inter-
vals of the tiles. These characteristics can be defined via nu-
merous approaches (for more details see [39]). For instance,
they can be either given explicitly by the user, e.g., in a map
the user defines a default scale of coordinates for the ini-
tial visualization; determined by the visualization setting,
considering certain characteristics (e.g., visualization type,
screen size/resolution), previous sessions, task, user prefer-
ences [39,22,3,43]; or computed based on techniques that
consider data characteristics in order to divide the data space
into tiles of equal size [6].

In this work, we use a query-driven initialization pol-
icy for initializing the tiles, adapted from [7], which con-
siders: (1) the user exploration entry point, i.e., the position
of the first user query in the 2D space; (2) the window size
of the first query; and (3) the locality-based behavior of the
exploration scenarios, i.e., users are more likely to explore
nearby regions of their initial entry point [49,23,43,3,47,
11]. In nutshell, the query-driven tile initialization defines a
tile structure that is more fine-grained (i.e., having a larger
number of smaller tiles) in the area around the initial query,
whereas the size of tiles becomes larger as their distance
from the initial query increase.

In more details, first, the tile initialization method con-
siders an initial set of tiles T0 with each tile having a fixed
size l0x × l0y (details on the selection of these parameters
are described in [7]). Then, it computes for each tile t ∈ T0

an initialization split factor SF . The latter determines the
number of equally-sized subtiles that this tile t will be split
into. For example, if SFQ0(t) = 4, the tile t will be split
into 4 equally-sized subtiles, with size of (l0x/2)× (l0y/2).
For computing the split factor SF , we consider a bivariate

normal distribution around the initial query position, which
assigns larger numbers to tiles close to the initial query’s
center, i.e., tiles are split into more subtiles around the ini-
tial user query.

Increasing the number (i.e., decreasing the size) of tiles
near the first query, increases the probability that subsequent
queries in this neighborhood overlap with fully-contained
tiles, which in turn reduce the number of I/O’s. As an I/O
operation we denote the file access in order to read an object
(i.e., all attributes values), or some of its attribute values.
So, the number of I/O operations corresponds to the number
of rows from which we read attribute values. More details
about query evaluation are presented in the next section.

Discussion. Note that, beyond CET trees, we also studied
alternative structures for indexing categorical attributes in
VETI. Specifically, we considered the use of bitmap struc-
tures which are effective for indexing low cardinality at-
tributes and are highly compressible. In brief, in a VETI
variation we implemented, we combined the tile structure
with a set of bitmap structures instead of CET trees. In this
variation, based on the objects t.O of a tile t, a bitmap struc-
ture is constructed for each distinct value of every categori-
cal attribute in t.C. As in our approach, apart from the object
entries, each bitmap is also associated with a set of metadata
pertaining to its objects indexed in it. Note that, several other
bitmap-based variations were studied, however due to lack
of space their descriptions are omitted.

In our experiments, as it was expected, the bitmap vari-
ations requires, in general, less memory than the VETI with
CET trees. This is not only the result of the use of the highly
compressible bitmaps, but also because the bitmap varia-
tions maintain metadata for single categorical attribute val-
ues and not for different combinations. On the other hand,
the query evaluation performance is significantly lower. The
limited metadata stored in the bitmap variations cannot be
utilized to avoid I/Os for queries that involve two or more
categorical attributes. As a result, VETI is in most queries
more than 2-3× faster and requires less than the half I/O
operations compared to the bitmap implementations.

5 Query Processing & Index Adaptation

This section describes the query processing methods of our
approach. Figure 5 outlines the workflow, whose steps are
described in the following example5. More details on the
query evaluation over the index are given in Section 5.1 and
on index adaptation in Section 5.2.

Example 3. [Query Processing & Index Adaptation] As
input we have the initialized index, an exploratory query
and a raw file. Considering the objects in Figure 1, we as-
sume an exploratory query Q with the following clauses

5 Note that, since several details are omitted, the order of the steps
may be different compared to the following paragraphs, where the pro-
cess is presented in detail. Also, in the implementation, several of these
steps are performed in parallel.

Stavros Maroulis et al.

Lat

 10 20 30 Long

o1

o2

o5

o4

o3

10

20

t1

t3

expand t2c.h & t3.h adding
a node with the Net value 5G

t4

t2

Huawei

Veriz

Samsg

o1 o2
 o5

t2.h t2c.h t2b.h

generated trees t2c.h & t2b.h

resulted by splitting tile t2

Query Q

Huawei

Veriz

Samsg

o1
 o5

Samsg

Veriz

 o2

t2c.h

t1

t3 t4

t2a

t2d

t2b

t2c

Lat

 10 20 30 Long

o1

o2

o5

o4

o3

10

20

Q

5G

Huawei

Veriz

Samsg

o1

 o5

Huawei

AT&T

Xiaomi

 o3

 o4

5G

t3.h

Q

 2
retrieve from the file:

 the Net values for o4 & o5

o4 o5

Net

compute result
using t2c.h & t3.h

({ o4 : 19, 7 , o5 : 23, 12 } ,

{ AT&T, 1 , Veriz, 1 })

Result

1

2

5

z

3

split t2 into tiles:
t2a t2b t2c t2d

4

find objects for which we have to retrieve attribute values

Step 1
 find trees which their tiles overlap with the query: t2c.h, t2b.h, t3.h

Step 2
 find leaves based on the filter condition (Brand = Huawei): ,

Step 3
 find objects contained in leaves , o4, o5

 find which are the missing attributes
that are required in the query

Net attribute: included in the
Filter clause

o4 : Net = 5G

o5 : Net = 5G

File

6

7

8

t3.h

Huawei

AT&T

Xiaomi

 o4o3 1

Selection: S.ILong=[15, 26], S.ILat=[5, 17]
Filter: F = {Brand = Huawei, Net = 5G}
Group-by: G = {Provider}
Analysis A = {count(*)}

determine tiles that overlapped
with query (t1 t2 t3 t4)

1 find the tiles that overlapped with the query

2 split the tiles overlapped with the query

3 generate the trees for the new subtiles

4 find the attributes which we have to retrieve from the file

5 find the objects for which we have to retrieve attribute values from the file

6 read the missing values from the file

7 adapt trees (i.e., expand) & update metadata based on the retrieved attribute values

8 compute the result using the determined objects, and the updated trees & metadata

Fig. 5: Query Processing & Index Adaptation Example

(left upper corner in Fig. 5) : (1) Selection clause: S with
S.ILong=[15, 26] & S.ILat=[5, 17]; (2) Filter clause: F =
{Brand = Huawei, Net = 5G}; and (3) Group-by clause:
G = {Provider}; and (4) Analysis clause: L = {count(∗)}.

Further, we assume that the index is initialized and every
tile has a tree with the attributes Provider and Brand. Addi-
tionally, the tree leaves contain aggregate metadata for the
Signal attribute. The query processing and index adaptation
are depicted in Figure 5.

1 To evaluate query Q we first find the leaf tiles that
spatially overlap (i.e., partially or fully-contained) with its
Selection clause, i.e., t1, t2, t3, t4. 2 Next, we check if
the overlapping tiles need to be split, in such case, the tiles
are split into smaller subtiles. The tile splitting may be per-
formed based on different methods, such as: equally or
arbitrary-sized splitting. In each splitting step, the process
considers criteria related to I/O cost in order to decide whether
to perform a split or not (more details at Sect. 5.2). In our ex-
ample, we assume that t2 is split into four equal disjoint sub-
tiles: t2a , t2b , t2c , t2d . 3 Then, the objects are reassigned to
the new subtiles and their trees are generated; here, the trees
t2c.h and t2b.h of the new subtiles t2b and t2c .

4 We, then, find the attributes of the query which are
not contained in the index, and for which their values have
to be retrieved from the file. In our example, the query’s Fil-
ter clause includes conditions over the Brand and Net at-
tributes, i.e., Brand = Huawei, Net = 5G. Also, the Group-
by clause contains the Provider attribute. Since the index
was initialized to include the categorical attributes Brand
and Provider, values for the Net attribute are not available
in the index.

5 We determine the objects for which we have to read
the NET attributes from the file. For that, considering the

tiles that overlapped with the query (t2a , t2b , t2c , t2d , t3,
t4), we identify the trees of these tiles (t2b .h, t2c .h and t3.h.)
and we traverse each tree for identifying their leaves which
evaluate to the query’s condition Brand = Huawei. These
leaves are ℓ1 and ℓ2 from the trees t2c .h and t3.h, which
contain the objects o4 and o5. 6 For these objects, we read
the file and retrieve the Net attribute values.

7 Based on the values retrieved from the file, trees are
adapted/expanded (e.g., create new nodes/edges, reorganize
leaf objects) in order to include the new attribute and update
the metadata. Here, using the retrieved Net values of o4 and
o5, the trees t2c .h and t3.h are expanded to include the new
categorical attribute NET (see expand operation, Sect. 3.1).

8 Finally, query Q is evaluated on the objects o4 and o5
for the condition Net = 5G, and on the tree metadata for the
Group by and Analysis clauses. In our example, the count
function is calculated by the number of objects in each leaf
node. The result consists of: the tuples of the selected ob-
jects o4 and o5 and their axis attributes ({⟨o4 : 19, 7⟩, ⟨o5 :
23, 12⟩}); and the tuples that form the result of the Group by
and Analysis clause ({⟨AT&T, 1⟩, ⟨V eriz, 1⟩}).

5.1 Query Processing

The main query processing is presented in Algorithm 2. The
algorithm also includes the index adaptation phases, which
are analyzed in the next section. The algorithm takes as in-
put, the initialized index I, an exploratory query Q and the
raw file F . Next we provide details on the implementation
of each step presented in the previous example.

Find and Adapt Query’s Overlapped Tiles & Trees. Once
the index has been initialized, the algorithm finds the leaf

Resource-Aware Adaptive Indexing for In-situ Visual Exploration and Analytics

Algorithm 2. Query Processing (I, Q, F)
Input: I: index (initialized); Q⟨S, F, D, G, L⟩: query; F : raw data file
Variables: TS: leaf tiles that overlap with the Selection clause, i.e., 2D area;

Ta: tiles resulted from adaptation; L: tree leaf nodes
selected by the Query; W(⟨l,V⟩): set of tuples ⟨l,V⟩,
where V are objects’ attributes, and l its leaf

Parameters: AS: adaptation strategy;
Output: R: result of query Q

1 L← ∅
2 TS ← getLeafTilesOverlappedWithQuery (IT , S)
3 foreach ts ∈ TS do
4 Ta ← AS.adaptTileAndTree (ts, Q) //see Sect. 5.2

5 ∀ta ∈ Ta : L←L
⋃

getLeavesBasedOnFilter (ta.h, F)
//Procedure 2 (Sect. 3.1)

6 W(⟨l,V⟩)← getLeavesRequiringFileAccess (L, Q) //set of tuples,

where V are the attributes of a leaf l whose their values need to be retrieved from the file

7 ifW ≠ ∅ then //values are missing — read from file

8 read from file the values of attributes V for the objects of leaf l, ∀⟨l,V⟩ ∈ W

9 expandTree (l, V) ∀⟨l,V⟩ ∈ W //update tree based on retrieved attributes;

i.e., expand tree’s leaf l with its missing attributes V (Sect. 3.1)

10 updateLeafMetadata (l) ∀l ∈ W

11 R ← evaluate Q using the objects and the metadata of leaves L
12 returnR

tiles TS that overlap with the 2D area defined in the query’s
Selection clause S (line 2). The function getLeafTiles
OverlappedWithQuery determines the overlapping tiles at the
highest-level, and then traverses the tile hierarchy to find the
set of overlapping leaf tiles TS.

Next, based on the adaptation strategy AS, the
adaptTileAndTree procedure (line 4), performs the tile split-
ting and reorganizes the trees (constructing new or modify-
ing existing) that are included in the tiles Ta created by the
splitting process (more details in Sect. 5.2). Finally, consid-
ering any conditions over categorical attributes that are de-
fined in the Filter clause, getLeavesBasedOnFilter retrieves
the leaf nodes L of the Ta trees (line 5).

Determine the Objects that Require File Access. After
identifying the tiles overlapping with the query and the cor-
responding leaves, we determine the objects for which we
have to access the raw file in order to answer the query.

