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Group recommender systems help users make collective choices but often lack transparency, leaving group
members uncertain about why items are suggested. Existing explanation methods focus on individuals, offering
limited support for groups where multiple preferences interact. In this paper, we propose a framework for
group counterfactual explanations, which reveal how removing specific past interactions would change a
group recommendation. We formalize this concept, introduce utility and fairness measures tailored to groups,
and design heuristic algorithms, such as Pareto-based filtering and grow-and-prune strategies, for efficient
explanation discovery. Experiments on MovieLens and Amazon datasets show clear trade-offs: low-cost
methods produce larger, less fair explanations, while other approaches yield concise and balanced results at
higher cost. Furthermore, the Pareto-filtering heuristic demonstrates significant efficiency improvements in
sparse settings.
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1 Introduction

Recommender systems have become indispensable in a wide range of online platforms, from e-
commerce and streaming services to tourism and education. While most research in recommender
systems has traditionally focused on individuals, many real-world decision-making processes
involve groups of users, e.g., families choosing a movie, friends selecting a restaurant, or colleagues
planning a trip. Group recommender systems aim to support such scenarios by aggregating individ-
ual preferences into a joint recommendation. Despite their growing importance, they often remain
opaque: users typically see the final output but have little insight into why certain items were
recommended to the group. This lack of transparency undermines user trust and limits acceptance,
particularly in settings where group members need to justify or negotiate decisions.

Explainability has thus emerged as a critical requirement for recommender systems [44]. Existing
research on explainable Al has explored various forms of explanations, including feature-based
justifications [27], rule-based reasoning [45], and, more recently, counterfactual explanations [38].
Counterfactuals answer “what if” questions by identifying the changes needed in the input that
would alter a recommendation outcome. For instance, a system may explain the appearance of
a movie in a user’s list by stating: “If you had not rated item X, this recommendation would
not appear.” Counterfactual explanations are actionable, model-agnostic, and easily interpretable,
making them especially suitable for increasing transparency in black-box systems. However, prior
work has almost exclusively focused on individual users [13, 18], leaving group settings largely
unexplored.

Explaining group recommendations introduces unique challenges. Unlike individuals, groups
combine multiple preference profiles, often leading to complex dynamics of influence and compro-
mise. A counterfactual explanation must therefore account not only for the system’s internal logic
but also for how group members’ interactions collectively shape the outcome. Moreover, group
explanations raise additional concerns of fairness: if an explanation suggests removing only one
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member’s interactions, that user may perceive the system as biased or exclusionary. Balancing
interpretability, utility, and fairness is thus essential for explanations to be both informative and
acceptable in group contexts [43].

One major advantage of counterfactual explanations in group recommendations is that they are
constructed from data items with which the group has previously interacted. This ensures that
explanations remain grounded in the system’s internal knowledge and do not rely on external
information, thereby preserving user trust. However, this very property also introduces a significant
drawback.

The drawback arises from the process of generating a counterfactual explanation. To verify
that a set of items constitutes a valid counterfactual explanation for a target item, the system
must simulate the removal of these items from the group’s interaction history, re-run the group
recommender, and check whether the target item disappears from the new recommendation list.
If it does, the removed items form a counterfactual explanation. Since a group typically contains
multiple members, each with numerous interactions, the space of possible candidate items becomes
extremely large. This challenge is further compounded by the need to consider not just individual
items but also all possible combinations. As a result, exhaustive search becomes prohibitively costly.

To address this limitation, we propose heuristic methods designed to reduce the search space
while also mitigating potential unfairness in the resulting explanations. To guide these heuristics,
we introduce a set of metrics that capture different dimensions of item relevance: how extensively
the group has interacted with an item, its popularity in the overall system, its influence on removing
the target item from the recommendation list, and the group members’ preferences for the target
item. We also consider efficiency by measuring the number of times the group recommender must
be invoked before a counterfactual explanation is identified.

Based on these considerations, we propose five heuristic methods for generating counterfactual
explanations. First, the Pareto-filtering heuristic uses the Pareto notion to initially reduce the search
space, requiring only a limited number of recommender calls. GreedyGrow sequentially adds items
until a counterfactual is obtained. ExpRebuild and Grow&Prune refine GreedyGrow. In particular,
ExpRebuild orders items according to their ability to explain the target item and then incrementally
reconstructs the counterfactual. By contrast, Grow&Prune starts from an initial counterfactual and
removes items step by step until a reduced-size explanation is reached. Finally, Fixed Window applies
a sliding window over the candidate list to identify a subset containing a counterfactual explanation
and then exhaustively searches within this restricted window to extract a more compact explanation.
Together, these heuristics provide a spectrum of trade-offs between efficiency, minimality, and
fairness, which we evaluate in our experiments.

Overall, in this paper, we introduce the first systematic framework for explaining group recom-

mendations via counterfactuals. The main contributions are the following:
e Modeling: We formalize the concept of counterfactual explanations in group recommender

systems, defining item-level metrics that capture recognition, rating, and influence both
within and beyond the group.

e Evaluation dimensions: We introduce a set of metrics for assessing counterfactual ex-
planations in groups, including minimality, interpretability, cost-efficiency, utility, and
fairness.

e Algorithms: We propose a family of heuristic algorithms for efficiently discovering group
counterfactual explanations.

e Experiments: We evaluate the algorithms across two real-world datasets (MovieLens and
Amazon). Our results highlight the trade-offs between explanation size, computational cost,
and fairness, and demonstrate the effectiveness of Pareto-based filtering in reducing search
complexity.
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A preliminary version of this work appears in [39]. In addition to refining the FixedWindow
method, we now introduce a more robust set of metrics and three additional heuristic algorithms.
We have also conducted experiments using a larger MovieLens dataset and evaluated the proposed
heuristics on another dataset, Amazon.

