
GoNTogle: A Tool for Semantic Annotation and Search

Giorgos Giannopoulos1,2, Nikos Bikakis1,2, Theodore Dalamagas2 and Timos Sellis1,2

1 KDBSL Lab | School of ECE | Nat. Tech. Univ. of Athens | Greece

giann@dblab.ntua.gr, bikakis@dblab.ntua.gr

2 Institute for the Management of Information Systems | "Athena" Research Center | Greece

dalamag@imis.athena-innovation.gr, timos@imis.athena-innovation.gr

Abstract. This paper presents GoNTogle, a tool which provides advanced

document annotation and search facilities. GoNTogle allows users to annotate

several document formats, using ontology concepts. It also produces automatic

annotation suggestions based on textual similarity and previous document

annotations. Finally, GoNTogle combines keyword and semantic-based search,

offering advanced ontology query facilities.

Keywords:Document Annotations, Ontology based Retrieval, Hybrid Search,

Semantic Search, Keyword Search, Ontology Search, Annotation Tool

1 Introduction

Semantic annotation and search tools are at the core of Semantic Web Technology.

Annotations involve tagging of data with concepts (i.e., ontology classes) so that data

becomes meaningful. Annotating data can help in providing better search facilities,

since it helps users to search for information not only based on the traditional

keyword-based search, but also using well-defined general concepts that describe the

domain of their information need.

A great number of approaches on semantic annotation have been proposed in the

literature [2]. Most of them are focused on annotating web resources such as html

pages or plain text [3,4,5,6]. As far as popular document formats are concerned, there

are approaches that differ in the annotation and search facilities they offer [7,8].

In this paper we present GoNTogle. GoNTogle supports manual and automatic

annotation of several types of documents (doc, pdf, rtf, txt, odt, sxw) using ontology

classes, in a fully collaborative environment. It also provides searching facilities

beyond the traditional keyword-based search, using a flexible combination of

keyword and semantic-based search. In contrast with other works, our aim was to

implement an easy-to-use document annotation and search tool, that would fully

support (a) viewing and annotating popular document types while maintaining their

initial format, (b) sharing those annotations and (c) searching for documents

combining keyword and semantic-based search.

The key features of our tool are the following:

 It allows users to open and view widely used document formats such as .doc

and .pdf , maintaining their original format.

 It provides an easy and intuitive way of annotating documents (or document

parts) using OWL and RDF/S ontologies.

 It provides an automatic annotation mechanism based on models trained

from user annotation history, so that annotation suggestions are tailored to

user behavior.

 It is based on a server-based architecture, where document annotations are

stored in a central repository. Thus, we offer a collaborative environment

where users can annotate and search documents.

 It combines keyword and semantic search, providing advanced search

facilities for both types of search.

Search

Proximity

Search Indexer

Index Semantic

Annotation

Automatic

Annotation

OWL

Knowledge

Base

pdf

doc txt

rtf

odt
sxw

UserUser

GoNTogle platform

Ontology

 Server

Figure 1. GoNTogle architecture

2 System Overview

GoNTogle's architecture is presented in Figure 1. The system is divided into 4 basic

components: a) Semantic Annotation Component, that provides facilities regarding the

semantic annotation of documents. It consists of 3 modules: a Document Viewer, an

Ontology Viewer and an Annotation Editor. b) Ontology Server Component, that

stores the semantic annotations of documents in the form of OWL ontology instances.

c) Indexing Component, that is responsible for indexing the documents using an

inverted index. d) Search Component, that allows users to search for documents using

both textual (keyword search) and semantic (ontology search) information.

2.1 Semantic Annotation

Semantic Annotation Component offers 2 primary functionalities: (a) annotation of

whole document and (b) annotation of parts of a document. Also, a user may select

between manual and automatic annotation.

Figure 2 depicts the Semantic Annotation window of our application. The user may

open a document in the Document Viewer, maintaining its original format. In the

particular example, the user has opened a .doc document. Moreover, she can load and

view the hierarchy of an ontology through the Ontology Viewer.

The user can, then, select one or more ontology classes and manually annotate the

whole document or part of it. The annotation is saved as an ontology instance in the

Ontology Server, along with information about the annotated document (or part). On

the same time, an annotation instance is added in the Annotation Editor list. Each

record of this list corresponds to an annotation stored in the Ontology Server. For

example (Figure 2), the abstract of the document is annotated with class

H.2.3_Languages-Query_Languages, while the whole document is annotated with

class H.2_DATABASE_MANAGEMENT. The user can edit those annotation instances,

adding or removing ontology classes, or completely remove them.

The user may also choose the automatic annotation functionality. In this case, the

system suggests candidate ontology classes, executing our learning method based on

weighted kNN classification [1], that exploits user annotation history to automatically

suggest annotations.

Figure 2. Semantic annotation example

2.2 Search

Search component provides a series of search facilities which are described below.

We start with the simple ones:

 Keyword-based search. This is the traditional searching model. The user

provides keywords and the system retrieves relevant documents based on

textual similarity.

