

Integrating Keywords and Semantics on Document

Annotation and Search

Nikos Bikakis1,2, Giorgos Giannopoulos1,2, Theodore Dalamagas2 and Timos Sellis1,2

1 Knowledge & Database Systems Lab | National Technical University of Athens | Greece

2 Institute for the Management of Information Systems | "Athena" Research Center | Greece

bikakis@dblab.ntua.gr • giann@dblab.ntua.gr

dalamag@imis.athena-innovation.gr • timos@imis.athena-innovation.gr

Abstract. This paper describes GoNTogle, a framework for document

annotation and retrieval, built on top of Semantic Web and IR technologies.

GoNTogle supports ontology-based annotation for documents of several

formats, in a fully collaborative environment. It provides both manual and

automatic annotation mechanisms. Automatic annotation is based on a learning

method that exploits user annotation history and textual information to

automatically suggest annotations for new documents. GoNTogle also provides

search facilities beyond the traditional keyword-based search. A flexible

combination of keyword-based and semantic-based search over documents is

proposed in conjunction with advanced ontology-based search operations. The

proposed methods are implemented in a fully functional tool and their

effectiveness is experimentally validated.

Keywords: GoNTogle, Semantic Annotation, Document Annotations, Ontology

based Retrieval, Hybrid Search, Semantic Search, Keyword Search.

1 Introduction

Document annotation and search have received tremendous attention by the Semantic

Web [2] and the Digital Libraries [3] communities. Semantic annotation involves

tagging documents with concepts (e.g., ontology classes) so that content becomes

meaningful. Annotations help users to easily organize their documents. Also, they can

help in providing better search facilities: users can search for information not only

using keywords, but also using well-defined general concepts that describe the

domain of their information need.

Although traditional Information Retrieval (IR) techniques are well-established,

they are not effective when problems of concept ambiguity or synonymity appear. On

the other hand, neither search based only on semantic information may be effective,

since: a) it does not take into account the actual document content, b) semantic

information may not be available for all documents and c) semantic annotations may

cover only a few parts of the document.

Hybrid solutions that combine keyword-based with semantic-based search deal

with the above problems. Developing methodologies and tools that integrate

document annotation and search is of high importance. For example, researchers need

to be able to organize, categorize and search scientific material (e.g., papers) in an

efficient and effective way. Similarly, a press clipping department needs to track news

documents, annotating specific important topics and searching for information.

This paper describes GoNTogle, a framework for document annotation and

retrieval, built on top of Semantic Web and IR technologies. GoNTogle provides both

manual and automatic ontology-based annotations, supporting documents of several

formats (doc, pdf, txt, rtf, odt, sxw, etc.). Annotation is based on standard Semantic

Web technologies like, OWL and RDF/S. All annotations are stored in a centralized

server, providing a collaborative environment. A learning method, exploiting textual

information and user annotation history, is proposed to support the automatic

annotation mechanism.

GoNTogle also provides three search types: a) Keyword-based, b) Semantic-based

and c) Hybrid. Experimental evaluation validates the effectiveness of the proposed

hybrid method, compared to the other two. Finally, several advanced ontology-based

searching operations are provided, including the capability to expand or shrink the

result list using ontology information, in order to retrieve higher quality results.

Regarding the design principles of our framework, they are based on the

requirements set in previous works [4, 5, 7]. In contrast with the existing approaches,

our aim was to design an easy-to-use document annotation and search framework that

supports (a) viewing and annotating popular document types while maintaining their

initial format, (b) offering a collaborative environment by sharing those annotations

(c) supporting Semantic Web standards, (d) integrating textual information with

semantics and (e) supporting a flexible combination of keyword-based and semantic-

based search in conjunction with advanced ontology-base search operations.

Contributions. The main contributions of this work are summarized as follows:

1. We have designed and implemented an easy-to-use document annotation

framework that supports the most widely used document formats, providing

also advanced search facilities.

2. The framework is based on a server-based architecture, where document

annotations are stored in a central repository, separately from the original

document. This offers a collaborative environment where users can annotate

and search documents.

3. We propose a learning method for automatic annotation of documents based

on models trained from user annotation history and textual information, so

that annotation suggestions are tailored to user behavior.

4. We introduce a hybrid search method that provides a flexible combination of

traditional keyword-based and semantic-based search for effective document

retrieval.

5. We present a user-based evaluation to demonstrate the effectiveness of the

automatic annotation method. Moreover, we demonstrate a comparative

evaluation to validate that the proposed hybrid search outperforms keyword-

based and semantic-based search in terms of precision and recall.

Paper Outline. The rest of the paper is organized as follows. The semantic

annotation mechanism is presented in Section 2, while Section 3 describes the search

facilities. Section 4 presents the system architecture and provides technical

information about the implementation. Section 5 presents the evaluation of our

proposed methods. Section 6 discusses the related work and, finally, Section 7

concludes our work.

2 Semantic Annotation

GoNTogle framework supports semantic, ontology-based annotations, for widely

used document formats (doc, pdf, txt, rtf, odt, sxw, etc.). It allows annotating the

whole document or parts of it. GoNTogle framework supports both manual and

automatic annotations. For automatic annotation we propose a learning method that

exploits user annotation history and textual information to automatically suggest

annotations for new incoming documents.

GoNTogle provides a common ontology-based annotation model (Figure 1) for all

supported document formats. Annotations are stored on a centralized ontology server,

separately from the original document. Annotations from different document formats

are defined and stored in exactly the same way. Each annotation is stored as an

ontology class instance, along with information about the annotated document. We

define a set of ontology properties that are used to store the minimum essential

information needed to provide a bidirectional connection between documents and

ontologies. These properties contain information like: document URL, annotation

offsets, page number, extent of annotation over the document, etc.