The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3
introduces the item-level metrics, and Section 4 extends this with utility metrics defined at the
explanation level. Next, Section 5 presents the proposed algorithms together with their pseudocode.
Section 6 outlines the experimental setup and discusses the evaluation results. Finally, Section 7
concludes the paper.

2 Related Work

Recommender systems are a cornerstone of modern information access, assisting users in navigating
large collections of items in domains such as e-commerce, media streaming, and online services.
Early approaches were dominated by collaborative filtering and content-based techniques [1],
which later evolved into hybrid and deep learning models to improve both scalability and accuracy.
Beyond predictive performance, recent research has increasingly emphasized additional dimensions
such as fairness, diversity, and explainability [26, 33, 55]. We next review existing work on group
recommendations and counterfactual explanations.

2.1 Group Recommendations

Group recommendation has been widely studied in the literature [28]. A common strategy is to first
apply a standard single-user recommendation model to each group member and then aggregate
the resulting individual recommendation lists into a single group list, e.g., [2, 4, 32, 40].

Different approaches have been proposed for the aggregation stage. For instance, [54] considers
the varying influence of individual group members when merging recommendations, while [8]
employs attention networks and neural collaborative filtering to learn aggregation strategies
directly from data. Along the same lines, [53] combines attention mechanisms with bipartite graph
embeddings to capture member influence, whereas [37] leverages social networks enriched with
user preferences and social interactions to determine group-level recommendations.

Group members interactions have also been explicitly modeled. For example, [46] simulates
consensus-building as a series of voting processes and introduces a stacked social self-attention
network to learn the underlying voting dynamics. To handle large groups, [34] proposes dividing
them into subgroups with shared interests, identifying candidate media-user pairs for each subgroup,
and then aggregating the resulting collaborative filtering lists. Another strategy is presented in [21],
which introduces a two-phase recommender: the first phase seeks to maximize satisfaction at the
group level, and the second phase refines recommendations to better satisfy individual preferences.

Utility-based approaches have also been explored. In [51], each member is assigned a utility
score based on the relevance of items, and the system balances these utilities to generate a final
group list. Similarly, [36] defines user utility as the similarity between individual and group-level
recommendations and considers sets of Pareto-optimal items when constructing the list. Finally,
[20] introduces the notion of rank-sensitive balance, where not only the top recommendation but
also each successive prefix of the list must reflect a fair balance of member interests.

2.2 Counterfactual Explanations

Counterfactual explanations have emerged as a powerful approach to enhance the transparency
and reliability of recommender systems. They clarify why certain items are recommended by
identifying minimal changes in the input data that would alter the outcome. This form of explanation
is intuitive, actionable, and model-agnostic, making it particularly valuable in contexts where
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user trust and accountability are essential. While counterfactuals have primarily been studied
in individual recommendation scenarios, their potential is especially relevant to group settings,
where understanding how different members’ preferences shape the joint outcome is critical for
transparency and acceptance.

Recent research has explored counterfactual explanations across diverse recommendation tasks.
For instance, CAVIAR [18] modifies image embeddings to reveal the influence of visual features
on recommendations, while [50] introduces CFairER, a fairness-aware counterfactual framework
addressing demographic biases such as age and gender. Graph-based methods have also been
proposed, including GNNUERS [29], which explains fairness issues in GNN-based recommendation
models. Beyond recommended items,[41] studies “why-not” questions in collaborative filtering,
providing explanations for items that were absent from recommendations; an idea later extended to
graph-based systems in [3]. Temporal dynamics have also been incorporated: the CETD method [16]
generates counterfactual explanations for sequential recommendation by considering evolving user
behavior.

Other works focus on general frameworks and model-agnostic solutions. A study in [42] pro-
poses a framework for producing explainable counterfactual recommendations by showing how
small changes lead to different results, while [52] presents a learning-based approach that adapts
explanations to user interaction histories. MACER [49] leverages reinforcement learning to provide
model-agnostic, item-based counterfactual explanations, particularly suitable in settings with multi-
ple aggregation models, such as group recommendations. LXR [5] offers a post-hoc, self-supervised
approach to identify critical user interactions for a recommendation, and [50] studies attribute-level
counterfactuals in heterogeneous information networks, focusing on item exposure disparities and
fairness.

A recent line of research has begun to explicitly consider group counterfactuals in relation to
fairness. For example, CounterFair [24] proposes a framework that generates group counterfactuals
for bias detection, fairness-aware recourse, and subgroup identification. By balancing recourse
across sensitive groups, CounterFair demonstrates how counterfactual reasoning can serve not only
as an explanatory tool but also as a means to mitigate algorithmic bias. This direction complements
our focus by highlighting the potential of counterfactuals at the group level, though its emphasis
lies in bias detection and subgroup discovery rather than in explaining group recommendations.

Together, these contributions have laid important foundations for counterfactual reasoning in
recommender systems. However, most of this research remains centered on individual recom-
mendations. In contrast, group recommendations introduce additional complexity, as they must
reconcile diverse user preferences and balance fairness across members. To the best of our knowl-
edge, counterfactual explanations tailored to group settings have not been systematically explored.
Addressing this gap, we investigate how counterfactuals can be adapted to group recommendations,
providing explanations that foster both trust and satisfaction among all group members.