Procedure getLeavesRequiringFileAccess (L, Q) (line 6),
first, considers the spatial relation between the 2D area spec-
ified in a Select clause and the tiles it overlaps. Specifically,
a tile t that overlaps a query Q can be partially-contained or
fully-contained in Q. So, the procedure for each leaf node in
L, first checks if the tile it belongs to, is partially or fully-
contained in the query Q. In the case that a leaf belongs to
a partially-contained tile, the leaf metadata can not be used,
since only a subset of a (leaf’s) objects could be selected
by the query. Hence, we need to find the objects of the leaf
that are contained in the query; then, for these objects, we
retrieve from the file the attributes required to compute the
metadata and evaluate the Analysis clause of the query.

Apparently, in the case that a leaf belongs to a fully-
contained tile, we do not need to traverse its objects in or-
der to find the ones that are included in the window and the
tile’s metadata can be used without the need to access the

file. In fully-contained tiles, file access is needed only when
the query refers to attributes for which information is not
stored in the index, e.g., Net attribute in the query example.

Based on the aforementioned, the procedure
getLeavesRequiringFileAccess identifies the attributes, whose
values have to be retrieved from the file. Finally, it returns a
list W of tuples ⟨l,V⟩, where V are the attributes that must
be retrieved for the objects included in the leaf l.

Read Objects’ Attributes from File. To reduce the cost of
reading the missing attributes from file (line 8), we exploit
the way the object entries are stored in the leaves in order
to access the file in a sequential manner. During the initial-
ization of the index, we append the object entries into the
leaf nodes of the CET trees as the file is parsed. As a result,
object entries in every leaf node are stored sorted based on
their file offset. When accessing the file, we read the objects
from the leaves following a k-way merge based on their file
offset. Thus, we are able to access the raw file in a sequen-
tial manner. The sequential file scan increases the number
of I/O operation over continuous disk blocks and improves
the utilization of the look-ahead disk cache. Note that, in our
experiments, the sequential access results in about 8× faster
I/O operations compared to accessing the file by reading ob-
jects on a “leaf basis”, i.e., read the objects of leaf li, then
read the objects of tile lk, etc.

Adapt Trees and Update Metadata based on the Attributes
Read from File. Next, based on the attributes for which val-
ues are read from the file, the trees (of fully-contained tiles)
are adapted/enriched to include the retrieved attributes. Par-
ticularly, the expandTree procedure (Sect. 3.1) adapts/enriches
the trees by including the retrieved attributes and reorganizes
the objects (line 9). As already discussed in Section 3.1, the
expandTree procedure expands the trees only for the objects
that it needs to read from the file to evaluate the query. This
partial tree expansion adapts the trees with new attributes
without performing unnecessary I/O operations. Then, the
function updateLeafMetadata computes and updates the meta-
data using the values retrieved from the file (line 10).

Evaluate Query. Finally, we evaluate query Q using the ob-
jects and metadata of the leaf nodes L (line 11). Here we
use the attribute values retrieved from the file to check the
filter conditions that do not involve categorical attributes.
Also, we need to check the objects belonging to trees miss-
ing some of the categorical attributes included in the Fil-
ter clause. Finally, the Group-by and Analysis clauses are
evaluated using: (1) existing metadata of the fully-contained
tiles, if their corresponding CET trees include all the cat-
egorical attributes of the query; (2) for all other cases, the
values retrieved from the file.

5.2 Incremental Index Adaptation

VETI employs an incremental index adaptation model that
attempts to adapt the index structure to the query workflow
of the user exploration. Each query may result in splitting

Stavros Maroulis et al.

the tiles overlapping the Selection clause into smaller sub-
tiles. Tile splitting increases the likelihood that a tile in-
cluded in the area that the user exploration focuses on, will
be fully-contained in a future query and the use of meta-
data in fully-contained tiles will reduce the number of file
accesses, improving the query performance. For that reason,
splitting is performed as a first step of the query evaluation
process, such that we compute metadata for the new sub-
tiles and then evaluate the query over a more fine-grained in-
dex. Specifically, it is performed after function getLeafTiles
OverlappedWithQuery has determined the leaf tiles that over-
lap with the Selection clause (line 2).

Procedure adaptTileAndTree (line 4) is responsible for
the incremental adaptation. It takes as input a tile t and a
query Q and returns a set of subtiles Ta if t needs to be split.

To split, or not to split? During query processing, we ex-
amine each tile that overlaps with the query if it needs to be
split. To determine if a tile t requires (further) splitting, we
define a model that estimates the expected splitting gain in
terms of I/O cost, for evaluating a (future) query Q, in case
of splitting t. If the expected splitting gain for a tile, exceeds
a given splitting threshold, a split is performed. A further
analysis of the splitting model is presented in [7].

In our implementation, the I/O cost is formulated by the
selectivity of Q over t, where selectivity is computed by the
number of objects in t and the filter conditions defined in Q.

Tile Splitting. After the tile splitting, the adaptTileAndTree
(line 4) procedure returns a set of subtiles Ta. Each one of
the children contains a tree with the same set of categorical
attributes as their parent tile. The objects contained in the
leaf nodes of the parent tile’s tree are reorganized in the leaf
nodes of the new trees according to their values for the axis
attributes, as well as the categorical attributes.

In our implementation for VETI, we employ a quad-tree
like splitting approach in which a tile is split into 4 equal
subtiles. However, more sophisticated methods can be used
to split a tile, e.g., query based splitting methods [7].

Reorganize Trees in Splitted Tiles. As discussed in Sec-
tion 3.1, the order of the attributes in a tree affects its size
(number of nodes/edges). Hence, during splitting, the at-
tributes of the trees that are generated in the new subtiles,
are sorted so that the attributes with smaller domain sizes
are placed closer to the root. For this, we consider the dis-
tinct values of the categorical attributes within the bounds of
the parent tile t. Then, we reorganize the objects of t into the
trees of the children Ta.

To reorganize the objects, we perform Depth-first search
in the tree t.h to iterate over all of its leaf nodes. Based on
the path of every leaf node from the root, we can determine
the values of its categorical attributes. Then, for each object
entry of a leaf node, we find the subtile that encloses it and
we insert it into its tree (using the insert operation).

Adaptation Computation Complexity. The overall com-
putational cost of tile splitting, consists of the cost of split-
ting the tile t, constructing Ta, and reorganizing the objects

t.O in Ta trees. First, we have to determine the intervals
of Ta, and define the subtiles as child tiles of t, i.e., initial-
ize the child pointers. These can be performed in constant
time O(1). Then, we perform Depth-first search (DFS) in
the tile’s tree h, and reinsert its objects into the trees of the
subtiles. The cost of DFS is O(h.N), where h.N is the num-
ber of nodes in the tree, and the cost of the insert operation
is O(|h.C|). So, the overall cost is O(h.N + |t.O| |h.C|).

6 Resource-aware Index Initialization

In this section, we present the initialization of the CET trees
and their assignment to tiles. Recall from Figure 2, that more
than 64GB is required for VETI to create full trees from
five categorical attributes. Our goal here is to determine the
structures of the trees (the categorical attributes that will be
placed as levels in the tree) and assign them to tiles based
on the “utility” of each tree. The latter depends on the utility
of the categorical attributes it contains; we consider that an
attribute has a higher utility score when its inclusion in the
tile’s tree is expected to improve the performance in the user
exploration scenario.

We define the ReSource-aware INdex Initialization (SIN)
problem and formulate and solve it as an optimization prob-
lem of assigning trees to tiles based on the utility score. In
what follows, we first provide some preliminaries and then
define the SIN problem.

6.1 Preliminaries

Tile Utility. Let a tile t, the tile utility ρt ∈ [0, 1] formulates
the possibility that a future exploratory query will overlap
with t. For the distribution of ρt, we follow the approach
in [7]. Based on the locality-based characteristics of 2D ex-
ploration scenarios, users are more likely to explore nearby
regions of their initial exploration entry point [49,23,43,3,
47,11]. Thus, given an initial query Q0, the next queries are
more likely to overlap with tiles near Q0 and the value of ρt
is larger in tiles near Q0. Particularly, in [7] the probability
that a query overlaps with a tile t is modeled considering
a bivariate normal distribution based on the distance of the
tiles from the center of Q0.

Attribute Score & Tree Utility. We assume that each cat-
egorical attribute c has a score c.S ∈ [0, 1], that represents
the probability that a future query will request this attribute.
We define the attribute score based on the “repetitive cal-
culation of statistics” that appears in exploration scenarios
[46], i.e., we assume that the attributes requested by the ini-
tial query Q0, are more likely to be requested by next user
interactions. Using the attributes scores, the tree utility is
defined as follows.

Given a tree h, the tree utility ρh ∈ [0, 1] formulates
the possibility that an exploratory query requests informa-
tion stored in the tree. Without loss of generality, we define
the tree utility ρh as the normalized sum of the scores of the
tree attributes h.C:

Resource-Aware Adaptive Indexing for In-situ Visual Exploration and Analytics

ρh =

∑
c.S

∀c ∈ h.C∑
c.S

∀c ∈ C

(1)

Example 4. [Running Example] Consider a VETI index
with six tiles (t1- t6); three categorical attributes Provider
(P), Brand (B) and Net (N), with domain size 2, 4, and
3, respectively; and a query Q0 that includes a Group-by
clause on attribute P , and a Filter clause on attribute B.
We assume that Q0 overlaps with t1 and based on the other
tiles’ position, the tile utilities are: ρt1 = 0.6, ρt2 = 0.1,
ρt3 = 0.1, ρt4 = 0.1, ρt5 = 0.05, and ρt6 = 0.05.

Regarding the categorical attribute scores, the attributes
P and B are included in Q0 and assigned with a score 0.8,
whereas N has score 0.1. Additionally, assume the trees:
hP,B .C = {P,B}, and hP,N .C = {P,N}. The tree hP,B

that includes both attributes of Q0 will have a larger utility
than hP,N which includes only one of them. Based on the
Eq. 1 the tree utilities are ρhP,B

= 0.96 and ρhP,N
= 0.82.

Tile-Tree Assignment. A tile-tree assignment (or simply
assignment) πh

t , assigns a tree h to a tile t. So, given a tile t
and a tree x an assignment πx

t defines that ti.h = x.

Tile-Tree Assignment Utility Each tile-tree assignment πh
t

is associated with a utility πh
t .ω ∈ [0, 1], which formulates

the possibility that a query is going to request information
from the tile t involving the attributes h.C of its tree. In-
tuitively, the utility formulates the “effectiveness of the in-
formation” contained by a tile-tree assignment during query
evaluation. The tile-tree assignment utility is defined as the
joint probability of the tile utility ρt and the tree utility ρh:

πh
t .ω = ρt · ρh (2)

Attributes-based Tree Powerset. Given a set of categorical
attributes C, the attributes-based tree powerset HPC , con-
tains the trees generated by considering all possible subsets
of C. That is 2|C| trees, containing also the tree with no at-
tributes, i.e., empty tree.

Index Assignments. Given a VETI index I, its tiles IT ,
and the categorical attributes C; the index assignment set IΠ
contains all the tile-tree assignments defined in the index
tiles IT , i.e., IΠ = {πh

t : t ∈ IT and h ∈ HPC}.

Example 5. [Assignments] Consider the index of the Ex-
ample 4. The attributes-based tree powerset for the attributes
P,B,N is: HP{P,B,N} = {hP,B,N , hP,B , hP,N , hB,N , hP ,
hB , hN , hempty}. An assignment over I can include any tree
from this set, e.g., the index assignment set IΠ = {πhP,B,N

t1 ,
πhN
t2 , πhP,B,N

t3 }

Table 2: SIN Example: Tile-tree Assignment Utilities

Tree

Tile hP,B,N (33) hP,B (9) hP,N (11) hB,N (16) hP (2) hB (4) hN (3)

t1 (0.6) 0.60 0.56 0.32 0.32 0.28 0.28 0.04

t2 (0.1) 0.10 0.09 0.05 0.05 0.05 0.05 0.01

t3 (0.1) 0.10 0.09 0.05 0.05 0.05 0.05 0.01

t4 (0.1) 0.10 0.09 0.05 0.05 0.05 0.05 0.01

t5 (0.05) 0.05 0.05 0.03 0.03 0.02 0.02 0.00

t6 (0.05) 0.05 0.05 0.03 0.03 0.02 0.02 0.00

assigns the tree hP,B,N to tiles t1, t3; hN to t2, and no
assignments (i.e., empty tree) are made for tiles t4, t5, t6.