Class 1

Class n

rd
f:t

ype

.
.
.

Annotation ID

extent

offset_1

doc_URL
xs:anyURI

page_num

offset_2

xs:integer

xs:integer

xs:integer

xs:float

xs:string
text_summ

rdf:type

Ontology Class

Ontology Property

Property Value

Class Instance

line_num
xs:integer

Figure 1. Ontology-based annotation model

Figure 1 shows the ontology-based annotation model we developed in the context

of the GoNTogle framework. Annotations are represented as class instances that can

belong to one or more ontology classes. Using ontology properties, all the essential

annotation information is attached to these instances. Property doc_URL, corresponds

to the document’s URL (including document’s file name) of represented annotation.

page_num and line_num properties, correspond to the number of the page and line

respectively where the annotation begins. The property offset_1 corresponds to a

number that indicates the offset from the beginning of the document until the

beginning of the annotation. As the same, property offset_2 corresponds to the offset

from the end of annotation until the end of the document. The property extent

represents the extent of the annotation over the document. Finally, text_summ used for

storing the summary of the annotated text (i.e., 1-3 tokens from the begin and the end)

required for the GUI functionality.

2.1 Automatic Semantic Annotation

In this section, we present the learning method used for automatic document

annotation. We propose a method based on weighted kNN classification [1] that

exploits user annotation history and textual information to automatically suggest

annotations for new documents. Next, we describe our approach in detail.

The training data of our method include document annotations provided manually

by the users. When a document is manually annotated, the annotation text is extracted

and indexed using an inverted index. Along with the textual information, the index

also stores information about the annotation classes for each annotated document (or

part of document).

 Annotation Suggestion Algorithm

Input: selected text st, index I

Output: suggested class cli, suggested class score Scrcli

 1. for each annotated text at in I

 2. calculate tsst,at
 3. end for

 4. Insert the k most similar annotated texts in S

 5. for each at in S
 6. for each class cl annotate at

 7. Scrcl= Scrcl + (w1 * tsst,at) * (w2 * ecl,at)

 8. end for

 9. end for

 10. return cli, Scrcli

Figure 2. Annotation suggestion algorithm

To automatically annotate documents, the user first selects a document or a part

of it. Then, given the set of training data, our method suggests a ranked list of

ontology concepts (classes) to annotate the document (or its part). Figure 2 presents

our method. It takes as input the selected text st and the inverted index I. Based on

textual similarity tsst,at between st and each indexed annotated text at, the k most

similar annotated texts are considered for further processing, and included in set S

(lines 1-4). Then for each at in S, we retrieve the ontology classes used to annotate at.

Each class cl is given a score Scrcl that combines (a) the textual similarity (based on

Lucene similarity model1) score tsst,at between st and at and (b) a score ecl,at

representing the extent to which each at in S is annotated with class cl (line 7). As ecl,at

1 http://lucene.apache.org/java/3_0_1/api/core/org/apache/lucene/search/Similarity.html

we define, the number of tokens of the cl annotations in at divided by the number of

tokens in at.

The w1 and w2 weights are used to quantify the preference of textual similarity

against semantic similarity (or vice versa). Finally, a ranked list of suggested

annotation classes cli and their score Scrcli is presented to the user (line 10). The user

may choose one or more suggested classes to conclude the automatic annotation

process.

3 Search

In this section, we present the search facilities proposed in the context of GoNTogle

framework. We formally define the supported search types (Section 3.1) and we

analyze the ontology-based advanced search operations (Section 3.2). Moreover, we

introduce the hybrid search method, which combines keyword-based and semantic-

based search. Below we introduce the notation used in the following paragraphs.

 Symbol Notation

 qkey Keyword query, consisting of search term{t1, t2,…tm}

 Skey(qkey) Keyword-based search

 RSkey Keyword-based search result set
 Scrkey(qkey,d) Keyword-based similarity score

 qsem Semantic query, consisting of search classes {cl1, cl2,…cln}

 Ssem(qsem) Semantic-based search

 RSsem Semantic-based search result set

 Scrsem(qsem,d) Semantic-based similarity score

 Shybr(qsem,qkey) Hybrid search
 RShybr Hybrid search result set

 Scrhybr(qsem,qkey,d) Hybrid similarity score

3.1 Search Types

We categorize the basic search facilities of our framework into three types: a)

Keyword-based search, b)Semantic-based search and c) Hybrid search.

Keyword-based search. This is the traditional search model. The user provides

keywords and the system retrieves relevant documents based on textual similarity. We

adopted the text similarity metric used in Lucene IR engine.

Keyword-based search is denoted as Skey(qkey), where qkey={t1, t2,…tm} and ti are the

search terms with m≥1.

Keyword-based search returns an ordered Result Set RSkey of tuples <d,

Scrkey(qkey,d)>, containing all the documents d matched with terms qkey. Scrkey(qkey,d) is

the similarity score of document d for the searching terms qkey. This score is based on

document textual similarity with the searching terms.

Semantic-based search. This search facility allows the user to navigate through

the classes of an ontology and focus their search on one or more of them.

Semantic-based search is denoted as Ssem(qsem), where qsem={cl1, cl2,…cln}and cli are

the searching classes with n≥1.

It return an ordered Result Set RSsem of tuples <d, Scrsem(qsem,d)>, containing all the

documents d that have been annotated with one or more of the search classes qsem.