3 Group Counterfactual Explanations Model

To enhance the transparency and interpretability of group recommendation systems, we introduce
a model for generating counterfactual explanations tailored to groups of users. These explanations
provide actionable insights by identifying which items would lead to different recommendation out-
comes if removed from the group’s interaction history. In this section, we present the foundational
concepts of our model, formalize the definition of group counterfactual explanations, and introduce
relevant item-level metrics to support the explanation generation process. Table 1 summarizes the
notation used throughout the paper.
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Table 1. Summary of Common Notations

Notation Description
Users and Items
U,u Set of all users, a user
G A group of users
I,i Set of all items, an item

Target item, i.e., the item to be explained

I, Items with which user u has interacted

I Items with which any member of G has interacted

Piu Rating assigned by user u to item i
Recommendations

(I) Group recommendation system given item set I

Ly Group ranked recommendation list produced from I

rank(i, L) Rank position of item i in list Ly

Explanations and Metrics

E Counterfactual explanation
rc(i, S) Average recognition of item i among users S
rt(i, S) Average rating of item i by users S

expwr(P,t,I) Explanatory power of item subset P w.r.t. target item ¢ and item set I
infl(i,£,I,G)  Influence of item i on target item ¢ for group G

i.score Total score of item i

fair(G, E) Fairness of explanation E with respect to group G
min(E) Minimality of explanation E

interpr(E) Interpretability of explanation E

cost(E) Computational cost of explanation E

Q(E) Utility of explanation E

3.1 Basic Concepts

We begin by defining the core entities involved in our model, namely users, groups, their interactions
with items, and how these interactions shape group recommendations.

User, Group & Interacted Items. Let U denote the set of all users in the system. For each user
u € U, let I, represent the set of items that the user has interacted with, such as items they have
ordered, rated, clicked, or liked. Let G C U be a group of users, and let I denote the set of items that
any group member has interacted with, formally defined as Is = Uy, e Lu- Furthermore, p;,, € [0, 1]
represents the rating assigned by user u to item i. If a rating is not present, it is assumed to be zero.
It is important to note that our approach does not require the presence of ratings for all users or
items.

Recommendations. Let 7(I) denote a group recommendation system, which, given a set of in-
teracted items I, produces an ordered recommendation list Ly, i.e., w(I) = L;. For a given recom-
mendation list Ly, let rank(i, L) € [1,|L;|] denote the position (rank) of item i in L;. Generating a
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recommendation list Ly is associated with a recommender call cost ¢, such as system latency or API
usage cost.

In this work, we treat the group recommender system as a black box, enabling general applicability
of our approach regardless of the internal logic or type of recommendation algorithm employed.

3.2 Group Counterfactual Explanation

Having defined the basic entities and the recommendation mechanism, we now formalize the
concept of counterfactual explanations in group settings. Inspired by prior work on counterfactuals
in individual recommendations [19], we extend the concept to group scenarios, where explanations
must account for collective interactions rather than those of a single user.

The essence of a counterfactual explanation lies in identifying the set of previously interacted
items that, if removed, would prevent the appearance of a specific item (the target item) in the
recommendation list. The problem can be described through the following question and its expla-
nation.

Question
“Why does the target item t appear in the recommendation list?”

Explanation
“If you had not interacted with the items X, item t would not have appeared in the
recommendation list”

Group Counterfactuals Explanation. Formally, a group counterfactuals explanation is defined as
follows. Given a group G C U and a target item t € Ly, a group counterfactual explanation E C I
is a set of interacted items such that if the group had not interacted with these items, the item ¢
would not have been recommended®.

Considering the above, the follow holds. Let 7(I5) = Ly, with t € Lj,. Then, a set of items E C I
is a counterfactual explanation if 7(Ig\E) =Ly andt ¢ Ly

Factual and Counterfactual Scenario. In this setting, the factual scenario is defined by the
current interaction set I, where 7 (Ig) = Lj, and t € Ly,. The counterfactual scenario involves a
modified interaction set I/, = Ig\E, such that =(I},) = Ly, and t ¢ Ly,. The difference E = IG\I;
thus constitutes the counterfactual explanation. This approach inherently assumes that the only
feasible action is the removal of items from the group’s interaction history.

Explanation Process Example. Figure 1 illustrates the overall explanation process. Suppose the
recommendation list is Lg and the target item is i, i.e., the item for which we aim to generate an
explanation. The group consists of three users: uj, uz, and us, each associated with their respective
interaction lists, denoted as I,,,, I;,, and I,,,. @ Initially, we remove a selected set of items from the
users’ interaction lists, i.e., iz, i5, and ig. This set represents a candidate counterfactual explanation.
@ Next, we input the modified interaction lists I}, , I, , and I,, into the recommendation system.
(® The system returns a new group recommendation list L/,. @ Since the target item iy no longer
appears in L., the removed items iy, is, and ig constitute a counterfactual explanation.

For the remainder of this paper, Counterfactual explanation will be referred to interchangeably as Counterfactual or
Explanation.
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Fig. 1. Explanation Process: Finding Counterfactual Explanations

3.3 Item Metrics

To support the generation and evaluation of counterfactual explanations, we define a set of item-
level metrics that quantify various aspects of item influence and group interaction patterns. These
metrics guide heuristic algorithms in selecting candidate items for removal.