Index Utility. The index utility Ω of the entire index I is the
sum of the utilities of all tile-tree assignments IΠ made in
the index, which is defined as:

Ω(IΠ) =
∑

πh
t .ω

∀πh
t ∈ IΠ

(3)

Index Initialization Cost. The index initialization cost Icost
denotes the resources (e.g., memory, time) that are required
for the VETI initialization. Here, as resource we only re-
fer to memory. Specifically, the index initialization cost de-
notes the memory allocated by the index structures (i.e.,
tiles, trees, metadata), and does not include the memory re-
quired by the object entries that allocate a constant amount
of memory; each object allocates three numeric values (Sect. 3).

This cost includes: (1) the IT cost of constructing the
tiles IT , which is mainly the memory allocated for the tile
intervals, pointers to subtiles, and the pointers connecting
tiles and trees; and (2) the IHcost of constructing the CET
trees of the tiles (i.e., the trees defined in the tile-tree assign-
ments), which is the memory allocated for the tree nodes,
edges and metadata stored in the leaf nodes. Thus, the VETI
initialization cost is: Icost = IT cost + IHcost.

Index Initialization Budget. We assume an index initializa-
tion budget B, which is the upper bound of the index initial-
ization cost Icost. In other words, B denotes the maximum
memory size that can be allocated during the initialization.

6.2 Problem Definition & Analysis

The ReSource-aware INdex Initialization problem is defined
as follows.

Resource-aware Index Initialization Problem (SIN). Given
a set of objects O with categorical attributes C, a set of tiles IT ,
and a budget B; our goal is to find the index tile-tree as-
signments set I∗Π of a VETI index I with tiles IT , such that
the index utility Ω is maximized and the index initialization
cost Icost is lower than the budget B.

Ω(I∗Π) = argmaxΩ(IΠ) and Icost ≤ B

Stavros Maroulis et al.

Example 6. [SIN Problem] Based on Example 4, we as-
sume the six tiles (t1 − t6) and the attributes P , B, N . Ta-
ble 2 presents the tile-tree assignment utilities (Eq. 2) for all
the possible assignments over the tiles, the tiles utilities (in
parenthesis), and the cost of every possible tree (in parenthe-
sis). Here, the cost of the trees is expressed in number of tree
nodes, and we assume that all combinations of attribute val-
ues appear in the data (for space complexity see Sect. 3.1).
For example, based on the domain of the attributes P , B, N
(Example 4) the tree hP,B,N has cost (number of nodes)
equal to 33. Also, the assignment πhP,B,N

t1 that assigns tree
hP,B,N to tile t1 has utility π

hP,B,N

t1 .ω = 0.6.
In order to solve SIN from Table 2 we have to determine

the tile-tree assignments that maximize the total index utility
and keeps the assignment cost lower than the available bud-
get. Let 50 be the budget available for the tree structures,
expressed in total number of tree nodes in the index. We can
verify, that the index assignment set IΠ = {πhP,B

t1 , πhP,B

t2 ,
π
hP,B

t3 , πhP,B

t4 , πhP,B

t5 , πhP
t6 } corresponds to a solution of SIN.

Particularly, these assignments result in a total index utility
Ω(IΠ) equal to 0.9 (which is the largest), and the cost IHcost

of its trees is 47.

Theorem 1. The SIN problem is NP-hard.

PROOF SKETCH. We reduce our problem to the 0-1 Knap-
sack Problem (KP), which is known to be NP-hard and which
states that there is a bin with a capacity, and a set of items.
Each item has a weight and a profit. The goal is to find a set
of items that maximizes the sum of the profits and the sum
of weights is lower than the bin’s capacity.

We consider a restricted instance of SIN, where: (1) the
index contains one tile; (2) the tile utility is equal to one;
(3) each attribute has a construction cost (i.e., the memory
overhead when it is included in a tree); and the tree cost is
the sum of its attributes’ costs.

We reduce SIN to KP via the following associations:
(1) bin to tile; (2) bin capacity to memory budget minus
the cost for constructing the tiles; (3) item to categorical at-
tribute; (4) item profit to attribute score; and (5) item weight
to attribute construction cost. We can verify that, the index
utility in SIN corresponds to the total profit in KP; and the
budget constraint to the capacity constraint, respectively. ■

7 SIN Algorithms

In this section, we propose two approximation algorithms in
order to solve the SIN problem.

The optimal solution of the SIN problem would be to
examine the utility scores of all possible tree assignments
from the powerset HPC to the tiles IT , and select the set
of assignments that maximizes the total utility and its index
initialization cost is lower than the memory budget. In the
worst case we have to examine O(2|C||IT |) tile-tree assign-
ments (including empty trees).

In what follows we present two approximation algorithms
to solve the SIN problem. The algorithms is based on two
concepts: they examine a subset of candidate trees from the
powerset HPC , in order to prune the space of the possible
assignments; and they estimate a memory cost for the trees
in order to handle the budget constraint. In what follows, we
define the basic concepts.

7.1 Preliminaries

Candidate Trees. The candidate trees is a subset of the
HPC set, that contains |C| trees with “promising” categor-
ical attributes, i.e., the ones that are expected to increase
the index utility. To determine the promising attributes, we
sort the attributes C in a descending order, by a gain score
gain(c), that combines: (1) the attribute score c.S (Sect. 6.1);
and (2) the attribute memory cost. The latter formulates the
memory overhead, when c is included in a tree. Since the
memory cost of a tree depends on the number of distinct val-
ues of its attributes, we consider the domain size |dom(c)|
to quantify each attribute’s memory cost. We define the gain
score of an attribute c as: gain(c) = c.S

|dom(c)| .
Given a gain-ordered list Lg of attributes C, the can-

didate tree set H, is defined by |C| trees, where each tree
hi ∈ H contains the first (i + 1)th attributes of Lg . There-
fore, the candidate tree set is H = {h0, ..h|C|−1}, with
hi.C = {Lg[0], ...Lg[i]}. The computational cost for gener-
ating the candidate tree set, employing a linearithmic sorting
algorithm (e.g., mergesort) is O(|C| log|C|).

The candidate tree set can be characterized as a small
number of trees, where each of them has different memory
cost (i.e., number of attributes), while containing as many
“promising” attributes as possible. The proposed algorithms
consider only the candidate trees in the assignment selection
process. This way, we reduce the 2|C| possible trees we have
to examine to |C|, significantly pruning the search space of
the SIN problem.

Example 7. [Candidate Trees] From Example 4 we have
the attribute scores: AP .S = 0.8, AB .S = 0.8, and
AN .S = 0.1. Also, we have the the following domain sizes:
|dom(P)| = 2, |dom(B)| = 4, and |dom(N)| = 3. Hence,
the attributes gain scores are gain(P) = 0.8/2,
gain(B) = 0.8/4, and gain(N) = 0.1/3. Based on the gain
scores, the sorted list of attributes is Lg = {P,B,N}. Thus,
the candidate trees are H = {hP , hP,B , hP,B,N}, where
hP .C = {P}, hP,B .C = {P,B}, and hP,B,N .C = {P,B,N}.

Tile-Tree Assignment Cost Estimation. The tile-tree as-
signment cost denotes the memory allocated by the assign-
ment’s tree. Recall from Section 3 that, a tree is populated
during the initial file parsing, with the distinct values that
appear in the categorical attributes of the data objects it con-
tains. Therefore, the actual tree size is not known a priori,
and should be estimated during index initialization.

Resource-Aware Adaptive Indexing for In-situ Visual Exploration and Analytics

Algorithm 3. GRD (IT ,AC,BΠ)

Input: IT : initialized tiles; AC : categorical attributes;
BΠ : memory budget for trees

Output: IΠ : selected tile-tree assignments list
Variables: Wπ : assignments list max-heap;

CostΠ : selected assignments appr. cost

1 H ← generateCandTrees(AC) //generate candidate trees

2 foreach (t, h) ∈ IT ×H do //generate assignments & compute utilities

3 compute πh
t .ω and πh

t .Φ //assignment utility (Eq.2) & appr. cost (Sect.6.1)

4 πh
t .score← assgnScore(πh

t .ω, πh
t .Φ) //compute assignment score

w.r.t. assignment’s utility πh
t .ω and appr. cost πh

t .Φ

5 push πh
t to Wπ //initialize assignments max-heap

6 CostΠ ← 0;

7 while CostΠ < BΠ and Wπ ̸= ∅ do //select assignments

8 π
hγ
tγ
← pop(Wπ) //select (and remove) the top assignment

9 insert π
hγ
tγ

into IΠ //the selected assignment is inserted into assignments list

10 CostΠ ← CostΠ + π
hγ
tγ

.Φ

11 return IΠ

As estimation we consider the worst case (i.e., the maxi-
mum memory a tree can require), that is defined by the max-
imum number of nodes the tree can have (see Tree space
complexity analysis in Sect. 3.1). Let nodesmax(ν, C) de-
note the maximum number of nodes of a tree that contains
C attributes and ν objects.

Assuming a uniform distribution of objects over the tiles,
the estimated number of nodes per tile is
νt = |ODS | · areaSize(t)

areaSize(DS) , where areaSize(DS) and
areaSize(t) are the sizes of the 2D areas defined by the
dataset objects (i.e., grid area size |dom(Ax)| · |dom(Ay)|),
and a tile t, respectively; and |ODS | is the number of ob-
jects in the dataset. So, the maximum cost estimation for an
assignment πh

t is πh
t .Φ = nodesmax(νt, C) · ncost, where

ncost is the memory allocated by a single node.6

Eviction Mechanism. During the assignment selection, there
are cases where the memory allocated for the trees during
the file parsing is larger than the estimated. Also, during
user exploration, the memory allocated for storing new trees,
tiles, and statistics, may exceed the amount available.

In such cases, we adopt a simple eviction policy, where
some trees are selected to be evicted based on their tile utility
value ρt. So, the tile with the lowest utility is selected, and its
tree is removed from memory. When a tree gets evicted, its
structure (i.e., nodes, edges, and metadata) is erased and its
object entries are reassigned to a single root node attached
to the corresponding tile.

7.2 Greedy Tile-Tree Assignments Algorithm (GRD)

Here we present a greedy algorithm (GRD) that finds the
tile-tree assignments. The basic idea is that we first compute
a utility score for each candidate assignment between a tree

6 Recall that, the memory for each node is (almost) the same, with
the exception of the leaf nodes where metadata is stored. For simplicity,
we assume that all nodes have equal memory size.

and a tile. All assignments are sorted in descending order
based on their score. The algorithm selects the top assign-
ments and aggregates their cost up to the one for which the
total estimated cost is lower than the budget.

Algorithm Description. Algorithm 3 presents the pseudocode
of GRD. GRD first generates the candidate tree set H, us-
ing the generateCandTrees function (line 1). For each tile
t ∈ IT and candidate tree h ∈ H (loop in line 2), the algo-
rithm defines the assignment πh

t , computes the assignment’s
utility πh

t .ω, and the assignment’s estimated cost πt
t .Φ (line 3).

Using these metrics, the function assgnScore computes
the assignment score πh

t .score, which increases w.r.t. as-
signment utility and decreases w.r.t. assignment cost (line 4).
Formally, let x1 and x2 assignments utilities, and y1 and y2
assignments costs, then:
assgnScore(x1, y1) ≥ assgnScore(x2, y1) ⇔ x1 ≥ x2, and
assgnScore(x1, y1) ≥ assgnScore(x1, y2)⇔ y1 ≤ y2.

Next, the assignment is inserted (using the push opera-
tion) into a max-heap Wπ that sorts the assignments in de-
scending order based on πh

t .score (line 5).
Next, GRD selects assignments as far as the total esti-

mated cost Πcost for the selected assignments is lower than
the memory budget BΠ , and the heap is not empty (loop in
line 7). The assignment πhγ

tγ which has the largest score is
selected and removed from the heap via the pop operation
(line 8). Next, πhγ

tγ is inserted into the selected assignments
list IΠ (line 9) and the estimated cost is updated (line 10).
Obviously, if an assignment for a tile t is selected, the rest
of the assignments referring to t are not examined.

Example 8. [GRD Algorithm] In this example, we assume
that the estimated cost πt

t .Φ of an assignment (Sect. 7) is
equal to the cost presented in Table 2. Also, the assignment
score is equal to assignment utility presented in Table 2. Fi-
nally, as in Example 6, we assume a budget of 50.

Initially, the algorithm computes the assignment scores for
each tile (t1 - t6) and the candidate trees H =
{hP , hP,B , hP,B,N}. Then, based on their score, the tile-tree
assignments are sorted in descending order.