Scrsem(qsem,d) is the similarity score of document d for the searching classes qsem. This

score is based on semantic similarity between the searching classes qsem and document

d. To define semantic similarity sscli,d between a class cli and a document d, we

consider the extent of the class annotations over the document: that is the number of

tokens used to define the class annotations in d divided by the number of tokens in d.

The final similarity score is defined as follows:

 ∑

where n is the number of ontology classes used during the semantic-based search, and

sscli,d is a score representing the extent to which document d is annotated with class cli.

Hybrid search. The user may search for documents using keywords and ontology

classes. She can, also, determine whether the results of her search will be the

intersection or the union of the two searches.

Hybrid search is denoted as Shybr(qsem,qkey)=Ssem(qsem) Op Skey(qkey), where qsem={cl1,

cl2,…cln} and cli are the searching classes with n≥1, qkey={t1, t2,…tm} and ti are the

searching terms with m≥1 and Op the Boolean operators OR or AND.

Hybrid search returns an ordered Result Set RShybr of tuples <d, Scrhybr(qsem,qkey,d)>,

the contents and the order of the result set depend on Op value:

 Op=AND. The Result Set contains all the documents d that have been

annotated with one or more of the search classes qsem and match with terms

qkey.

 ⋂

The final similarity score is defined as:

 () ()

where Scrsem(qsem,d) is the similarity score from semantic-based search, and

Scrkey(qkey,d) is the similarity score from keyword-based search. The w3 and w4

weights are used to quantify the relative importance of the semantic-based and

keyword-based scores, when both keyword and semantic queries must be

satisfied.

 Op=OR. The Result Set contains all the documents d that have been annotated

with one or more of the searching classes qsem and all the documents d matched

with terms qkey.

 ⋃

The final similarity score is defined as:

 () ()

where Scrsem(qsem,d) is the similarity score from semantic-based search, and

Scrkey(qkey,d) is the similarity score from keyword-based search. The w5 and w6

weights are used to quantify the relative importance of the semantic-based and

keyword-based scores, when either keyword or semantic queries must be

satisfied.

3.2 Advanced Search Operations

Here we present a set of advanced search operations that can be used after an initial

search has been completed.

Find related documents. Starting from a result document d, the user may search

for all documents that have been annotated with a class cl that also annotates d. For

example, if a user had initially searched with class H.2[DATABASE MANAGEMENT]
2 and selected one of the results that is also annotated with class H.2.5[Heterogeneous

Databases], then ''Find related documents'' would return all documents annotated

with both classes.

Find similar documents. This is a variation of the previous search facility.

Starting from a result document d, the user may search for all documents that are

already in the result list and have been annotated with a class cl that also annotates d.

For example, if a user had initially searched with keyword "XML" AND class

H.2[DATABASE MANAGEMENT] and selected one of the results that is also

annotated with class H.2.5[Heterogeneous Databases], then ''Find similar documents''

would return all documents annotated with both classes and contained the keyword

"XML".

Get Next Generation. The resulting list from a semantic-based (or hybrid) search

can be confined by propagating the search on lower levels in the ontology (i.e., if

class cl has been used, then search is propagated only in direct subclasses of cl). This

is the case when the search topic is too general. For example, if a user had initially

searched with H.2[DATABASE MANAGEMENT], then ''Get Next Generation'' would

return all documents annotated with at least one of its subclasses

(H.2.5[Heterogeneous Databases], H.2.3[Languages], etc.).

Get Previous Generation. This offers the inverse functionality of the previous

option. The resulting list from a semantic-based (or hybrid) search can be expanded

by propagating the search on higher levels in the ontology (i.e., if class cl has been

used, then search is propagated only in direct superclasses of cl). This is the case

2 We turned the ACM Computing Classification (http://www.acm.org/about/class/) into an OWL ontology.

when a search topic is too narrow. For example, if a user had initially searched with

H.2[DATABASE MANAGEMENT], then ''Get Previous Generation'' would return all

documents annotated with its superclass (H.[Information Systems]).

Proximity Search. This search option allows the user to search for documents that

belong to all subclasses of a selected class, by applying a ranking model based on

ontology hierarchy. That is, if class cl is the initial class, then search is propagated in

all direct and indirect subclasses of cl. The resulting documents gathered from all

levels of the ontology hierarchy are weighted properly (i.e., documents from the

selected class cl get higher score than 1st level subclasses and even higher than 2nd

level subclasses).

4 System Overview

4.1 System Architecture

Due to its centralized server-based annotation storage and management architecture,

GoNTogle offers a collaborative user environment. Annotations are stored separately

from the original document and may be shared by several user groups. GoNTogle's

architecture is presented in Figure 3. The system is divided into 4 basic components:

a) Semantic Annotation Component provides facilities regarding the semantic

annotation of documents. It consists of 3 modules: (i) Document Viewer, (ii)

Ontology Viewer and (iii) Annotation Editor.

b) Ontology Server Component stores the semantic annotations of documents in

the form of class instances. It consists of 2 modules: (i) an Ontology

Manager and (ii) an Ontology Knowledge Base.

c) Indexing Component is responsible for indexing the documents using

inverted indexes.

d) Search Component allows users to search for documents using a flexible

combination of textual (keyword-based search) and ontology (semantic-

based search) information.

Search

Indexer

Index Semantic

Annotation

Automatic

Annotation

OWL

Knowledge

Base

pdf

doc txt

rtf

odt
sxw

UserUser

GoNTogle platform

Ontology

 Server

Hybrid

Keyword

Semantic

Advanced

Figure 3. GoNTogle architecture

4.2 Semantic Annotation In-Use

Semantic Annotation Component offers 2 primary functionalities: (a) annotation of

whole document and (b) annotation of parts of a document. Also, a user may choose

between manual and automatic annotation.