Item Recognition. We begin by defining how widely the users know or recognize an item. The
item recognition metric captures the fraction of users in a given set who have interacted with the
item.

Let i be an item and S C U a set of users. Then, item recognition rc(i, S) € [0, 1] is defined as:

2 {(u,i)

YueS

rc(i,S) = 5

(1)
where {(u, i) = 1 if user u has interacted with item i (i.e., i € I,), and 0 otherwise.

We evaluate this item recognition in two contexts: (1) rc(i, G): among the group members (group
item recognition); and (2) rc(i, U\G): among users outside the group (public item recognition).

Item Rating. Next, we consider the average quality assessment of an item based on user feedback.
Given an item i and a user set S C U, the item rating is the average of ratings provided by S users:

)y Piu

YueS

rt(i,S) = S|

@)

Similar to recognition, item rating is computed in two contexts: (1) rt(i, G): among the group
members (group item rating); and (2) rt(i, U\G): among all users excluding the group (public item
rating).

Item Influence on the Target Item. The influence of an item on the target item quantifies the
extent to which a previously interacted item contributes to the recommendation score assigned to
the target item ¢ by the recommender system, in a model-agnostic setting.
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Intuitively, interacted items that lead to a higher recommendation score for ¢, resulting in t being
ranked higher, are considered to exert a stronger influence. These items are therefore more likely
to appear in counterfactual explanations, as their removal can significantly alter the ranking of t.

To estimate this influence in a model-agnostic way, we treat each user in the group individually
and evaluate the effect of their interactions on the recommendation score of t. Specifically, for each
user u € G, we call the group recommender using only their interaction history I,, and retrieve the
recommendation score for .

Formally, let G’ = {u € G | i € I,} be the set of group members who have interacted with item i.
Then, the influence infl(i, t,I,G) € [0, 1] of item i on target item ¢ for group G is computed as the
average recommendation score of t across G’ users:

infl(i,t,1,G) = Z recScore(t, Iu)/|G'| (3)
YueG’
LCI
Here, recScore(t,I,) € [0, 1] denotes the recommendation score assigned to t by the recommender
system when invoked with only user u interacted items I,,. This approach allows us to estimate
item influence without requiring access to the internal workings of the recommender (i.e., in a
model-agnostic way).

Item Set Explanatory Power. We introduce the explanatory power metric, which quantifies the
potential of an item set to contribute to a counterfactual explanation and, consequently, its ability
to explain the presence of a target item. The metric is computed in a model-agnostic manner, relying
solely on observable changes in the recommendation output.

Let I be the interacted items set, Ly the resulting recommendation list with |L;| = m, and t the
target item. Let P C I be a subset of items considered for removal, and let z(I\P) be the new
recommendation list.

The explanatory power of item set P, denoted expwr(P, t,I) € [0, 1], is defined as:

©

Explanatory power quantify the rank of t when the item set P is removed from interacted item
set I. Higher values indicate that the items in P are more likely to be part of an explanation.

Particularly, if ¢ is eliminated from the list (¢ ¢ 7#(I\P)), then P forms a counterfactual and its
explanatory power is set to one. On the other hand, if P results in item ¢t being ranked top (i.e.,
top-1), explanatory power takes its lowest value of zero.

expwr(P,£,) = min { rank(t, 7(1\P)) ~ 1 1}

m

Item Total Score. While individual metrics (e.g., recognition, rating, influence) offer valuable
insights, combining them into a single score enables more effective ranking and selection of items
for explanation. To this end, we define the item total score as an aggregate of multiple item-based
metrics.

Given an item i and a collection of k metrics (fi, f2, . . -, fr), we compute the total score as:
k
i.score = ij(i) (5)
=1

In this work, we use the following five metrics to calculate the total score:
- rc(i, G): group item recognition
- rc(i, U\G): public item recognition
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- rt(i, G): group item rating
- rt(i, U\G): public item rating
- infl(i, t, I, G): item influence on the target item

Putting it all together, the final formula for the item total score is:
i.score = rc(i, G) + rc(i, U\G) + rt(i, G) + rt(i, U\G) + infl(i, t, I, G) (6)

This score serves as a unified measure of an item’s importance, considering both its relevance
within the group and its potential impact on the target recommendation outcome. It plays a central
role in guiding the selection of “explanatory” items in our counterfactual framework.

4 Counterfactual Utility and Fairness

In this section, we present a set of evaluation dimensions for assessing the quality of counterfactual
explanations in group recommender systems. Although prior research on counterfactual reasoning
has largely centered on individual-level explanations, extending these approaches to group settings
presents unique challenges and design considerations. Beyond generating explanations that are
minimal and interpretable, we must also consider the computational cost of discovering them, the
overall utility they offer to the group, and the fairness of how explanatory changes are distributed
among group members.

We begin by formalizing utility-oriented metrics that capture properties such as explanation
minimality, interpretability, and generation cost, and introduce a unified utility function that bal-
ances these aspects. We then define a notion of counterfactual fairness tailored to groups, ensuring
that no single user is disproportionately affected by the changes recommended in the explana-
tion. Collectively, these metrics enable a comprehensive assessment of group-level counterfactual
explanations, emphasizing clarity, utility, and fairness.

4.1 Counterfactual Utility

In this section, we introduce a set of evaluation metrics to assess the quality and characteristics of
group-level counterfactual explanations in recommender systems. These metrics capture different
desirable properties of explanations, including clarity, interpretability, cost-efficiency, overall utility,
and fairness.