Then, the algorithm selects the assignment with the largest
score, i.e., πhP,B,N

t1 . After this selection the assignments re-
ferring to tile t1 are omitted. During the selection process,
in each selection the algorithm ensures that the cost for the
selected assignments does not exceed the available budget.

In the end, the algorithm selects the assignments
IΠ = {πhP,B,N

t1 , πhP,B

t2 , πhP
t3 , πhP

t4 , πhP
t5 , πhP

t6 }, in this or-
der. The index utility Ω(IΠ) for these assignments is 0.835
and the estimated construction cost 50.

Complexity Analysis. The candidate trees require
O(|C| log|C|) (line 1). The first loop (lines 2-5) is executed
|IT | |C| times. The score (lines 4 & 5) is computed in con-
stant time O(1), and the push operation (line 5) is performed
in O(1), assuming that Wπ is a Fibonacci max-heap. Thus,
the loop cost is O(|IT | |C|). The second loop (lines 7-10),
in the worst case is executed |IT | |C| times. The insertion

Stavros Maroulis et al.

Algorithm 4. BINN (IT ,AC,BΠ)

Input: IT : initialized tiles; AC : categorical attributes;
BΠ : memory budget for trees

Parameters: BS: binning strategy; AI: assignments initialization strategy;
TS: tree selection strategy

Output: IΠ : selected tile-tree assignments list
Variables: LI : list of bins’ intervals; LT : list of tile sets per bin;

LH: list of selected trees for the tiles of each bin;
H: candidate trees; CostΠ : selected assignments appr. cost

1 LI ← BS.determineBinsIntervalsOverTilesProb(IT) //intervals are defined

over tiles’ probabilities ρt ; LI [i] is the interval of ith bin; intervals LI are in ascending order

2 LT ← group tiles IT into bins based on intervals LI //LT [i] is the set of

tiles contained in the bin i that is defined by the interval LI [i]

3 H ← generateCandTrees(AC) //generate candidate trees

4 LH[i]← ∅ 0 ≤ i ≤ |LI | − 1 //selected trees list; LH[i] contains the tree

selected for the tiles LT [i] of the bin i

5 CostΠ ← 0 //selected assignments appr. cost

6 if AI is defined then //an assignments initialization strategy has been defined

7 for i← 0 to |LI | − 1 do //assignments initialization – assign initial trees to bins

8 LH[i]← AI.selectInitialTreeForBin(i, LH, LT ,H,BΠ , CostΠ)

9 CostΠ ← CostΠ + assignmentsCostInBin(LT [i], LH[i])

10 if CostΠ ≥ BΠ then break

11 for i← 0 to |LI |− 1 do //find trees for bins (and possibly update/replace the inital)

12 LH[i]← TS.selectTreeForBin(i, LH, LT ,H,BΠ , CostΠ)

13 CostΠ ← CostΠ + assignmentsCostInBin(LT [i], LH[i])

14 if CostΠ ≥ BΠ then break

15 for i← 0 to |LI | − 1 do //generate assignments

16 ∀t ∈ LT [i] : insert πLH[i]
t into IΠ

17 return IΠ

in a linked list is O(1), and the amortized cost of each pop
operation is O(log(|IT | |C|)). Thus, the (amortized) com-
plexity for the second loop is: O(|IT | |C| (log(|IT | |C|) +
1)) = O(|IT ||C|log(|IT ||C|)). Therefore, the overall (amor-
tized) complexity for the GRD algorithm is: O(|C| log|C|+
|IT | |C|+ |IT | |C| log(|IT | |C|)) = O(|IT | |C| log(|IT | |C|)).

7.3 Binning-Based Tile-Tree Assignment Algorithm (BINN)

In this section, we propose the Binning-Based Tile-Tree As-
signment algorithm (BINN). The basic idea of BINN is that
the tiles are organized into bins, and the same candidate tree
is assigned to every tile belonging to the same bin.

BINN Basic Characteristics. (1) The bin-based tile orga-
nization phase, in which the tiles are grouped into bins. The
tree assignments are defined at bin-level and, thus, are not
“strictly” affected by tile-specific factors, which in many
cases may not be accurately estimated, such as the tile prob-
ability and the tile-tree assignment cost. (2) The assignment
initialization phase, which defines “default” assignments for
(some) tiles. These assignments may be updated/replaced
during the assignment selection process. Hence, this phase
enables the algorithm to “impose” assignments to a set of
tiles and/or “influence” the assignment selections that fol-
low. For example, BINN may assign a tree with one attribute
to the tiles with probability larger than a threshold, or to the
top-k tiles. (3) The assignment selection phase, which tra-

verses and assigns a tree to each bin, by considering the se-
lected and the default assignments in the rest of the bins.

BINN vs. GRD. BINN tackles a shortcoming of the GRD
algorithm. Particularly, GRD allocates most of the budget
assigning trees with all categorical attributes included (Fig. 10).
As a result, trees are assigned to a smaller number of tiles.
On the other hand, the bin-based approach adopted by the
BINN algorithm leads to a more “balanced” allocation of
the budget, with more tiles being assigned with trees hav-
ing fewer categorical attributes. As demonstrated (Sect.8),
in many cases, the small number of trees assigned by GRD
compared to BINN has great impact in algorithms perfor-
mance. In general, BINN is more than 1.5× faster and per-
form the half I/Os compared to GRD. To also remark that,
in several cases BINN is more than 100× faster (Fig. 13).

Algorithm Description. Algorithm 4 presents the pseudocode.
Using the binning strategy BS, the algorithm determines the
bins as a list of probability intervals LI , which are defined
based on the probabilities of the input tiles IT (line 1). Then,
tiles are inserted into the list LT (line 2) and the candidate
trees H are generated (line 3).

In the next step, if an assignment initialization strategy AI
has been defined (line 6), the algorithm performs the assign-
ments initialization phase. For each bin i (loop in line 7),
function selectInitialTreeForBin determines the default tree
LH[i] of the ith bin (line 8). Next, function assignmentsCostInBin
computes the cost of this assignment, considering the as-
signed tree LH[i] for the tiles LT [i] of bin i (line 9).

In the assignment selection phase (loop in line 11) and
based on the tree selection strategy TS, the selectTreeForBin
assigns one of the candidate trees H to bin i (line 12). In
cases where an initialization phase is performed, the default
tree may be replaced by the selected ones. Finally, it gener-
ates the tree assignments π

LH[i]
t (loop in line 15) based on

the tree LH[i] selected for each bin i.

Strategies Details. Without loss of generality, in our experi-
ments, the binning strategy BS uses equal frequency binning
to define the bin intervals. The
selectInitialTreeForBin (line 8) and selectTreeForBin (line 12)
functions may consider several factors such as: the already
assigned trees LH (assigned either during initialization, or
during selection), the currently available budget
(BΠ − CostΠ), the distribution of tile probabilities, etc.
In our implementation, we define a simple selectTreeForBin
function, which assigns to each bin the candidate tree H[k]
with the larger number of attributes, such that the cost of al-
ready selected and initialized assignments is lower than the
budget. So, the function selectTreeForBin for a bin i selects:

H[k] s.t. argmaxH[k] and
CostΠ + assignmentsCostInBin(LT [i],H[k]) < BΠ .

Example 9. [BINN Algorithm] As in the previous exam-
ple, we assume that the estimated assignment cost and score
are equal to the cost and the utility presented in Table 2,

Resource-Aware Adaptive Indexing for In-situ Visual Exploration and Analytics

and the budget is equal to 50. We adopt an equal frequency
binning strategy to define the bin intervals (e.g., we con-
sider two bins), and as selectTreeForBin we use the method
described above. Based on the tile utilities shown (in paren-
thesis) in Table 2, the following bins of tiles are defined:
LT = {{t1, t2, t3}, {t4, t5, t6}}.

First, we consider the case where no assignment initial-
ization strategy AI is used. Then, the list of trees selected
for the bins is: LH = {hP,B , hP }, i.e., hP,B selected for
the first bin. Finally, the tile-tree assignment set selected by
the algorithm is: IΠ = {πhP,B

t1 , πhP,B

t2 , πhP,B

t3 , πhP
t4 , πhP

t5 ,
πhP
t6 }, which results in a total index utility Ω(IΠ) equal to

0.85 and total estimated cost 33. Considering an AI strat-
egy which pre-assigns a default hP,B to every tile, the final
assignments become IΠ = {πhP,B

t1 , πhP,B

t2 , πhP,B

t3 , πhP,B

t4 ,
π
hP,B

t5 , πhP
t6 }, which result in total index utility Ω(IΠ) = 0.9

and total estimated cost 47.

Complexity Analysis. To determine the intervals of the bins
(line 1) adopting a simple binning method (e.g., equal width/
frequency binning) can be performed by sorting (e.g., merge-
sort) and traversing once the tiles list. That is performed in
O(|IT | log|IT | + |IT |). Then, in the worst case, organiz-
ing the tiles into bins (line 2) are performed in O(|IT |). The
candidate trees require O(|C| log |C|) (line 3).

We can easily verify that a large number of “rational”
selectInitialTreeForBin (line 8) and selectTreeForBin (line 12)
functions, cost O(|LT [i]||C|) in order to select a tree for
bin i. In each selection, these functions examine the can-
didate trees CT , and in the same time compute the different
costs. Since, in such functions the cost is computed during
the selection, the function assignmentsCostInBin is omitted.
Note that, the same complexities also hold in the functions
used in our implementation. Thus, in the worst case, the loop
in line 7 costs O(|IT ||C|); the same also holds for the loop
in line 11. In the last loop in the worst case, the insert oper-
ation (line 16) is executed |IT | times. Thus, the cost of the
insertions in the linked list is O(|IT |).

Therefore, in the the worst case the complexity of BINN
is the sum of the aforementioned steps: O(|IT | log|IT | +
|IT |+ |IT |+ |C| log|C|+ |IT ||C|+ |IT ||C|+ |IT |) =
O(|IT | log|IT |+ |C| log|C|+ |IT | |C|).

8 Experimental Analysis

The objective of our evaluation is to assess the performance
of our approach in terms of time and number of I/Os. We
evaluate different VETI variations and several competitors
over two real and two synthetic datasets. Next, we outline
the key findings of our study.

Results Highlights. (1) Performance Overview: In most
queries, VETI exhibits response time less than 0.04sec, over
large raw files (e.g., 45GB). Regarding the best of the exam-
ined systems, in most queries VETI is up to 100× faster and
performs up to 2 orders of magnitude fewer I/O operations.

(2) Data Characteristics: All VETI variations report (sub-)linear
performance w.r.t. the number of objects and categorical at-
tributes, as well as the domain size.
(3) VETI Variations: Regarding the VETI variations, both
VETI-BINN and VETI-GRD outperform the naive VETI-
RND. VETI-BINN is more than 1.5× faster and requires
about half the I/O operations compared to VETI-GRD. VETI-
BINN performs even better when the user moves further
away from the initial query and/or when the initialization
budget is small.
(4) Initialization Phase: In the initialization phase, VETI-
BINN is on average 8× faster than MySQL, 1.2× faster than
PRAW, and slightly slower than VALINOR.

8.1 Experimental Setup

Datasets & Queries. In our experiments we have used two
real datasets, the NYC Yellow Taxi Trip Records (TAXI) and
a telecommunication network quality dataset (NET); and
two synthetic ones (SYNTH10 / 50).7

Queries Template. Each query contains: (1) a Select clause
defined over the axis-attributes; (2) a Group-by clause on a
categorical attribute; (3) a Filter clause that contains either
1 or 2 equality conditions, specified over randomly selected
categorical attributes and values from their corresponding
domains; and (4) an Analysis clause that computes 5 aggre-
gate functions over a numeric attribute, i.e., min, max, std,
variance, and mean.

TAXI Real Dataset. The TAXI dataset is a CSV file, contain-
ing information regarding taxi rides in NYC.8 Each record
corresponds to a trip, described by 18 attributes. From these
attributes, 5 are categorical: Payment Type, Passenger Count,
Rate Type, Provider Code and Store & Forward Flag. We
selected a subset of this dataset for 2014 trips with 165M
objects and 26 GB CSV file size.

The Longitude and Latitude of the pick-up location are
the axis attributes of the exploration. The Select clause is
defined over an area of 2km × 2km size, with the first query
Q0 posed in central Manhattan. The Group-by clause con-
tains the Passenger Count attribute, and the Analysis clause
the Tip Amount.