Figure 4 shows the Semantic Annotation window of our application. The user may

open a document in the Document Viewer, maintaining its original format. Moreover,

she can load and view the hierarchy of an ontology through the Ontology Viewer. In

the specific example, the loaded ontology corresponds to the ACM Computing

Classification hierarchy. The user can, then, select one or more ontology classes and

manually annotate the whole document or part of it. The annotation is stored as an

ontology class instance in the Ontology Server, along with information about the

annotated document. At the same time, an annotation instance is added in the

Annotation Editor list. Each record of this list corresponds to an annotation stored in

the Ontology Server. For example (Figure 4), the abstract of the document is

annotated with class H.2.3 [Languages]:Query Languages, while the whole document

is annotated with class H.2[DATABASE MANAGEMENT]. The user can manage

those annotation instances, adding or removing ontology classes, or completely

remove them. Also, when she selects an annotation from the list (regarding a part of a

document), the document scrolls to the corresponding part, which is highlighted with

the same color as the annotation instance.

Figure 4. Semantic annotation example

4.3 Implementation

In what follows we provide technical information about the implementation of our

system. All annotation and search facilities presented in this paper have been

implemented in a Java prototype. Application screenshots, as well as the application

itself and installation instructions can be found in http://web.imis.athena-

innovation.gr/~dalamag/gontogle. A demonstration of GoNTogle tools is presented in

[23].

To develop our system, we used several open source tools and libraries. For

indexing and keyword searching we used the Lucene search engine library. Lucene

modules participate in several components of our system: a) Document text indexing

for search purposes (Indexing Component). b) Document retrieval and scoring

regarding textual similarity (Search Component). c) Indexing and querying

documents for automatic annotation purposes (Semantic Annotation Component).

We used the Protégé3 server and MySQL database for the Ontology Server

Component, so that document annotations are stored as class instances. Through

Protégé API, for each annotation, we store information that is required for processes

such as retrieval of the specific annotation, ontology search scoring for a specific

class-document pair, etc.

OpenOffice API4 was essential in incorporating in our system a viewer that could

maintain the exact format of .doc documents, which is a very common filetype. The

same applies for Multivalent5, a generalized document viewer that was integrated in

our system so that .pdf files could also maintain their format when being viewed and

annotated.

5 Evaluation

In this section, we present the experiments we performed in order to evaluate the

effectiveness of our methods. In Section 5.1 we present the evaluation of the

automatic annotation method. In Section 5.2, we compare our proposed hybrid search

method with keyword-based and semantic-based search .

5.1 Automatic Annotation

In order to demonstrate the effectiveness of the proposed automatic annotation

method, we perform a user-based evaluation. The effectiveness of our method is

validated in terms of Precision at position n (P@n) and Recall.

Configuration

We turned the ACM Computing Classification

into an OWL ontology. The ontology

produced is a 4-level structure with 1463 nodes. First, we performed an initial set of

experiments in order to compare the simple kNN and the weighted kNN classification

methods and also to indentify the best value for the k factor. Best precision and recall

values were observed for k=7 using the weighted kNN algorithm.

3 http://protege.stanford.edu/
4 http://api.openoffice.org/
5 http://multivalent.sourceforge.net/

http://web.imis.athena-innovation.gr/~dalamag/gontogle
http://web.imis.athena-innovation.gr/~dalamag/gontogle

Moreover, the weights used for the automatic annotation method (Section 2.1), w1

and w2 are calculated at 0.6 and 0.4 respectively after tuning. Intuitively, these values

suggest that, in our problem setting, textual similarity is slightly more important than

semantic similarity in case of automatic annotation.

Evaluation Scenario

We asked from 15 users (PhD students and researchers in various areas of computer

science) to participate in our experimental evaluation. Each user selected 2 areas of

her research interests and for each area she collected 10 research papers that she was

familiar with. In order to train our system, we asked from each user to annotate (parts

or/and the whole of) 12 out of her 20 papers with at least one ACM class, using the

GoNTogle framework.

After every user had performed the training task, we asked each of them to

evaluate the automatic annotation suggestions provided by GoNTogle, for the

remaining 8 papers of each user (test set). Note that, before reviewing the system

suggestions, each user was asked which annotation classes she expected to be given

by the system. The system presented a ranked list of annotation classes and each user

was required to check the valid ones. Also, each user should point out valid classes

that were not found between the system suggestions, as well as valid classes that,

even they had not thought of, the system correctly suggested them.

Based on the data collected, we calculated the Precision at position n (P@n) and

Recall values for each user separately, as well as the mean average values for all

users. Also, for correctly suggested annotation classes that the user had not initially

thought of using them, we introduce the measure of Unexpected Valid Class

Suggestion (UVCS), defined as follows:

P@n and Recall are defined as follows:

 and

, where we count as relevant results, the ACM classes

considered valid by the user.

Evaluation Results

Table 1 presents, for each user, the average P@n values, for her 8 automatically

annotated papers. In addition, the average Recall (regarding the top-5 results) and the

average UVCS values are presented at Table 2.

Note that, due to our annotation scenario (annotating research papers with ACM

classes), it is rational to regard only the top-5 results during the P@n computation.

That is, because the majority of the research papers under consideration do not handle

more than 5 ACM hierarchy topics.

As we can observe, our method achieves high values both for Precision and Recall

metrics. Moreover high Recall values have been achieved, with an average Recall

value equal to 0.93. We should note that the relatively low P@4 and P@5 are

justified from the fact that, for a respectable amount of test documents, the users

expected (and thus validated) no more than 1-3 classes, that were found in the top 3

positions of the system's ranked suggestion list. Finally, it is obvious from the UVCS

metric, that the automatic annotation mechanism supports and guides users during the

annotation process, by suggesting correct classes that users had not previously

thought of.