Counterfactual Explanation Minimality. We use the notion of counterfactual minimality (also
referred to as sparsity) to evaluate the clarity of an explanation; i.e., how easily it can be understood.
Numerous studies in cognitive psychology and explainable AI have shown that explanations
involving fewer changes are more understandable and cognitively efficient to process [12, 22, 30,
31, 35, 47, 48].

In our setting, the minimality of a counterfactual explanation E is quantified by the number of
items it contains. A smaller |E| indicates a clearer explanation. This quantity corresponds to the
number of user-item interactions removed to achieve the counterfactual.

We formally define the counterfactual explanation minimality as:

E
min(E) =1 — u (7)
sl
where |I;| is the total number of interacted items by the group. The value is normalized in [0, 1]
such that higher values indicate better minimality.
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Counterfactual Explanation Interpretability. An explanation is more interpretable when the
items it involves are familiar to users [9]. We measure interpretability through item recognition,
i.e., how often an item appears in user interaction histories. This includes both (i) the recognition
of an item within the group, and (ii) its recognition by the broader user base.

To quantify this, we define the interpretability of a counterfactual explanation E as the average
recognition of its items:

interpr(E) = L ( Z rc(i,G) + Z rc(, U\G)) (8)

2|E| VieE VieE
Here, rc(i, G) denotes item i’s recognition in the group, and rc(i, U\G) represents its recognition
among other users.

Counterfactual Explanation Cost. Producing a counterfactual explanation involves making
multiple calls to the recommender system, each associated with a cost ¢. The total cost of an
explanation E is thus defined as the number of calls made to discover it:

cost(E) = Z @ )
i=1

where n is the number of recommender invocations required. For simplicity, we assume ¢ =1 in
our evaluation, which allows us to count the number of calls directly.

Counterfactual Explanation Utility. We define the utility of a counterfactual explanation E as a
combination of its clarity and interpretability. The utility function is defined as:

Q(E) = ¢(min(E), interpr(E)) (10)
where ¥ is an aggregation function that balances the two metrics, for instance via a weighted sum
or product.

Problem Definition
We formally define the Group Counterfactual Explanation problem as follows.

Group Counterfactual Explanation Problem. Given a group G; a group interacted items Ig;
a group recommended items list Lj; a target item t; a recommender call cost ¢; and a budget B in
terms of recommender call cost; our goal is to find a group counterfactual explanation E*, such that
the explanation utility Q(E*) is maximized and the counterfactual cost cost(E*) is lower than the
budget B.

E* =argmax Q(E) s.t. cost(E) <B

Computational Complexity. Solving this problem involves evaluating all subsets of I, i.e.,
the power set excluding the empty set. Therefore, the number of candidates is 216! - 1. Since
each candidate requires a recommender system call with cost ¢, the computational complexity is
O(gp - 2llaly.

4.2 Counterfactual Fairness

The fairness notion used in this work is inspired by individual fairness [7, 11, 25], which states that
similar individuals should be treated similarly. We translate this to the group setting by requiring
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Table 2. Summary of Time, Space and Recommender Calls Complexity

Algorithm Time Complexity Space Complexity Recommender Calls
ParetoFiltering (Sec.5.1)  O(|I||U|¢ + v - (|I|log? 2 |I| + $)) o(|1]) o(|I|U| + v)

2 2
FixedWindow (Sec.52)  O(|I||U|$ + |I|log |T| + ¢ + 2111 ) o1 o(Il|u| + 2 4 ol
GreedyGrow (Sec. 5.3) O(|I1|U|¢ + |I|log |I]) o(|I]) o(|11|1U])
Grow&Prune (Sec. 5.4) O(|I||U|¢ + [I|1log |1]) o(|I]) o(|111U])
ExpRebuild (Sec. 5.5) O(|I||U|¢ + |I|log |I]) o(|1]) o(|Il|U])

that the burden of a counterfactual explanation (i.e., the items removed) be fairly distributed among
group members.

Formally, we say that an explanation E is fair if each group member contributes a similar number
of interacted items to the explanation. For any user u € G, let {(u, i) be an indicator function equal
to 1 if user u has interacted with item i, and 0 otherwise.

To assess fairness, we compute the standard deviation of the number of items from each user’s
profile that are included in E:

1
o (ZViEE é/(ula l)’ ZViEE g(u% l): s ZViEE g(u|G|! l))

Lower standard deviation indicates more balanced participation, and therefore greater fairness.
By taking the inverse, we ensure that higher values of fair(G, E) correspond to fairer explanations.
We define perfect fairness as the case where all users contribute equally (i.e., ¢ = 0).

fair(G,E) =

(11)

5 Algorithmic Framework for Counterfactual Search

The search space for counterfactual explanations in group recommender systems is inherently
combinatorial, making naive exploration intractable. To address this, we introduce an algorithmic
framework that incrementally narrows the candidate space using metric-driven heuristics and
Pareto-based filtering.

In the following sections we present five heuristic algorithms. The Pareto-filtering (Sec. 5.1)
leverages Pareto dominance to prune the candidate item space early, requiring only a limited
number of recommender calls. Fixed Window (Sec. 5.2) scans a sorted candidate list using a sliding
window to locate a counterfactual, within which an exhaustive local search is performed to extract
a more compact explanation. GreedyGrow (Sec. 5.3) follows a forward counterfactual construction
strategy, progressively adding items until a counterfactual is found. Two methods build upon
this procedure: Grow&Prune (Sec. 5.4), which starts from an initial counterfactual and iteratively
eliminates items to reduce the explanation size; and ExpRebuild (Sec. 5.5), which ranks items by
their ability to explain the target item and incrementally reconstructs the counterfactual.