NET Real Dataset. The second real dataset (NET) is an
anonymized proprietary telecommunication quality network
dataset containing latency and signal strength measurements
crowdsourced from mobile devices in the Greater Tokyo Area
(40M objects, 45GB csv file). Each record is described by
150 attributes. We selected the categorical attributes: Net-
work Type (e.g., 4G), Network Operator Name, Device Man-
ufacturer, Location Provider, OS version, and Success Flag.

The Latitude and Longitude are the axis attributes, sim-
ulating a map-based exploration scenario, starting from cen-
tral Tokyo. The Select clause is defined over a 4km × 4km

7 The data generator and the queries are available at:
github.com/VisualFacts/RawVis

8 www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

https://github.com/VisualFacts/RawVis
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Stavros Maroulis et al.

Table 3: Basic Parameters

Description Values

Synthetic Datasets
Number of Objects (Millions) 5, 10, 50, 100M, 200, 500
Number of Categorical Attributes 3, 4, 6, 10, 15
Categorical Attribute Domain Size 5 10, 20, 50

Synthetic & Real Datasets
Budget Size (GB) 0.5, 1, 2, 3, 5
Number of Bins 50, 100, 500, 1000

area. The Group-by clause contains the Network Type, and
Latency is used in the Analysis clause.

SYNTH10 / 50 Synthetic Datasets. Regarding the synthetic
datasets (SYNTH10 / 50), we have generated two CSV files
of 100M data objects (in the default setting), having 10 and
50 attributes (11 and 51 GB, respectively). The datasets con-
tain numeric attributes in the range [0, 1000], as well as
categorical attributes, where the values of the numeric and
categorical attributes follow a uniform distribution. In our
experiments, we vary the number of objects from 1M to
500M, objects with 100M being the default value, where
the size of the dataset having 500M objects is 52GB. Re-
garding queries, as in [7], the Select clause is defined over
two numeric attributes that specify a window size containing
approximately 100K objects.

Exploration Scenario. In our evaluation, we consider a typ-
ical exploration scenario such as the one described in the
introduction (Sect. 1). We have generated sequences of 100
overlapping queries, with each window query shifted (i.e.,
pan operation) in relation to its previous one by 10% to-
wards a random direction. This scenario attempts to formu-
late a common user behavior in 2D visual exploration, where
the user explores nearby regions using pan and zoom oper-
ations [49,23,43,3,47,11], such as the “region-of-interest”
or “following-a-path” scenarios which are commonly used
in map-based visual exploration.

Additionally, to formulate the “repetitive calculation of
statistics” that commonly appears in exploration scenarios
(Sect. 6.1) [46], we included the attributes of the initial query
in the generated sequence of queries four times more fre-
quently than the other dataset attributes.

VETI Parameters. Regarding VETI’s tile structure, we adopt
the setting used in [7], where the tile structure is initialized
with 100 × 100 equal-width tiles, while an extra 20% of the
number |T0| of initial tiles was also distributed around the
first query Q0 using the Query-driven initialization method
[7]. Also, the numeric threshold for the adaptation of VETI
was set to 200 objects. More details about these parameters
can be found at [7].

The index initialization budget, is varied from 0.5 to
5GB, with 2GB being the default value. Recall that this mem-
ory budget includes only the memory allocated by the tile

and tree structures, and does not include the memory re-
quired to store the object entries.

VETI Variations. We evaluate two versions of VETI, named
VETI-GRD and VETI-BINN, based on the GRD and BINN
algorithms (Sect.7). Moreover, we consider a naive assign-
ment approach, titled VETI-RND, which follows a random
tile-tree assignment strategy. It first sorts the tiles based on
the tile probability ρt, then assigns a randomly selected tree
from the entire powerset HPC to each tile, until the budget
constraint B is satisfied.

Competitors. We compare our method with: (1) VALINOR
[7] which contains only the tile-based indexing structure with-
out the CET index; (2) A traditional DBMS (MySQL 8.0.22),
where data is loaded and indexed in advance; three indexing
settings are considered: (a) no indexing (SQL-0I); (b) one
composite B-tree on the two axis attributes (SQL-1I); and
(c) two single B-trees, one for each of the two axis attributes
(SQL-2I). MySQL also supports SQL querying over exter-
nal files (see CSV Storage Engine in Sect. 9); however, due
to low performance [2], we do not consider it as a competi-
tor. (3) PostgresRaw (PRAW)9, built on top of Postgres 9.0.0
[2], which is a generic platform for in-situ querying over raw
data (Sect. 9). Note that, due to parsing/processing problems
on the NET dataset with the PRAW, we did not manage to
load and report experiments on this combination.

Metrics. In our experiments, we measure the: (1) Evalua-
tion Time of a query; (2) Initialization Time, which corre-
sponds to the time required to initialize the index and return
the results of the first query Q0, i.e., from-raw data-to-1st
result time. Regarding the initialization phase of the exam-
ined systems we have: (a) before evaluating Q0, MySQL
needs to parse the raw file, load, and index (except SQL-0I)
the data; (b) during evaluating Q0, PRAW needs to parse the
raw file and construct the positional map; (c) during evalu-
ating Q0, VALINOR parses the raw file, generates the tile
index structure, and populates it with the object entries; and
(d) during evaluating Q0, beyond the actions performed by
VALINOR, VETI also parses the categorical attributes and
constructs the tree indexes over the tiles. (3) Overall Exe-
cution Time of an exploration scenario, that includes: ini-
tialization time and query evaluation time for all the queries
included in the exploration scenario, i.e., workload; (4) I/O
Operations performed during query evaluation (for I/O def-
inition see Sect. 4.3); and (5) Index Utility. Table 3 summa-
rizes the parameters that we vary in the experiments.

Implementation. VETI is implemented on JVM 1.8 as part
of the RawVis open source data visualization system [29].2

The experiments were conducted on an 3.60GHz Intel Core
i7-3820 with 64GB of RAM. We applied memory constraints
(32GB max Java heap size) in order to measure the per-
formance of our approach and our competitors. However,
PRAW required more than 32GB of memory for the syn-
thetic datasets and more than 50GB for the TAXI dataset.

9 https://github.com/HBPMedical/PostgresRAW

https://github.com/HBPMedical/PostgresRAW

Resource-Aware Adaptive Indexing for In-situ Visual Exploration and Analytics

 (a) SYNTH10 (b) SYNTH50 (c) TAXI (d) NET

0

200

400

600

800

1000

1200

1400
V

A
LI

N
O

R

V
ET

I-
R

N
D

V
ET

I-
G

R
D

V
ET

I-
B

IN
N

P
R

A
W

SQ
L-

0
I

SQ
L-

1
I

SQ
L-

2
I

O
ve

ra
ll

Ti
m

e
 (

se
c)

Q1-Q99 Execution

Initialization & Q0

SQL-0I > 8K sec
SQL-1I > 2.9K sec
SQL-2I > 5.3K sec

⧛

0

1000

2000

3000

4000

5000

6000

V
A

LI
N

O
R

V
ET

I-
R

N
D

V
ET

I-
G

R
D

V
ET

I-
B

IN
N

P
R

A
W

SQ
L-

0
I

SQ
L-

1
I

SQ
L-

2
I

O
ve

ra
ll

Ti
m

e
 (

se
c) Q1-Q99 Execution

Initialization & Q0

SQL-0I > 9.5K sec
SQL-2I > 30K sec

⧛

0

1000

2000

3000

4000

V
A

LI
N

O
R

V
ET

I-
R

N
D

V
ET

I-
G

R
D

V
ET

I-
B

IN
N

P
R

A
W

SQ
L-

0
I

SQ
L-

1
I

SQ
L-

2
I

O
ve

ra
ll

Ti
m

e
 (

se
c)

Q1-Q99 Execution

Initialization & Q0

SQL-0I > 38K sec
SQL-1I > 38K sec
SQL-2I > 15K sec

⧛

⧛

0

400

800

1200

1600

2000

V
A

LI
N

O
R

V
ET

I-
R

N
D

V
ET

I-
G

R
D

V
ET

I-
B

IN
N

SQ
L-

0
I

SQ
L-

1
I

SQ
L-

2
I

O
ve

ra
ll

Ti
m

e
 (

se
c)

Q1-Q99 Execution

Initialization & Q0

SQL-0I > 24K sec
SQL-1I > 22K sec
SQL-2I > 7K sec

⧛⧛ ⧛

Fig. 6: Overall Time (Broken down to Initialization & Q1∼Q99 Evaluation Time)

 (a) SYNTH10 (b) SYNTH50

 (c) TAXI (d) NET

0
1
2
3
4
5
6
7
8
9

10

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

Ev
al

u
at

io
n

 T
im

e
 (

se
c)

Query Sequence

PRAW VALINOR VETI-RND VETI-GRD

VETI-BINN SQL-1I SQL-2I SQL-0I > 75sec

0
1
2
3
4
5
6
7
8
9

10

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

Ev
al

u
at

io
n

 T
im

e
 (

se
c)

Query Sequence

PRAW VALINOR VETI-RND VETI-GRD

VETI-BINN SQL-1I SQL-2I SQL-0I > 70 sec

0

5

10

15

20

25

30

35

40

45

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

Ev
al

u
at

io
n

 T
im

e
 (

se
c)

Query Sequence

PRAW VALINOR VETI-RND

VETI-GRD VETI-BINN SQL-2I

> 250 sec

SQL-0I > 340 sec
SQL-1I > 344 sec

0
3
6
9

12
15
18
21
24
27
30

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

Ev
al

u
at

io
n

 T
im

e
 (

se
c)

Query Sequence

PRAW VALINOR VETI-RND

VETI-GRD VETI-BINN SQL-2I
SQL-0I > 180 sec
SQL-1I > 160 sec

Fig. 7: Evaluation Time per Query (sec)

8.2 Performance

Initialization Phase: From-Raw Data-to-1st Result Time.
Figure 6 presents the overall execution time which is split
between the initialization time and the time for evaluating
all the queries Q1∼Q99. Recall that, the initialization time
includes the time for parsing, loading the data (in the case
of MySQL), constructing the index and answering the first
query Q0. In Figure 6 we can observe that the MySQL set-
tings we examined exhibit the worst performance for evalu-
ating Q0, since MySQL needs to parse all attributes of the
raw file and load the data in the disk. Also, for the SQL-1I
and SQL-2I cases, the corresponding indexes must be built,
which explains the increased initialization time in relation
to SQL-0I where no index is generated. Both VALINOR
and the VETI variations exhibit better initialization perfor-
mance compared to PRAW for the SYNTH50 and TAXI
datasets, while for the SYNTH10 dataset, VETI requires a
slightly higher initialization time. As it is expected, VETI
variations are slightly slower during the initialization com-
pared to VALINOR, since VETI needs to determine the tile-

tree assignments, parse the categorical attributes, and cre-
ate the tree structures. All VETI variations, however, exhibit
similar initialization time, since the tile-tree assignment time
is negligible compared to the time for parsing the file.

Evaluation Time per Query. Figure 7 presents the evalua-
tion time for each individual query. Compared to the other
methods, all VETI variations exhibit significantly lower eval-
uation time in almost all queries and datasets. In most queries,
VETI reports evaluation time less than 0.04sec. On the other
hand, the best competitors, PRAW and VALINOR require
for most queries more than 8 and 4sec, respectively. Over-
all, VETI is more than 200× and 100× faster compared to
PRAWand VALINOR, respectively.

Regarding SQL, SQL-0I performs worse than the 3 SQL
settings we examined, and requires approximately the same
time for each query. This is expected as SQL-0I has no in-
dex. From the other 2 settings, SQL-1I is for most queries
faster than SQL-2I for the two synthetic datasets, and slower
for TAXI and NET.

Stavros Maroulis et al.