Table 1. The average Precision at position n

(P@n) for each user

User P@1 P@2 P@3 P@4 P@5

1 0.82 0.79 0.79 0.75 0.68

2 1.00 0.94 0.80 0.65 0.60

3 0.80 0.80 0.70 0.70 0.76

4 1.00 1.00 0.80 0.84 0.80

5 1.00 0.90 0.90 0.82 0.81

6 0.80 0.90 0.73 0.70 0.64

7 1.00 1.00 0.93 0.85 0.84

8 0.93 1.00 0.73 0.71 0.69

9 0.90 0.90 0.87 0.80 0.76

10 0.91 0.87 0.80 0.75 0.71

11 1.00 1.00 0.87 0.84 0.78

12 0.80 0.77 0.72 0.70 0.66

13 0.95 0.92 0.83 0.75 0.68

14 1.00 0.90 0.87 0.80 0.76

15 0.80 0.80 0.73 0.65 0.56

Avg 0.91 0.90 0.81 0.75 0.72

Table 2. The average Recall and the

average UVCS for each user

User Recall UVCS

1 0.80 0.40

2 0.92 0.20

3 0.98 0.20

4 0.97 0.40

5 0.98 0.40

6 1.00 1.20

7 0.97 0.20

8 0.82 0.20

9 1.00 0.20

10 0.89 1.00

11 0.88 0.80

12 0.95 0.65

13 0.87 0.40

14 0.95 1.60

15 1.00 0.00

Avg 0.93 0.52

5.2 Search

In this section, we present an evaluation comparing the effectiveness of the search

types provided by our framework. The comparison is performed in terms of Precision

at position n, Recall, F-measure and Precision-Recall curve. In all cases, the

proposed hybrid search method delivers higher quality results than traditional

keyword-based or semantic-based search methods.

Configuration

The weights used for the hybrid search method (Section 3.1) are assigned the

following values: w3=0.7, w4=0.3 and w5=0.6, w6=0.4 after tuning. Intuitively, these

values suggest that, in our problem setting, semantic-based score is slightly more

important than keyword-based score in hybrid search.

Evaluation Scenario

Our corpus consists of the 300 manually and automatically annotated research papers

from the previous experiment (Section 5.1). First, we collect all the keywords defined

in these papers and we randomly choose 10 keywords to be used as queries. Note that,

keywords queries may contain one or more tokens.

Also, we map the selected keyword queries to semantic queries, using the ontology

classes. That is, to construct semantic queries that correspond to the keyword ones,

we select the ontology classes that are most similar to the keyword content. In this

way, we are able to perform both keyword, and ontology search, as well as hybrid

search, comparing the effectiveness of each approach.

Table 3 presents the 10 keyword queries (qkey) which are used for this experiment.

Table 4, presents the corresponding semantic queries (qsem) expressed using the

classes from ACM ontology. Hybrid queries are expressed by the combination of a

keyword query and its corresponded semantic query. For hybrid search we apply

booth (OR, AND) Boolean operators. The hybrid queries applying AND and OR

operators are denoted respectively as qhybrA and qhybrO.

Table 3. Keyword Queries Table 4. Semantic Queries

ID Keywords

qkey1
knowledge discovery

and privacy

qkey2 stream mining

qkey3 RDF indexing

qkey4 spatial databases

qkey5 clustering

qkey6 spatial access

qkey7 query language

qkey8 data model

qkey9 XML interoperability

qkey10 information integration

ID Classes

 qsem1 K.4.1 [Public Policy Issues]: Privacy

qsem2 H.2.8 [Database Applications]: Data mining

qsem3 H.3.1 [Content Analysis and Indexing]: Indexing methods

qsem4 H.2.8 [Database Applications]: Spatial databases and GIS

qsem5 H.3.3 [Information Search and Retrieval]: Clustering

qsem6 H.2.2 [Physical Design]: Access Methods

qsem7 H.2.3 [Languages]: Query languages

qsem8 H.2.1 [Logical Design]: Data models

qsem9 D.2.12 [Interoperability]

qsem10 H.2.5 [Heterogeneous Databases]

For each query we measure the quality of retrieval method using the Precision at

position n at position n, for n [1 to10] and Recall. Based on these measures, we

compare the various search types offered by our system: a) Keyword-based search, b)

Semantic-based search, c) Hybrid search using AND operator (hybrA) and d) Hybrid

search using OR operator (hybrO). Finally, for each search type, we compute the

average Precision at positions 1 to 10, Recall, F-measure and Precision-Recall curves

for all queries.

Average Evaluation Results For All Queries

Table 5 presents the average P@n for n [1 to 10] and the average Recall and F-

measure values for all queries. Note that, most queries in hybrid search using the

AND operator, do not retrieve more than 5-6 documents (as we can see from Table 6).

As a consequence, the precision, for this search type is calculated only at positions 1

to 5.

Precision. As we can observe from Table 5, the hybrid search (for both operators)

outperforms the keyword-based and semantic-based search at every position, with

hybrA achieving slightly higher values at positions 4 and 5. Moreover, we can see that

keyword-based search radically decreases after position 4, where semantic-based and

hybrid search start decreasing progressively after the 6th position.

Hybrid search compared to keyword-based search, achieves a maximum increase

of 100% at position 7 and a minimum increase of 33.3% at position 2. Comparing

hybrid with semantic-based search, hybrid, achieves a maximum increase of 17.2% at

position 10 and a minimum increase of 0% at position 1.