 Semantic-based search. The user navigates through the classes of the

ontology and selects one or more of them. The result list from this type of

search consists of all documents that have (partially or on their whole) been

annotated with one or more of the chosen classes.

 Hybrid search. The user may search for documents using keywords and

ontology classes. She can, also, determine whether the results of her search

will be the intersection or the union of the two searches.

Next we present a set of advanced searching facilities that can be used after an

initial search has been completed.

 Find related documents. Starting from a result document d, the user may search

for all documents which have been annotated with a class that also annotates d.

 Find similar documents. This is a variation of the previous search facility.

Starting from a result document d, the user may search for all documents which

are already in the result list and have been annotated with a class that also

annotates d.

 Get Next Generation. The resulting list from an semantic-based search can be

expanded by propagating the search on lower levels in the ontology (i.e., if class

c has been used, then search is propagated only in direct subclasses of c). This is

the case when the search topic is too general.

 Get Previous Generation. This offers the inverse functionality of the previous

option. The resulting list from an semantic-based search can be expanded by

propagating the search on higher levels in the ontology (i.e., if class c has been

used, then search is propagated only in direct superclasses of c). This is the case

when a search topic is too narrow.

 Proximity Search. This search option allows the user to search for documents

not only belonging to a selected class but also belonging to the classes's

subclasses. That is, if class c has been used, then search is propagated in all

direct subclasses of c and their direct subclasses. The resulting documents

gathered from those three levels of the ontology hierarchy are weighted properly

(documents from the initial class c get higher score).

The resulting documents are presented in a ranked list. From the information

presented in this list the user can find out whether a resulting document comes from

keyword/ontology/hybrid search, and which classes it is annotated with (if any). Also,

each result is accompanied by a score. This score is a weighted sum of (a) the textual

similarity score given by keyword search and (b) a score that represents the extend to

which each document is annotated with the classes selected in ontology search.

3 Implementation and Evaluation

In what follows we provide technical information about the implementation of our

system and we present a preliminary experiment we performed.

Implementation. To compose our system, we utilized several open source tools and

libraries. For indexing and keyword searching we used Lucene search engine library1.

We used Protégé2 as Ontology Server, so that document annotations are stored as

OWL class instances.

OpenOffice API3 was essential in incorporating in our system a viewer that could

maintain the exact format of .doc documents, which is a very common filetype. The

same applies for Multivalent4, a generalized document viewer that was integrated in

1 http://lucene.apache.org/java/docs/
2 http://protege.stanford.edu/
3 http://api.openoffice.org/
4 http://multivalent.sourceforge.net/

our system so that .pdf files could also maintain their format when being viewed and

annotated.

All annotation and search facilities presented in this paper have been implemented

in a Java prototype. Detailed information and application screenshots, as well as the

application itself and installation instructions can be found in http://web.imis.athena-

innovation.gr/~dalamag/gontogle.

Evaluation. We have performed a preliminary evaluation of the semantic

annotation tool. More specifically, we tested the precision and recall of the automatic

annotation process.

We turned the ACM Computing Classification

into an OWL ontology. The ontology

produced is a 4-level structure with 1463 nodes.

We used 500 papers, pre-categorized according to the ACM System, as sample

documents for the ontology classes. Then, we used the tool to automatically annotate

66 papers from the publication database maintained in our lab. Figure 4 presents

precision and recall diagrams for simple and weighted kNN. Best values were

observed for k=7.

We observed better results when using weighted kNN compaired to simple kNN, so

we adopted the former in our final system implementation.

Figure 3. Evaluation results for automatic annotation based on kNN

References

1. Mitchell T.M. "Machine Learning" WCB/McGraw-Hill, 1997.

2. Uren V. S., Cimiano P., Iria J., Handschuh S., Vargas-Vera M., Motta E., Ciravegna F.:

"Semantic annotation for knowledge management: Requirements and a survey of the state of

the art", Journal of Web Semantics, vol. 4, 2006.

3. Vargas-Vera, M., Motta, E., Domingue, J, Lanzoni (et.al) : "MnM: Ontology Driven Semi-

automatic and Automatic Support for Semantic Markup" In Proc. of EKAW '02.

4. Cunningham H., Maynard D., Bontcheva K., Tablan V.: "GATE: A Framework and

Graphical Development Environment for Robust NLP Tools and Applications". In Proc. of

the ACL'02.

5. Kiryakov A., Popov B., Terziev I., Manov D., Ognyanoff D.: "Semantic annotation,

indexing, and retrieval". Journal of Web Semantics 2(1), 2004.

6. Chakravarthy A., Lanfranchi V., Ciravegna F.:"Cross-media document annotation and

enrichment". In 1st Semantic Authoring and Annotation Workshop '06.

7. Eriksson H.: "An annotation tool for semantic documents". In Proc. of the ESWC '07

8. Tallis M., "SemanticWord processing for content authors": In Proc. of the Knowledge

Markup and Semantic Annotation Workshop '03.

http://web.imis.athena-innovation.gr/~dalamag/gontogle
http://web.imis.athena-innovation.gr/~dalamag/gontogle