VALINOR VETI-RND VETI-GRD VETI-BINN PRAW SQL-0I SQL-1I SQL-2I

 (a) SYNTH10 (b) SYNTH50 (c) TAXI (d) NET

0

100

200

300

400
V

A
LI

N
O

R

V
ET

I-
R

N
D

V
ET

I-
G

R
D

V
ET

I-
B

IN
N

P
R

A
W

SQ
L-

0
I

SQ
L-

1
I

SQ
L-

2
I

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

PRAW > 860 sec
SQL-0I > 7.5K sec
SQL-1I > 1.5K sec

⧛

0

500

1000

1500

2000

2500

V
A

LI
N

O
R

V
ET

I-
R

N
D

V
ET

I-
G

R
D

V
ET

I-
B

IN
N

P
R

A
W

SQ
L-

0
I

SQ
L-

1
I

SQ
L-

2
I

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

SQL-0I > 7.5K sec
SQL-2I > 4.5K sec

0

300

600

900

1200

1500

1800

2100

V
A

LI
N

O
R

V
ET

I-
R

N
D

V
ET

I-
G

R
D

V
ET

I-
B

IN
N

P
R

A
W

SQ
L-

0
I

SQ
L-

1
I

SQ
L-

2
I

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

SQL-0I > 35K sec
SQL-1I > 35K sec
SQL-2I > 4K sec

⧛

0

300

600

900

1200

1500

1800

V
A

LI
N

O
R

V
ET

I-
R

N
D

V
ET

I-
G

R
D

V
ET

I-
B

IN
N

SQ
L-

0
I

SQ
L-

1
I

SQ
L-

2
I

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

SQL-0I > 22K sec
SQL-1I > 20K sec
SQL-2I > 3K sec

⧛

Fig. 8: Evaluation Time for Q1∼Q99 (sec)

 (a) SYNTH10 (b) TAXI (c) NET

0.E+0

2.E+4

4.E+4

6.E+4

8.E+4

1.E+5

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

I/
O

 o
p

e
ra

ti
o

n
s

Query Sequence

VALINOR VETI-RND

VETI-GRD VETI-BINN

0.E+0

2.E+5

4.E+5

6.E+5

8.E+5

1.E+6

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

I/

O
 o

p
e

ra
ti

o
n

s

Query Sequence

VALINOR
VETI-RND
VETI-GRD
VETI-BINN

Fig. 9: Number of I/Os per Query

Regarding PRAW, we observe that it exhibits a stable
performance (after the first queries), which is however worse
than both VALINOR and VETI in all datasets. The posi-
tional map used in PRAW, attempts to reduce the parsing
and tokenizing costs of future queries, by maintaining the
position of specific attributes for every object in the raw
file. However, PRAW still needs to examine all objects in
the dataset in order to select the ones contained in a 2D
window query. Also, in contrast to VETI, PRAW does not
keep any metadata in order to efficiently compute the ag-
gregate queries. Some of the early queries (approximately
until Q15) PRAW exhibits noticeably higher time than the
rest, and comparable to the time required to answer Q0. This
is due to the filter conditions of the queries. When a query
refers to an attribute that was not included in Q0, PRAW
needs to populate the positional map with it. In subsequent
queries, which refer to indexed attributes, PRAW exhibits a
relatively constant evaluation time.

Regarding VALINOR, all variations of VETI report
smaller evaluation time. Even though both VALINOR and
VETI attempt to adapt to the workload and maintain meta-
data to speed up query evaluation time by reducing I/Os,
VALINOR does not include any indexing capabilities for
categorical attributes and thus it needs to access the file in
order to evaluate queries with conditions to such attributes.
In contrast, VETI variations exploit the tree organization for
evaluating filter conditions on categorical attributes and the
metadata stored in the leaves for evaluating the analysis and
grouping operations of queries overlapping with fully con-
tained tiles.

Evaluation Time for all Q1∼Q99 Queries. Figure 8 presents
the evaluation time for the Q1∼Q99 queries. The behavior
of the methods is similarly between the datasets, the varia-
tions of VETI significantly outperform the competitors. The

best competitor, VALINOR needs about 30, 60, 7 and 20×
more time for SYNTH10, SYNTH50, TAXI and NET, re-
spectively, to evaluate all queries. Also, PRAW is 270, 380
and 11× slower for SYNTH10/50 and TAXI, respectively.

I/O Operations. The evaluation time for VETI and VALI-
NOR is mainly determined by the number of I/O operations.
This can be observed in Figure 9, where the number of I/O
operations per query exhibits approximately the same be-
havior with that of the evaluation time (Fig. 7). Note that
we do not present the I/Os for PRAW and SQL, since they
follow different workflows/methods for accessing the file,
compared to our work. Also, the plot for SYNTH50 is omit-
ted since it closely matches that for SYNTH10. Compared
to VALINOR, the VETI variations perform up to 2 orders
of magnitude less I/Os. This occurs since VALINOR has to
access the raw file for every object contained in the 2D win-
dow query in order to retrieve the categorical attribute values
required by the query.

8.3 VETI Variations

Performance & Assignments. Here, we compare the per-
formance of the three VETI initialization variations. Over-
all, considering the performance of VETI variations (Fig. 7),
both VETI-GRD and VETI-BINN lead to faster query re-
sponses than the naive VETI-RND, in almost all cases. Also,
VETI-BINN significantly outperforms the other two in the
number of I/Os (Fig. 9). Considering the time required for
all queries (Fig. 8), VETI-RND is on average 3× slower
than VETI-GRD and VETI-BINN. Comparing VETI-GRD
and VETI-BINN, VETI-BINN is more than 1.5× faster than
VETI-GRD (in some cases more than 100× faster) (Fig. 8),
and performs more than 3× less I/Os.

Resource-Aware Adaptive Indexing for In-situ Visual Exploration and Analytics

 (a) TAXI (b) NET

0

500

1000

1500

2000

2500

1 2 3 4 5

N
u

m
b

e
r

o
f

tr
e

e
s

Number of Tree Attributes

VETI-RND VETI-GRD VETI-BINN

0

400

800

1200

1600

1 2 3 4 5 6

N
u

m
b

e
r

o
f

tr
e

e
s

Number of Tree Attributes

VETI-RND VETI-GRD VETI-BINN

Fig. 10: Number of Generated Trees vs. Number of Tree Attributes

 (a) TAXI (b) NET

0.645

0.983 0.991

0

0.2

0.4

0.6

0.8

1

VETI-RND VETI-GRD VETI-BINN

U
ti

lit
y

0.619

0.992 0.998

0

0.2

0.4

0.6

0.8

1

VETI-RND VETI-GRD VETI-BINN

U
ti

lit
y

Fig. 11: VETI Utility Score

 (a) SYNTH10 (b) SYNTH50 (c) TAXI (d) NET

50 500 1000
0

2

4

6

8

10

12

14

16

18

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

Number of Bins

VETI-BINN

VETI-RND

VETI-GRD

50 500 1000
0

5

10

15

20

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

Number of Bins

VETI-BINN

VETI-RND

VETI-GRD

50 500 1000
0

50

100

150

200

250

300

350

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

Number of Bins

VETI-BINN

VETI-RND

VETI-GRD

50 500 1000
0

50

100

150

200

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

Number of Bins

VETI-BINN

VETI-RND

VETI-GRD

Fig. 12: VETI-BINN: Evaluation Time for Q1∼Q99 (sec) vs. Number of Bins

The difference in performance is the result of the differ-
ent assignment policies (see Sect.7.3 for the policies used in
VETI-BINN). Figure 10 depicts the number of trees gener-
ated during the initialization w.r.t. the number of attributes
they have. For brevity, we omit the results for the synthetic
datasets, as they exhibit similar behavior. We can observe,
that VETI-RND follows a uniform distribution w.r.t. the num-
ber of tree attributes. In VETI-GRD the budget is mostly
allocated at constructing trees that contain all of the cate-
gorical attributes. In contrast, VETI-BINN creates a more
balanced distribution of the trees’ number of attributes. As
a result, VETI-GRD assigns “taller” trees to a smaller num-
ber of tiles. So, due to location-based assignments process
we follow, the tiles located farther away from Q0 tend to not
contains trees. This is why, compared to VETI-GRD, VETI-
BINN tends to perform even better when the user moves
away from the initial starting point. This is demonstrated,
in the query performance where, in most cases, after query
Q75, VETI-BINN is 10× faster than VETI-GRD in (Fig. 7);
also, in some queries is up to 400× faster (Fig. 7d).

The impact of the different assignment strategies is also
shown in the utility score (Fig. 11). Due to randomized tree
assignments, VETI-RND results in a lower utility score, whereas
VETI-BINN exhibits larger utility compared to VETI-GRD.

VETI-BINN: Varying the Number of Bins. In this exper-
iment we study the performance of VETI-BINN w.r.t. the
number of bins. Figure 12 presents the evaluation time for
Q1∼Q99, varying the number of bins from 50 to 1000. Note
that, in the plots we include VETI-RND and VETI-GRD for
the sake of comparison, even though they do not depend on
the number of bins.

As we can observe, the performance of VETI-BINN is
not highly affected by the number of bins, except for small
number of bins, i.e., between 50 and 100. Based on our

adopted assignment policies for VETI-BINN (Sect. 7.3), the
following holds. For small numbers of bins, the assignment
is more coarse-grained, i.e., shorter trees are assigned to the
majority of the tiles. Increasing the number of bins results
in more fine-grained assignments of trees to (bins of) tiles.
However, trees that are assigned to bins near Q0 will be
taller, whereas the trees assigned to the remaining bins will
be short. This explains why, in general, as the number of
bins increase, the performance of VETI-BINN approaches
that of VETI-GRD. Recall that VETI-GRD assigns mostly
tall trees (Fig. 10).

As previously mentioned, we should note that, the def-
inition of bins depends on the dataset characteristics and
the exploration scenario. As a general observation, in ex-
ploration scenarios with queries affecting areas away from
the initial starting point, the number of bins should be kept
relatively small in order to create trees (even short ones) to
the majority of the tiles, whereas in scenarios focused on a
specific area, increasing the number of bins performs better.

Varying the Initialization Memory Budget. In the first ex-
periment, we evaluate the performance of VETI while vary-
ing the initialization budget from 0.5 to 5GB. Recall that this
memory budget includes only the memory allocated by the
tile and tree structures, and does not include the memory re-
quired to store the object entries. Note that, the plots for the
SYNTH10/50 datasets are omitted since they are similar to
the ones presented.

The evaluation time needed to evaluate all the queries
is shown in Figure 13. The evaluation time decreases as the
available memory budget increases. This is the result of the
larger number and more detailed tree structures that are con-
structed with more budget, which leads to faster query evalu-
ation. This is observed in both VETI-GRD and VETI-BINN.
Regarding VETI-RND, its performance does not always im-

Stavros Maroulis et al.

 (a) TAXI (b) NET

0.5 1 2 3 5
0

100

200

300

400

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

Initialization Budget (GB)

VETI-RND
VETI-GRD
VETI-BINN

0.5 1 2 3 5
0

50

100

150

200

250

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

Initialization Budget (GB)

VETI-RND

VETI-GRD

VETI-BINN

Fig. 13: Evaluation Time for Q1∼Q99 (sec) vs.
Initialization Memory Budget

 (a) TAXI (b) NET

0.5 1 2 3 5
0

0.2

0.4

0.6

0.8

1

U
ti

lit
y

Initialization Budget (GB)

VETI-RND

VETI-GRD

VETI-BINN

0.5 1 2 3 5
0

0.2

0.4

0.6

0.8

1

U
ti

lit
y

Initialization Budget (GB)

VETI-RND

VETI-GRD

VETI-BINN

Fig. 14: VETI Utility vs.
Initialization Memory Budget

6

6,4

6,8

7,2

7,6

VETI-BINN VETI-GRD

M
e

m
o

ry
 (

G
B

)

ASC RAND DESC

Fig. 15: Memory Size vs.
Sorting Attributes based

on Domain Size

10M 100M 200M 500M
1

10

100

1000

10000

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

(l
o

g)

Number of Objects

VETI-RND
VETI-GRD
VETI-BINN
VALINOR

10M 100M 200M 500M
1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

I/
O

 O
p

e
ra

ti
o

n
s

(Q
1

-Q
9

9
)

(l
o

g)

Number of Objects

VETI-RND

VETI-GRD

VETI-BINN

VALINOR

Fig. 16: Evaluation Time
(log) vs. Number of
Objects [SYNTH10]

3 4 6 10 15
0

50

100

150

200

250

300

350

Ev
al

u
at

io
n

 T
im

e
 (

Q
1

-Q
9

9
)

Number of Categorical Attributes

VETI-RND
VETI-GRD
VETI-BINN
VALINOR

(a) Evaluation Time (sec)

3 4 6 10 15
0

0.2

0.4

0.6

0.8

1

U
ti

lit
y

Number of Categorical Attributes

VETI-RND

VETI-GRD

VETI-BINN

(b) Utility

Fig. 17: Varying the Number of
Cat. Attributes [SYNTH50]

5 10 20 50
0

0.2

0.4

0.6

0.8

1

U
ti

lit
y

Domain Size

VETI-RND
VETI-GRD
VETI-BINN

5 10 20 50
0
2
4
6
8
10
12
14
16
18
20
22
24

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

Domain Size

VETI-RND
VETI-GRD
VETI-BINN

VALINOR > 100 sec
PRAW > 800 sec

(a) Evaluation Time (sec) (b) Utility

Fig. 18: Varying the Domain Size of
Cat. Attributes [SYNTH10]

prove when increasing the budget, as it allocates the budget
in random tile-tree assignments.