Table 2 summarizes the worst-case time, space, and recommender call complexity of all proposed
algorithms.

5.1 Search Space Reduction Using Pareto-based Filtering

To reduce the combinatorial search space, we first introduce a ParetoFiltering technique. The
key goal of this method is to improve efficiency by pruning dominated items before counterfactual
search, thereby reducing the number of recommender calls required. Hence, pareto filtering can be
consider as a preprocessing step to effectively reduce the search space.
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Specifically, we leverage the item metrics introduced in Section 4.1 to map each item into a
multidimensional metric space, enabling dominance-based filtering to identify a “high-quality”
counterfactual superset.

Metric-based Representation. Let d denote the number of item-level metrics. Each item iy € I

is represented as a d-dimensional vector o = (ollc, oz, e, o]‘f), where oi = fj(ix) is the value of

metric j for item ix. The attribute space is defined over R%.

Pareto Set. An object o; dominates 0z, denoted 0, > o, if: (1) Yw € [1,d], o) > o0)’, and

(2)3j € [1,d], o] > o).
The Pareto set, or skyline [23], denoted PS(O) for object set O, is defined as:

PS(0) ={0; € O | Do € O : 0 > 0;}.

Items in PS(O) are referred to as Pareto-optimal items and represent a non-dominated frontier
within the metric space.

Threshold-based Generalization. To flexibly control the cardinality of the result set, we generalize
the Pareto set using a threshold vector 7 = (r!,7%,...,7%) where 7/ € R adjusts strictness per
metric.

An object o, r-dominates o0, written o; >, o0, if: (1) Yw € [Ld], 0}’ 2 o}’ + %, and
(2)3j € [1,d], o{ > og. The 7-Pareto set is then defined as:

PS.(0) ={0; € O | for € O : 0 >, 0;}.

Setting 7 = 0 yields the standard Pareto set; 7 < 0 relaxes dominance criteria (superset), while
7 > 0 tightens them (subset). Efficient skyline algorithms like D&C [23], SFS [10], LESS [14], and
SaLSa [6] can be adapted to compute PS;(O).

Pareto-based Filtering Technique Overview. To efficiently (i.e., using a small number of rec-
ommender calls) identify a counterfactual explanation set, we adopt an iterative filtering strategy
based on 7-Pareto dominance. Specifically, we remove from the group’s interaction items all items
belonging to the r-Pareto set, which represent a collection of “high-impact” items across the item-
level metrics. The group recommender is then invoked to assess whether excluding these items
causes the target item to disappear from the recommendation list. In such a case, the r-Pareto set is
selected as the candidate counterfactual explanation.

In cases where the target item persists in the recommendation list, the examined 7-Pareto set
is not a counterfactual. To explore a broader set of items, we incrementally relax the dominance
criteria by reducing the threshold vector 7, and recompute the z-Pareto set. This threshold-based
relaxation enables a controlled expansion of the candidate item space. The process is repeated until
a 7-Pareto set corresponds to a counterfactual explanation.

Algorithm Description. Algorithm 1 takes as input a interacted item set I and a target item
t, and returns a counterfactual explanation CS. Items are first mapped to d-dimensional metric
vectors based on items metrics values (lines 2—4). The the main loop (lines 7-14) iteratively relaxes
the Pareto dominance criteria. At each iteration, a threshold vector 7 is computed based on the
standard deviation of each metric dimension (line 9), and the z-Pareto set is computed (line 10).
The items that correspond to the 7-Pareto set objects are inserted into the item set PI (line 11).
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Algorithm 1. ParetoFiltering (I, t )

Input: I: interacted items; ¢: target item

Output: CS: counterfactual explanation;

Parameters: x: group recommender; fi, f2, ..., f3: item metrics functions

Variables: i:item; O: d-dimensional objects; it: iteration counter; 7: attributes thresholds;
PS: 7-pareto set; PI:items of 7-pareto set; cfFound: boolean variable

10«9

2 foreachi € do //transform items to d-dimensional objects
3 0j < (ﬁ(i),fé(i), . ,fd(l)) // compute the d metrics for item i
4 O« 0OUo;

5 Pl — O

6 it — 0

7 do

8 if PI = I then break // all items examined — counterfactual not exist
9 T —<lt . O'( U Oil), it - O'( U Oiz), L0t O'( U Old)> //compute attributes’ thresholds values as attributes

Yo;eO Yo;€O Yo;eO
std — assign to 7 the negative values

10 PS « find r-pareto set for objects O

1 PI « get the items of I that correspond to r-pareto set PS objects //items set to be checked as counterfactual
12 chound — iSCF(I, PI, t) //call recommender system
13 it—it+1

14 while (cfFound = false)

15 if cfFound = true then

6 | CS«PI
17 else // counterfactual not exist
18 L CS— o

19 return CS

Procedure 1: isCF(I, S, t)

Input: I: interacted items; S: interacted items to be checked as counterfactual; ¢: target item;
Output: boolean value:(if S is counterfactual)

Parameters: r: group recommender

Variables: L: recommendation list generated considering I\S as interacted

1 L IT(I\S) // call recommender system

2 if t ¢ L then

3 ‘ return true
4 else

5 L return false

The procedure isCF (Proc. 1) is then invoked to determine if PI corresponds to a counterfactual
explanation (line 12). Threshold relaxation continues until a counterfactual expiation is found.
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Computational Analysis. In Algorithm 1, line 3, considering the item metrics used in our imple-
mentation, the worst-case computational cost for computing the total item score (Eq. 6) is analyzed
as follows.