Recall. As we can see, the hybrO outperforms the keyword-based and semantic-

based search, achieving recall value close to 1 (0.98). Moreover, hybrA achieves

slightly lower recall values than semantic-based search. This is due to the fact that

hybrA search is very restrictive. So, too few documents are returned for each query

with negative influence on the recall values.

Comparing hybrO with keyword-based search, hybrO, achieves an increase of

78.2%. Moreover, despite the low recall values of hybrA method, in comparison with

keyword-based search, it increases the recall value at 20%. In comparison with

semantic-based search, hybrO achieves a increase of 16.7%. Finally, hybrA achieves

lower recall values than semantic-based search, having a decrease of 21.4%.

F-measure. As we can see, the hybrid search outperforms the other methods in F-

measure value. Comparing hybrO with keyword-based and semantic-based search,

hybrO achieves an increase of 77% and 16.4% respectively. Moreover, comparing

hybrA with keyword-based and semantic-based search, hybrA achieves an increase of

52% and 0% respectively.

Table 5. The average Precision at position n (P@n), Recall and F-measure for all queries

 P@1 P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@9 P@10

Recall F-measure

qkey 0.70 0.75 0.70 0.70 0.60 0.52 0.47 0.48 0.44 0.43

0.55 0.48

qsem 1.00 0.95 0.90 0.88 0.90 0.87 0.81 0.76 0.70 0.64

0.84 0.73

qhybrA 1.00 1.00 1.00 1.00 0.98 - - - - -

0.66 0.73

qhybrO 1.00 1.00 0.97 0.98 0.96 0.95 0.94 0.89 0.81 0.75

0.98 0.85

Precision vs. Recall. Figure 5 shows the average precision-recall curve for all

queries. As we can see, hybrid search has a very stable performance, achieving high

precision (close to 1) even for recall values greater than 0.8. hybrO precision starts to

decrease noticeably only after recall values are greater than 0.9. For recall values

lower than 0.6, hybrA achieves precision values higher than hybrO. Semantic-based

search precision, progressively decreases from the beginning while recall increases.

Finally, keyword-based search precision values rapidly decrease for recall values

greater than 0.4.

Figure 5. The average precision-recall curve for all queries

Evaluation Results For Each Query

Figure 6 presents for each query, the P@n for n [1 to 10] and Recall values.

As we can see, in all queries, the hybrid search (for both boolean operators)

outperforms the keyword-based and semantic-based search in precision values at

every position. Moreover, regarding the recall measures, the hybrO search

outperforms the other search methods in every query, with 9 out of 10 queries

achieving recall values equal to 1.

As far as P@n is concerned, hybrid search achieves the highest precision values

for all queries in every position. Hybrid search using AND and OR operators achieve

similar precision values. However in many cases AND operator returns less than 10

documents. Semantic-based search achieves lower precision values (except hybrA for

Query 6) than hybrid search, and higher values than keyword-based search (with 3

exceptions, Queries 4,5,6). Finally, keyword-based search achieves, in general, the

lowest precision values.

As far as recall is concerned, hybrid search using OR operator achieves the highest

recall values in all queries, with 9 out of 10 queries achieving recall values equal to 1.

Semantic-based search achieves lower recall values than the former and higher or

equal than rest methods, with two exceptions (Queries 6,8). Moreover, hybrid search

using AND operator achieves lower or equal recall values than semantic-based search

and higher than keyword-based search (with one exception, Query 2). Finally,

keyword-based search achieves, in general, lowest recall values.

Query 1 Query 2 Query 3 Query 4

qkey1 qsem1 qhybrA1 qhybrO1 qkey2 qsem2 qhybrA2 qhybrO2 qkey3 qsem3 qhybrA3 qhybrO3 qkey4 qsem4 qhybrA4 qhybrO4

P@1 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

P@2 1.00 1.00 1.00 1.00 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

P@3 1.00 1.00 1.00 1.00 0.33 0.67 1.00 0.67 0.67 0.67 1.00 1.00 1.00 0.67 1.00 1.00

P@4 1.00 1.00 1.00 1.00 0.50 0.50 - 0.75 0.75 0.75 1.00 1.00 1.00 0.75 1.00 1.00

P@5 1.00 1.00 1.00 1.00 0.40 0.60 - 0.60 0.60 0.80 1.00 1.00 1.00 0.80 1.00 1.00

P@6 0.83 1.00 - 1.00 0.33 0.67 - 0.67 0.50 0.67 - 0.83 0.83 0.83 1.00 1.00

P@7 0.71 1.00 - 1.00 0.29 0.57 - 0.57 0.43 0.71 - 0.86 0.71 0.71 - 1.00

P@8 0.63 1.00 - 1.00 0.25 0.50 - 0.50 0.38 0.63 - 0.75 0.75 0.75 - 1.00

P@9 0.56 1.00 - 1.00 0.22 0.44 - 0.44 0.33 0.56 - 0.67 0.67 0.78 - 0.89

P@10 0.50 0.90 - 1.00 0.20 0.40 - 0.40 0.40 0.50 - 0.60 0.60 0.80 - 0.80

Recall 0.45 0.82 0.45 0.91 0.50 1.00 0.25 1.00 0.67 0.83 0.83 1.00 0.75 1.00 0.75 1.00

Query 5 Query 6 Query 7 Query 8

qkey5 qsem5 qhybrA5 qhybrO5 qkey6 qsem6 qhybrA6 qhybrO6 qkey7 qsem7 qhybrA7 qhybrO7 qkey8 qsem8 qhybrA8 qhybrO8