Compared to VETI-GRD, VETI-BINN’s performance
is less dependent on the available budget. VETI-GRD per-
forms much worse for low values of memory budget, as it
mostly assigns trees with all the categorical attributes which
quickly depletes the budget on very few tiles. On the other
hand, as the budget increases, the performance of VETI-
GRD is comparable with that of VETI-BINN.

In more details, on small amounts of budget, VETI-BINN
evaluates all the queries of the exploration scenario in half
the time compared to VETI-GRD (Fig. 13). Moreover, at
query level, in several queries, compared to VETI-GRD,
VETI-BINN is from 100 to 3000× faster for the NET dataset;
and more than 50× for SYNTH10/50.

In this experiment, we compute the utility score w.r.t.
memory budget. (Fig. 14). The results closely match the
evaluation time presented above. Specifically, the total index
utility increases with higher budget for both VETI-GRD and
VETI-BINN. Also, the utility of VETI-GRD is much lower
than that of VETI-BINN for smaller amounts of budget, but
their values converge as the budget increases.

VETI Memory Size vs. Sorting Tree Attributes. In this
experiment, we examine how the sorting of tree attributes
w.r.t. their domain size affects the allocated memory (more
details in Sect. 3). In order to assess the effect of domain
size, we create a version of the SYNTH10 where its cate-
gorical attributes had a different domain size, varying from
2 to 100. We measured the VETI memory size after initial-
ization while sorting the attributes based on their domain
sizes in ascending (ASC), descending (DESC), and random

(RAND) order. As it can be seen in Figure 15, ASC order-
ing corresponds to the best case, while DESC to the worst.
Specifically, for VETI-BINN the ASC ordering results in a
decrease in memory size of around 10% and 8% in rela-
tion to DESC and RAND, respectively. Similar results are
reported for VETI-GRD.

8.4 Effect of the Data Characteristics

Varying the Number of Objects. In this experiment, we
evaluate the impact of the number of objects on the per-
formance of VETI. For this, we vary the number of ob-
jects of SYNTH10 from 5 to 500M, and the evaluation time
for Q1∼Q99 is presented in Figure 16. As the total num-
ber of objects in the file increase, the evaluation time in-
creases (sub-)linearly for all variations of VETI as well as
for VALINOR. This is reasonable considering that the in-
dex becomes more dense, the queries relatively select more
objects and the number of required I/O operations increase;
also, the cost of an I/O operation becomes ”relatively” larger
when the file size increase. Regarding VETI-RND, its per-
formance is affected to a much greater extent compared to
VETI-GRD and VETI-BINN, as its randomized tree assign-
ment lead to a much higher I/O cost.

Varying the Number of Categorical Attributes. In this
experiment, we vary the number of categorical attributes
(Fig. 17). Here, we used the SYNTH50 dataset in order to
be able to select up to 15 categorical attributes. For brevity
the SQL and PRAW methods are omitted, as they exhibit
much higher evaluation time. Also, we could not evaluate
PRAW for 15 categorical attributes, due to increased mem-

Resource-Aware Adaptive Indexing for In-situ Visual Exploration and Analytics

ory requirements. Note that VALINOR’s performance is not
affected by the number of categorical attributes, since it does
not consider them in its index structure.

As we can observe, query evaluation time increases for
all methods, along with the number of attributes (Fig. 17(a)).
VETI-BINN outperforms both VETI-RND and VETI-GRD.
Regarding VETI-GRD, we can observe that it outperforms
VETI-RND in every case except for the case of 15 cate-
gorical attributes. This is due to the fact that VETI-GRD
allocates most of the budget for creating trees with all the
categorical attributes. As a result, with a higher number of
categorical attributes, VETI-GRD assigns trees to very few
tiles, which explains its performance deterioration for 15 at-
tributes. This is also depicted in Figure 17(b) which presents
the utility score. As we can observe, in all VETI variations
the utility score decreases as the number of categorical at-
tributes indexed increase. This decrease is even more no-
table in the case of VETI-GRD, which after 10 attributes
gets worse than both VETI-BINN and VETI-RND.

Varying the Domain Size of Categorical Attributes. In
this experiment, we study the effect of the domain size. We
generate 4 different versions of the SYNTH10 dataset, where
the domain size of each categorical attribute for each one
was set to 5, 10, 20 and 50. Note that, the results for the
SYNTH50 are not presented since they are similar.

The evaluation time needed to execute the Q1∼Q99 is
shown in Figure 18(a). Note that the plot shows only the
VETI variations, since VALINOR does not depend on the
domain, and others exhibit much higher evaluation time. We
can observe that the evaluation time of VETI-GRD (resp.
VETI-BINN) decreases from domain size 5 to 10 (resp. 20),
and then increases.

This behavior is explained as follows. The attributes in
the synthetic dataset have values, which are uniformly dis-
tributed over the objects. As the domain size of an attribute
increases, the number of objects, which evaluate to the filter
condition on this attribute, decreases, and so does the num-
ber of I/O operations. This explains the initial drop in query
evaluation time for both VETI-GRD and VETI-BINN.

On the other hand, given the same number of attributes, a
larger domain size results in trees with larger size in memory
(Sect. 3.1). This explains the increase in evaluation time af-
ter domain size 10 for VETI-GRD and 20 for VETI-BINN,
as the larger tree sizes result in fewer tiles getting assigned
with trees.

9 Related Work

In-situ Raw Data Processing. Data loading and indexing
usually take a large part of the overall time-to-analysis for
both traditional RDBMs and Big Data systems [18]. In-situ
query processing aims at avoiding data loading in a DBMS
by accessing and operating directly over raw data files. NoDB
[2] was a first approach for a no-dbms querying engine over
raw data, and PostgresRAW is one of the first systems for
in-situ query processing. PostgresRAW incrementally builds

on-the-fly auxiliary indexing structures called
“positional maps” which store the file positions of data at-
tributes, as well as it stores previously accessed data into
cache. As opposed to VETI, the positional map in Postgres-
RAW, can only be exploited to reduce parsing and tokeniza-
tion costs during query evaluation and can not be used to
reduce the number of objects examined in two-dimensional
range queries. Also, VETI is better optimized for aggregate
queries, since it can reduce raw file accesses by reusing al-
ready calculated statistics on a tile level. Finally, VETI of-
fers memory-driven index initialization, by adjusting its ini-
tial parameters w.r.t. available resources.

DiNoDB [44] is a distributed version of PostgresRAW.
In the same direction, PGR [25] extends the positional maps
in order to both index and query files in formats other than
CSV. In the same context, Proteus [24] supports various data
models and formats. Recently, Slalom [35,36] exploits the
positional maps and integrates partitioning techniques that
take into account user access patterns.

Raw data access methods have been also employed for
the analysis of scientific data, usually stored in array-based
files. In this context, Data Vaults [20] and SDS/Q [9] rely
on DBMS technologies to perform analysis over scientific
array-based file formats. Further, SCANRAW [10] considers
parallel techniques to speed up CPU intensive processing
tasks associated with raw data accesses.

[7,6] define VALINOR, a tile-based index in the con-
text of in-situ visual exploration, supporting 2D visual op-
erations over numeric attributes. Compared to VETI, VALI-
NOR does not support operations and indexing over categor-
ical attributes and does not consider memory-driven index
initialization.

To note that, several well-known DBMS support SQL
querying over CSV files. Particularly, MySQL provides the
CSV Storage Engine10, Oracle offers the External Tables11

and Postgres has the Foreign Data12 However, these tools
do not focus on user interaction, parsing the entire file for
each posed query, and resulting in significantly low query
performance [2].

Visual-Oriented Indexes. In the context of visual explo-
ration, several indexes have been introduced. VisTrees [12]
and HETree [8] are tree-based main-memory indexes that
address visual exploration use cases, i.e., they offer exploration-
oriented features such as incremental index construction and
adaptation. Compared to our work, both indexes focus on
one-dimensional visualization techniques (e.g., histograms),
do not support categorical attributes and group-by analytics,
and do not consider disk storage, i.e., data stored in-memory.

Nanocubes [27], Hashedcubes [26], SmartCube [28], Gaus-
sian Cubes [45], and TopKubes [31] are main-memory data
structures defined over spatial, categorical and temporal data.
The aforementioned works are based on main-memory vari-
ations of a data cube in order to reduce the time needed

10 https://dev.mysql.com/doc/refman/8.0/en/csv-storage-engine.html
11 https://oracle-base.com/articles/12c/external-table-enhancements-12cr1
12 www.postgresql.org/docs/current/ddl-foreign-data.html

https://dev.mysql.com/doc/refman/8.0/en/csv-storage-engine.html
https://oracle-base.com/articles/12c/external-table-enhancements-12cr1
https://www.postgresql.org/docs/current/ddl-foreign-data.html

Stavros Maroulis et al.

to generate visualizations. Nanocubes [27] attempts to re-
duce the memory of the data cube by sharing nodes in a
single tree structure. Hashedcubes [26] follows a different
approach where, instead of materializing all possible aggre-
gations, it uses a partial ordering of the dimensions and the
notion of pivot arrays to calculate on-the-fly the aggrega-
tions missing. Smartcube [28] is a variation of Nanocubes,
where instead of pre-computing all cuboids from the start,
it chooses some important ones based on the user queries,
in order to reduce memory usage. Also, it may adaptively
change stored cuboids when querying patterns change. In
comparison with our work, the indexes in the aforemen-
tioned works are generated during a preprocessing phase,
and thus cannot be used in in-situ scenarios, e.g., they do not
address problems related to reducing the initialization time.
Moreover, a major difference compared to our approach, is
that these works assume that all the aggregations are ma-
terialized and stored in main memory, which in most cases
require prohibitive amounts of memory. In contrast, our ap-
proach considers limited memory resources.

Further, graphVizdb [5,4] is a graph-based visualization
tool, which employs a 2D spatial index (e.g., R-tree) and
maps user interactions to 2D window queries. To support
the operation of the tool, a partition-based graph drawing
approach is proposed. Spatial 2D indexing is also adopted in
Kyrix [42]. Kyrix is a generic platform that supports efficient
Zoom and Pan operations over arbitrary data types. Initially,
the data is stored in a database and indexed using R-trees. In
both graphVizdb and Kyrix the zoom levels are predefined,
with each level having its own table and R-tree. Each Pan
and Zoom operation is mapped to a rectangle 2D query, and
based on the zoom level, is evaluated over the corresponding
table and R-tree.

Compared to our work, the aforementioned systems re-
quire a preprocessing phase where data is first stored and in-
dexed in a database system. On the other hand, our work is
defined in an in-situ setting, over limited memory resources.
To improve query evaluation performance and reduce the
I/O costs, our work is based on in-memory incremental and
adaptive indexing and query evaluation methods. On the other
hand, in Kyrix, queries are evaluated over fixed database in-
dexes, while a caching and prefetching strategy is used to
reduce the database access cost. Another difference is re-
lated to the evaluation of statistics. Our work focuses on ef-
ficient statistics computations by utilizing stored metadata
to reduce the required I/O operations. On the other hand, the
aforementioned works do not study the problem of efficient
statistics computations.

In a different context, tile-based structures are used in
visual exploration scenarios. Semantic Windows [23] con-
siders the problem of finding rectangular regions (i.e., tiles)
with specific aggregate properties in exploration scenarios.
ForeCache [3] considers a client-server architecture in which
the user visually explores data from a DBMS. The approach
proposes a middle layer, which prefetches tiles of data based
on user interaction. Our work considers different problems
compared to the aforementioned approaches.

Adaptive Indexing. Similarly to VETI, the basic idea of ap-
proaches like database cracking and adaptive indexing is to
incrementally adapt the indexes and/or refine the physical
order of data, during query processing, following the char-
acteristics of the workload [21,16,48,19,34,16,17,33,38].

However, these works are not designed for the in-situ
scenario. In most cases the data has to be previously loaded
/ indexed in the system/memory, i.e., a preprocessing phase
is considered. Additionally, the aforementioned works re-
fine the (physical) order of data, performing highly expen-
sive data duplication and allocate large amount of memory
resources. Nevertheless, in the in-situ scenarios the analysis
is performed directly over immutable raw data files consid-
ering limited resources.