The cost of computing the two item recognition metrics, rc(i,G) and rc(i, U\G) (Eq. 1), is
O(max(|U|,|1])) per item (if hash-based indexes are used). For simplicity, let us assume that
|U| > |I|, so the complexity is O(|U|). The same holds for the rating metrics, rt(i, G) and rt(i, U\G)
(Eq. 2); both require O(|U]|) per item. In order to compute the influence metric, infl(i, ¢, I, G) (Eq. 3),
for each user in G, we need to invoke the recommender. Hence, the cost of computing influence
metric is O(|U|¢), where ¢ is the recommender invocation cost.

Therefore, the total cost for computing all metrics for a single item is O(|U|¢), and for all items I
is:

o(11Ul¢)
In the second loop (line 7), the standard deviation computation in line 9 costs O(d|I|). In line 10
the 7-pareto set computation has a worst-case complexity of O(|I|log? 2 |I|) using partition-based
algorithms [23], or O(d|I|?) for practical algorithms such as SFS [10], LESS [14], or SaLSa [6].

The procedure isCF in line 13 incurs a cost of O(¢). The loop (line 7) is executed up to a small
constant v times, as the thresholds 7 quickly converge to include all items in I. Therefore, the
second loop (line 7) has a worst-case complexity of:

O (v (dlll +11110g"* |1] + )
Combining both loops, the overall worst-case time complexity of the Pareto-filtering algorithm is:

O (InUlg +v- (I1l10g™? |11 + 9))

Space Complexity. The space complexity of the algorithm (excluding input data) is O(|I|), accounting
for internal structures O, PS, PI, and CS.

Recommender Calls. The number of recommender calls in the worst case is O(|I||U| + v).

5.2 FixedWindow Search

The FixedWindow search technique serves as a local search strategy that incrementally exam-
ines contiguous subsets of items. The algorithm operates on a ranked item list and iteratively
explores fixed-size windows, followed by an internal refinement phase to extract a small subset
that corresponds to a counterfactual.

The interactive items are sorted by their total score, and a sliding window of fixed size is applied
to the ordered list. The window starts at the beginning of the list and moves one position at a
time, covering consecutive items in each step. At every position, the algorithm simulates the
removal of the window items from the group’s interaction items and then re-invokes the group
recommender system. If the target item is no longer recommended to the group, the current
window corresponds to an explanation. If the window traverses the entire list without yielding a
counterfactual explanation, the window size is increased, and the list is scanned again from the
beginning.

When the items within a window form a counterfactual explanation, we apply a refinement
phase to improve minimality (i.e., reduce the explanation size). Specifically, we examine all possible
subsets (i.e., the powerset) of the window items in ascending order of cardinality. The first subset
that corresponds to a counterfactual, is selected as the final explanation, ensuring conciseness and
interpretability. Note that, since this refinement phase has exponential complexity, we keep the
window size relatively small to balance explanation quality with computational efficiency.
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Algorithm 2. FixedWindow(J, t, w)
Input: I: interacted items; ¢: target item; w: initial window size
Output: CF: counterfactual explanation
Parameters: x: group recommender; fi, f2, ..., f3: item metric functions
Variables: H: ranked item list; W: current window; S: subset of window;

Weyr: current window size

1 He—o

2 foreach i € CS do // compute items scores & initialize items list
3 i.score < ZZ:I fé(l) //compute item score by aggregating item metrics
4 insert i into H

5 sort H in descending order based on items scores

6 Weyr < W // start with initial window size
7 while wg,, < |H| do

8 fori < 1to |H| — Weur +1do //sliding window search
9 W H[l Sl weyr — 1] //window of wey,, items
10 if iSCF(I, w, t) then //check if window is a counterfactual
11 foreach S € PowerSet(W) in order of increasing |S| do //refinement phase: check subsets
12 if isCF(I, S, t) then

13 CF « S

14 L break

15 if CF # @ then return CF

16 Weur < Weur T W //increase window size by initial w

17 return &

Algorithm Description. Algorithm 2 receives as input an interactive items set I, a target item ¢,
and an initial window size w, and returns a counterfactual explanation CF. Initially, the total item
score is computed for each item in I (lines 2-4), and the items are sorted in descending order to
form the ranked list H (line 5). Then, the current window size w,, is initialized to the predefined
input value w (line 6).

For each window size, the algorithm slides a contiguous window W over H (line 9) and checks
whether the items W correspond to a counterfactual explanation by invoking the isCF procedure
(which invokes the recommender) (line 10).

When a window contains a counterfactual explanation, the algorithm enters the refinement phase
(lines 11-14), where all non-empty subsets of W are examined in increasing order of cardinality.
The first subset S that corresponds to a counterfactual is returned (line 12-15).

If no counterfactual window is found, the window size is increased by w and the search is
repeated (line 16). The algorithm terminates when either an explanation is identified (line 15) or all
window sizes are examined (i.e., wey, = |H|).