P@1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 0 1.00 1.00 1.00

P@2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0 1.00 1.00 1.00 0 1.00 1.00 1.00

P@3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.33 1.00 1.00 1.00 0 1.00 1.00 1.00

P@4 1.00 0.75 1.00 1.00 1.00 1.00 1.00 1.00 0.25 1.00 1.00 1.00 0 1.00 1.00 1.00

P@5 0.80 0.80 1.00 1.00 0.80 1.00 0.80 1.00 0.20 1.00 1.00 1.00 0 1.00 1.00 1.00

P@6 0.67 0.83 - 1.00 0.67 0.83 0.67 1.00 0.33 1.00 1.00 1.00 0 1.00 1.00 1.00

P@7 0.57 0.71 - 1.00 0.71 0.71 0.57 1.00 0.29 1.00 1.00 1.00 0.14 1.00 - 1.00

P@8 0.63 0.63 - 0.88 0.75 0.63 0.50 1.00 0.38 1.00 1.00 1.00 0.13 0.88 - 0.88

P@9 0.56 0.56 - 0.78 0.67 0.56 0.44 0.89 0.44 0.89 1.00 1.00 0.11 0.78 - 0.78

P@10 0.50 0.50 - 0.70 0.60 0.50 0.40 0.80 0.50 0.80 0.90 1.00 0.10 0.70 - 0.70

Recall 0.63 0.63 0.63 0.88 0.67 0.63 0.50 1.00 0.50 0.80 0.90 1.00 0.14 0.70 0.89 1.00

Query 9 Query 10

qkey9 qsem9 qhybrA9 qhybrO9 qkey10 qsem10 qhybrA10 qhybrO10

P@1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

P@2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

P@3 1.00 1.00 1.00 1.00 0.67 1.00 1.00 1.00

P@4 0.75 1.00 1.00 1.00 0.75 1.00 1.00 1.00

P@5 0.60 1.00 1.00 1.00 0.60 1.00 1.00 1.00

P@6 0.50 1.00 - 1.00 0.50 0.83 1.00 1.00

P@7 0.43 0.86 - 1.00 0.43 0.86 - 1.00

P@8 0.38 0.75 - 0.88 0.50 0.88 - 1.00

P@9 0.33 0.67 - 0.78 0.56 0.78 - 0.89

P@10 0.30 0.60 - 0.70 0.60 0.70 - 0.80

Recall 0.43 0.86 0.71 1.00 0.75 0.88 0.75 1.00

Figure 6. The Precision at position n (P@n) and the Recall for each query

6 Related Work

A great number of approaches on semantic annotation have been proposed in the

literature [6, 7]. Most of them are focused on annotating web resources such as

HTML pages [8, 9, 10, 11, 12, 13, 14].

As far as plain text (or HTML) annotation is concerned, there are approaches that

differ in the annotation and search facilities they offer. GATE [15] is a platform that

offers an architecture, a framework and a graphical tool for language processing.

Tools and resources are offered to perform textual annotation both manually and

automatically using information extraction (IE) techniques.

KIM [16] provides an infrastructure for semantic annotation of documents (text or

HTML), restricted, however, to its own ontology, called KIMO. The information

extraction, document management and annotation part is based on GATE. The aim of

the IE engine is the recognition of named entities with respect to the KIMO ontology.

Compared to the above approaches, GoNTogle provides advanced searching facilities

using a flexible combination of keyword-based and semantic-based search over

documents. Also, it provides automatic annotation facilities based on models trained

from user annotation history, so that annotation suggestions are tailored to user

behavior.

AKTiveMedia [17] supports the annotation of text, images and HTML documents

using both ontology-based and free-text annotations. For the automatic annotation

task an underlying information extraction (IE) system has been integrated, learning

from previous annotations and suggests annotations to the user. However,

AKTiveMedia does not provide search facilities. Furthermore, the supported

automatic annotation mechanism provides very low performance, when annotations

concerns more than one tokens (due to the IE system). In addition, a serious limitation

of the automatic annotation mechanism is that it takes into consideration only one

class per annotation. In case of annotations with multiples classes, the rest of the

classes are skipped.

The above tools support annotations on HTML or plain text. As far as popular

document formats are concerned, PDFTab [18] is a Protégé plug-in for annotating

PDF documents with OWL ontologies classes. Annotations are stored in the internal

document representation, with the document structure remaining unchanged.

Compared to GoNTogle, PDFTab has several limitations: it does not provide any

search facilities or automatic annotation method. SemanticWord [19] is a MS Word

plug-in which offers MS Word annotations with DAML+OIL ontologies. Compared

to GoNTogle, SemanticWord integrates an information extraction system with no

learning support to suggest annotations. Also, SemanticWord does not provide search

facilities and does not support OWL and RDF/S ontologies.

Regarding the semantic search, in the recent years, numerous systems and

approaches have been proposed in the literature [20]. An approach close to our, is

introduced at [21], where a combination of keyword and semantic search over web

sources is supported, on top of the AKTiveMedia framework [17]. A noticeable

drawback of this approach is that the ranking of hybrid search, is relying only at

keyword search where the semantic part is utilized only to exclude or include a result

and not to rank it. Moreover, [21] does not support advanced search operations related

to ontology semantics. Additionally, an interesting but less relative approach [22],

analyzes the meaning of words and phrases, to define semantic relations between

lexicalized concepts. In that case, syntactic search is extended with semantics, by

converting words into concepts and exploiting the arisen semantics.