Furthermore, most of the existing cracking and adap-
tive indexing methods have been developed in the context
of column-stores or MapReduce systems [41]. On the other
hand, VETI has been developed to handle raw data stored in
text files with commodity hardware.

Progressive Visualization. Recently, many systems adopt
the progressive paradigm attempting to reduce the response
time [13,40,1,14]. Progressive approaches, instead of per-
forming all the computations in one step (that can take a long
time to complete), splits them in a series of short chunks
of approximate computations that improve with time. Com-
pared to these works, we do not consider progressive and ap-
proximate computations; rather exact answers are presented
to the users as soon as they are computed.

10 Conclusions

In this paper, we presented our work that enables efficient
in-situ visual exploration and analysis of data visualized in
a 2D plane. The indexing scheme and adaptive processing
methods we described allow the visual exploration of data
from a raw file on a 2D visual representation, along with
sophisticated analysis over its numeric, spatial, and categor-
ical attributes. This scheme is constructed on-the-fly given
the first user query, and is progressively adapted based on
user interactions. To handle the large memory requirements,
we formulated the index initialization as an optimization
problem and provided two approximate algorithms for its
solution. Further, we presented efficient query evaluation
methods that achieve fast user response by reusing avail-
able metadata stored in the index, avoiding I/O operations.
Finally, we conducted a thorough experimental evaluation
which demonstrates that the proposed methods significantly
outperform existing solutions.

Acknowledgment. This work has been funded by the project
VisualFacts (#1614 - 1st Call of the Hellenic Foundation for
Research and Innovation Research Projects for the support
of post-doctoral researchers).

Resource-Aware Adaptive Indexing for In-situ Visual Exploration and Analytics

References

1. Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Sto-
ica, I.: Blinkdb: Queries with Bounded Errors and Bounded Re-
sponse Times on Very Large Data. In: European Conference on
Computer Systems (EuroSys) (2013)

2. Alagiannis, I., Borovica, R., Branco, M., Idreos, S., Ailamaki, A.:
Nodb: Efficient Query Execution on Raw Data Files. In: ACM
Conf on Management of Data (SIGMOD) (2012)

3. Battle, L., Chang, R., Stonebraker, M.: Dynamic Prefetching of
Data Tiles for Interactive Visualization. In: ACM Conf on Man-
agement of Data (SIGMOD) (2016)

4. Bikakis, N., Liagouris, J., Krommyda, M., Papastefanatos, G., Sel-
lis, T.: Towards Scalable Visual Exploration of Very Large Rdf
Graphs. In: Extended Semantic Web Conference (ESWC) (2015)

5. Bikakis, N., Liagouris, J., Krommyda, M., Papastefanatos, G.,
Sellis, T.: Graphvizdb: A Scalable Platform for Interactive Large
Graph Visualization. In: IEEE ICDE (2016)

6. Bikakis, N., Maroulis, S., Papastefanatos, G., Vassiliadis, P.:
RawVis: Visual Exploration over Raw Data. In: Advances in
Databases and Information Systems (ADBIS) (2018)

7. Bikakis, N., Maroulis, S., Papastefanatos, G., Vassiliadis, P.: In-
situ Visual Exploration over Big Raw Data. Inform. Sys. 40 (2021)

8. Bikakis, N., Papastefanatos, G., Skourla, M., Sellis, T.: A Hier-
archical Aggregation Framework for Efficient Multilevel Visual
Exploration and Analysis. Semantic Web Journal (2017)

9. Blanas, S., Wu, K., Byna, S., Dong, B., Shoshani, A.: Parallel Data
Analysis Directly on Scientific File Formats. In: ACM Conf on
Management of Data (SIGMOD) (2014)

10. Cheng, Y., Rusu, F.: SCANRAW: a Database Meta-operator for
Parallel In-situ Processing and Loading. ACM TODS 40(3) (2015)

11. Dar, S., Franklin, M.J., THór Jónsson, B., Srivastava, D., Tan, M.:
Semantic Data Caching and Replacement. In: (VLDB) (1996)

12. El-Hindi, M., Zhao, Z., Binnig, C., Kraska, T.: Vistrees: Fast In-
dexes for Interactive Data Exploration. In: HILDA (2016)

13. Fekete, J., Fisher, D., Nandi, A., Sedlmair, M.: Progressive Data
Analysis and Visualization (Dagstuhl Seminar 18411). Dagstuhl
Reports 8(10) (2018)

14. Fisher, D., Popov, I.O., Drucker, S.M., Schraefel, M.C.: Trust Me,
I’m Partially Right: Incremental Visualization Lets Analysts Ex-
plore Large Datasets Faster. In: CHI (2012)

15. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart,
D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data Cube: A Rela-
tional Aggregation Operator Generalizing Group-by, Cross-Tab,
and Sub Totals. Data Min. Knowl. Discov. 1(1) (1997)

16. Holanda, P., Manegold, S.: Progressive mergesort: Merging
batches of appends into progressive indexes. In: Conf on Extend-
ing Database Technology (EDBT) (2021)

17. Holanda, P., Manegold, S., Mühleisen, H., Raasveldt, M.: Progres-
sive Indexes: Indexing for Interactive Data Analysis. PVLDB En-
dowment 12(13) (2019)

18. Idreos, S., Alagiannis, I., Johnson, R., Ailamaki, A.: Here Are My
Data Files. Here Are My Queries. Where Are My Results? In:
Conf on Innovative Data Systems Research (CIDR) (2011)

19. Idreos, S., Kersten, M.L., Manegold, S.: Database Cracking. In:
Conf on Innovative Data Systems Research (CIDR) (2007)

20. Ivanova, M., Kersten, M.L., Manegold, S., Kargin, Y.: Data
Vaults: Database Technology for Scientific File Repositories.
Computing in Science and Engineering 15(3) (2013)

21. Jensen, A.H., Lauridsen, F., Zardbani, F., Idreos, S., Karras, P.: Re-
visiting multidimensional adaptive indexing [experiment & analy-
sis]. In: Conf on Extending Database Technology (EDBT) (2021)

22. Jugel, U., Jerzak, Z., Hackenbroich, G., Markl, V.: VDDa:
Automatic Visualization-driven Data Aggregation in Relational
Databases. Journal on Very Large Data Bases (VLDBJ) (2015)

23. Kalinin, A., Çetintemel, U., Zdonik, S.B.: Interactive Data Explo-
ration Using Semantic Windows. In: ACM SIGMOD (2014)

24. Karpathiotakis, M., Alagiannis, I., Ailamaki, A.: Fast Queries
Over Heterogeneous Data Through Engine Customization.
PVLDB 9(12) (2016)

25. Karpathiotakis, M., Branco, M., Alagiannis, I., Ailamaki, A.:
Adaptive Query Processing on Raw Data. PVLDB 7(12) (2014)

26. de Lara Pahins, C.A., Stephens, S.A., Scheidegger, C., Comba,
J.L.D.: Hashedcubes: Simple, Low Memory, Real-time Visual Ex-
ploration of Big Data. IEEE Trans on Visualization & Computer
Graphics 23(1) (2017)

27. Lins, L.D., Klosowski, J.T., Scheidegger, C.E.: Nanocubes for
Real-Time Exploration of Spatiotemporal Datasets. IEEE Trans
on Visualization & Computer Graphics 19, 2456–2465 (2013)

28. Liu, C., Wu, C., Shao, H., Yuan, X.: Smartcube: An adaptive data
management architecture for the real-time visualization of spa-
tiotemporal datasets. IEEE TVCG 26(1) (2020)

29. Maroulis, S., Bikakis, N., Papastefanatos, G., Vassiliadis, P.:
RawVis: A System for Efficient In-situ Visual Analytics. In: ACM
Conf on Management of Data (SIGMOD) (2021)

30. Maroulis, S., Bikakis, N., Papastefanatos, G., Vassiliadis, P., Vas-
siliou, Y.: Adaptive indexing for in-situ visual exploration and an-
alytics. In:DOLAP Workshop (2021)

31. Miranda, F., Lins, L., Klosowski, J.T., Silva, C.T.: TopKube: A
Rank-Aware Data Cube for Real-Time Exploration of Spatiotem-
poral Data. IEEE TVCG 24, (2017)

32. Morton, K., Balazinska, M., Grossman, D., Mackinlay, J.D.: Sup-
port the Data Enthusiast: Challenges for Next-generation Data-
analysis Systems. VLDB Endowment 7(6) (2014)

33. Nathan, V., Ding, J., Alizadeh, M., Kraska, T.: Learning multi-
dimensional indexes. In: ACM SIGMOD (2020)

34. Nerone, M., Holanda, P., de Almeida, E.C., Manegold, S.: Multi-
dimensional Adaptive and Progressive Indexes. In: IEEE Conf on
Data Engineering (ICDE) (2021)

35. Olma, M., Karpathiotakis, M., Alagiannis, I., Athanassoulis, M.,
Ailamaki, A.: Slalom: Coasting through Raw Data Via Adaptive
Partitioning and Indexing. VLDB Endowment 10(10) (2017)

36. Olma, M., Karpathiotakis, M., Alagiannis, I., Athanassoulis, M.,
Ailamaki, A.: Adaptive partitioning and indexing for in situ query
processing. Journal on Very Large Data Bases (VLDBJ) (2019)

37. Papastefanatos, G., Alexiou, G., Bikakis, N., Maroulis, S., Stam-
atopoulos, V.: Visualfacts: A platform for in-situ visual explo-
ration and real-time entity resolution. In: Workshop on Big Data
Visual Exploration & Analytics (BigVis) (2022)

38. Pavlovic, M., Sidlauskas, D., Heinis, T., Ailamaki, A.: QUASII:
query-aware spatial incremental index. In: Conf on Extending
Database Technology (EDBT) (2018)

39. Rahman, P., Jiang, L., Nandi, A.: Evaluating Interactive Data Sys-
tems. Journal on Very Large Data Bases (VLDBJ) 29(1) (2020)

40. Rahman, S., Aliakbarpour, M., Kong, H., Blais, E., Karahalios,
K., Parameswaran, A.G., Rubinfeld, R.: I’ve Seen ”Enough”: In-
crementally Improving Visualizations to Support Rapid Decision
Making. VLDB Endowment 10(11) (2017)

41. Richter, S., Quiané-Ruiz, J., Schuh, S., Dittrich, J.: Towards zero-
overhead static and adaptive indexing in Hadoop. Journal on Very
Large Data Bases (VLDBJ) 23(3) (2014)

42. Tao, W., Liu, X., Wang, Y., Battle, L., Demiralp, Ç., Chang, R.,
Stonebraker, M.: Kyrix: Interactive pan/zoom visualizations at
scale. Comput. Graph. Forum 38(3) (2019)

43. Tauheed, F., Heinis, T., Schürmann, F., Markram, H., Ailamaki,
A.: SCOUT: Prefetching for Latent Feature Following Queries.
VLDB Endowment 5(11) (2012)

44. Tian, Y., Alagiannis, I., Liarou, E., Ailamaki, A., Michiardi, P.,
Vukolic, M.: Dinodb: An Interactive-speed Query Engine for Ad-
hoc Queries on Temporary Data. IEEE Trans. on Big Data (2017)

45. Wang, Z., Ferreira, N., Wei, Y., Bhaskar, A.S., Scheidegger, C.:
Gaussian cubes: Real-time modeling for visual exploration of
large multidimensional datasets. IEEE Trans on Visualization &
Computer Graphics 23(1) (2017)

46. Wasay, A., Wei, X., Dayan, N., Idreos, S.: Data Canopy: Acceler-
ating Exploratory Statistical Analysis. In: ACM SIGMOD (2017)

47. Yesilmurat, S., Isler, V.: Retrospective adaptive prefetching for in-
teractive Web GIS applications. GeoInformatica 16(3) (2012)

48. Zardbani, F., Afshani, P., Karras, P.: Revisiting the theory and
practice of database cracking. In: EDBT (2020)

49. Zhao, W., Rusu, F., Dong, B., Wu, K., Ho, A.Y.Q., Nugent, P.: Dis-
tributed caching for processing raw arrays. In: Conf on Scientific
& Statistical Database Management (SSDBM) (2018)

	Introduction
	Exploration Model
	CET Tree: An Index for Categorical Attributes
	VETI: A Tile-Tree Adaptive Index
	Query Processing & Index Adaptation
	Resource-aware Index Initialization
	SIN Algorithms
	Experimental Analysis
	Related Work
	Conclusions