7 Conclusion and Future Work

In this paper we presented GoNTogle, a framework for document annotation and

retrieval, built on top of Semantic Web and IR technologies. GoNTogle supports both

manual and automatic document annotation using ontologies. A learning mechanism

is implemented, providing automatic document annotation facilities based on textual

information and user annotation history.

In order to overcome the drawbacks of traditional keyword-based (like concept

polysemy and synonymy) and semantic-based search (like partial or not existing

annotations) we propose a hybrid search method. Hybrid search provides a flexible

combination of keyword-based and semantic-based search. Moreover, several

advanced ontology-based search operations are provided. Ontology information is

exploited, to help the user expand or shrink the resulting list in order retrieve high

quality results.

A user-based evaluation is performed, in order to demonstrate the effectiveness of

the automatic annotation method. Moreover, a comparative evaluation validates that,

the proposed hybrid search, outperforms in all cases the keyword-based and semantic-

based search in terms of precision and recall.

Finally, all the proposed methods are implemented as a fully functional tool.

Our future work involves: a) Supporting more knowledge representation forms

(e.g. Mind maps). b) Adding advanced search facilities exploiting ontology reasoning

techniques. c) Integrating several semantic-based natural language techniques. d)

Studying how tagging techniques can be integrated to GoNTogle framework. e) Using

GoNTogle framework to support the clipping department of an organization or a

company in order to perform extended experiments in large corpora. f) Adapting the

framework to commercial document viewers (MS Word and Adobe Reader).

Acknowledgments. We would like to thank the all the PhD students and the research

staff from IMIS R.C. "Athena" and KDBS Lab (NTUA) for their contribution in the

evaluation part of this work. Finally, we would also like to thank Dimitris Sacharidis

from IMIS/R.C. "Athena" for many helpful comments on earlier versions of this

article.

References

1. Mitchell T.M. "Machine Learning" WCB/McGraw-Hill, 1997.

2. Handschuh, S., Staab, S. (eds.): "Annotation for the Semantic Web". IOS Press, (2003)

3. Agosti, M., Ferro, N.: "A Formal Model of Annotations of Digital Content". ACM

Transactions on Information Systems (TOIS) 26(1), 3:1–3:57 (2008)

4. Agosti M., Albrechtsen H., Ferro N., Frommholz I., Hansen P., (et.al): "DiLAS: a digital

library annotation service". In Proc. of IWAC 2005.

5. Haslhofer B., Jochum W., King R., Sadilek C., Schellner K.: "The LEMO annotation
framework: weaving multimedia annotations with the web". JODL 10(1):15-32 (2009)

6. Reeve L., Han H.: "Survey of semantic annotation platforms". In Proc. of the ACM
Symposium on Applied Computing '05.

7. Uren V. S., Cimiano P., Iria J., Handschuh S., Vargas-Vera M., Motta E., Ciravegna F.:

"Semantic annotation for knowledge management: Requirements and a survey of the state
of the art", Journal of Web Semantics, vol. 4, 2006.

8. Kiyavitskaya N., Zeni N., Cordy J.R., Mich L., Mylopoulos J.: "Cerno: Light-weight tool

support for semantic annotation of textual documents". Data Knowl. Eng. (DKE) 68(12)
(2009)

9. Hogue A., Karger D.: "Thresher: automating the unwrapping of semantic content from the
World Wide Web". In Proc. of WWW 2005.

10. Cimiano P., Handschuh S., Staab S.: "Towards the self-annotating web". In Proc. of
WWW 2004.

11. Dill S., Eiron N., Gibson D., Gruhl D., Guha R., Jhingran A., Kanungo T., McCurley K.

S., Rajagopalan S., Tomkins A., Tomlin J. A., Zien J. Y., "A Case for Automated Large-

Scale Semantic Annotation", Journal of Web Semantics 1(1) (2003).

12. SMORE: Create OWL Markup for HTML Web Pages. http://www.mindswap.org/2005/SMORE/.

13. Handschuh, S., Staab, S., Ciravegna, F.: "S-CREAM: Semi-automatic CREAtion of

Metadata". In Proc. of EKAW 2002.

14. Vargas-Vera, M., Motta, E., Domingue, J, Lanzoni (et.al) : "MnM: Ontology Driven

Semi-automatic and Automatic Support for Semantic Markup" In Proc. of EKAW 2002.

15. Cunningham H., Maynard D., Bontcheva K., Tablan V.: "GATE: A Framework and

Graphical Development Environment for Robust NLP Tools and Applications". In Proc.
of the ACL 2002.

16. Kiryakov A., Popov B., Terziev I., Manov D., Ognyanoff D.: "Semantic annotation,
indexing, and retrieval". Journal of Web Semantics 2(1), 2004.

17. Chakravarthy A., Lanfranchi V., Ciravegna F.:"Cross-media document annotation and
enrichment". In 1st Semantic Authoring and Annotation Workshop 2006.

18. Eriksson H.: "An annotation tool for semantic documents". In Proc. of the ESWC 2007

19. Tallis M., "SemanticWord processing for content authors": In Proc. of the Knowledge
Markup and Semantic Annotation Workshop 2003.

20. Mangold C., "A survey and classification of semantic search approaches", Int. J. Metadata

Semantics and Ontology 2 (1) (2007).

21. Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: "Hybrid search:
Effectively combining keywords and semantic searches". In Proc. of ESWC 2008.

22. Giunchiglia F., Kharkevich U., Zaihrayeu I., "Concept search", In Proc. of ESWC 2009

23. Giannopoulos G., Bikakis N., Dalamagas T., Sellis T.: "GoNTogle: A Tool for Semantic

Annotation and Search". In Proc. of the ESWC 2010 (Demo).