Complexity Analysis. In Algorithm 2, line 3, each item i € I is assigned a score by aggregating
the values of d metric functions fi, f5,..., fz. As shown in Section 5.1 the complexity to compute
the metric functions for an item is O(|U|¢). Therefore, the cost of computing all scores is:

o (1|U1¢)
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Sorting the ranked list H (line 5) employing a linearithmic sorting algorithm (e.g., mergesort)
costs O(|I|log|1]). In main loop (lines 7-16) the number of distinct window sizes considered in the
worst case is [|I|/w]. For each window size w,,, the algorithm checks O(|I| — w¢,, + 1) windows.

[m

Hence, the total number of windows examined is ), k:J (I = kw + 1), which corresponds to:

o]

For each window, the algorithm invokes the isCF procedure once (line 10), incurring a cost of
O(¢). In line 11, the worst case, all 2"« — 1 subsets are evaluated, each requiring a call to isCF
with cost O(¢ + m) (line 12). Since we,,, can grow up to |I|, the refinement phase may require up to
21l checks in the worst case. Thus, the computational cost of the main loop (lines 7-16) is:

w
Combining all parts, the overall worst-case time complexity of the FixedWindow algorithm is:
I 2
o (IIIIUI¢> + |I|log |1| + ud) + 2|I|¢,)

w

Space Complexity. The space complexity is O(]I|), accounting for the sorted list H and the temporary
subset storage during refinement.

Recommender Calls. The number of recommender calls in the worst case is:

LT
o\u|+ —+2
w

Note that, in practice, the exponential term is rarely reached due to computational cut-offs, and
w is typically chosen as a small constant, which keeps the quadratic term as the dominant factor.

5.3 GreedyGrow Search

The GreedyGrow search is a method that progressively expands the search window until a
counterfactual explanation is found. Unlike the fixed-size sliding window approach, this technique
selects the top-ranked items in the list and adds one item at a time in sequential order. At each
iteration, the item set, consisting of the top-ranked items is checked to see if it corresponds to a
counterfactual explanation.

This method is particularly effective at rapidly identifying explanations with strong influence;
however, it has a notable limitation: the resulting explanations are not guaranteed to be minimal.
Specifically, although the approach identifies a subset that successfully alters the recommendation
outcome, it may include extraneous items that are not necessary for forming a counterfactual.
Consequently, the final explanation may be “unnecessarily” large, which, as discussed in Section 4,
can reduce interpretability and increase cognitive load for end users.

Algorithm Description. Algorithm 3 implements the GreedyGrow search strategy, takes as input
the interacted item set I and a target item ¢, and returns the explanation CF. The algorithm first
computes the item total score for each interacted item and stores the items in a ranked list H
(lines 2-5). It then initializes an empty candidate set S (line 6).

During each iteration of the main loop (lines 7-10), the next highest-ranked item from H is
added to S, and the algorithm checks whether S constitutes a counterfactual explanation by
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Algorithm 3. GreedyGrow (I, t)
Input: I: interacted items; ¢: target item;
Output: CF: counterfactual explanation;
Parameters: m: group recommender; fi, f2, ..., fg: item metrics functions;
Variables: H:items list; i:item; S: selected items set; cfFound: boolean variable;

1 H—o

2 foreachie€Ido // compute items scores & initialize items list
3 i.score < Zg:l fg(l) //compute item score by aggregating item metrics
4 insert i into H

5 sort H in descending order based on items scores

6 S— O

7 for je1to |H| do //select top items
8 S—Su H[]] //items set to be checked as counterfactual
9 chound — iSCF(I, S, l’) // call recommender system

10 if cfFound = true then break

11 if cfFound = true then

2 | CFeS
13 else // counterfactual not exist
14 L CF «— g

15 return CF

invoking isCF (Procedure 1). The process terminates as soon as the target item is removed from the
recommendation list.

If a counterfactual explanation is found, the current set S is returned as the final explanation
(line 12). Otherwise, if all items are exhausted without success, the algorithm returns the empty set
(line 14).

Complexity Analysis. In line 3, each item i € I is assigned a score by aggregating the values of
d metric functions fi, f2, ..., f;. As shown in Section 5.1, the complexity to compute the metric
functions for an item is O(|U|¢). Thus, computing all item scores has a total cost:

o (1|U1¢)

Sorting the scored list H (line 6) takes O(|I|log |I|). Then, in the main loop (lines 7-10), items
from H are incrementally added to the set S. After each addition, the isCF function is called (line 9)
to check whether S constitutes a valid counterfactual explanation. In the worst case, this process
continues until all |I| items have been added. Each call to isCF has cost O(¢). Thus, in the worst
case, the total cost of the calls to isCF is:

O (|119)
From the above analysis, the overall worst-case time complexity of the GreedyGrow algorithm is:

O (I|Ul¢ + 1| log|I])
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Space Complexity. The space complexity is O(|I|), due to the storage of the list H and the growing
set S.

Recommender Calls. The number of recommender calls in the worst case is O(|I||U|+|I|) = O(|I||U|).

5.4 Grow&Prune Search

To mitigate the verbosity of the GreedyGrow approach, we introduce the Grow&Prune search
method, which first identifies an initial explanation and then refines it by improving minimality
through backward elimination.

The GreedyGrow approach initially applies the GreedyGrow technique to generate an initial
counterfactual explanation. Once this initial explanation is identified, we enter a reduction phase
that evaluates the necessity of each item within the explanation. Each item in the initial counterfactual
explanation is examined individually by temporarily excluding it from the set. For each exclusion,
the group recommender is evaluated on the modified explanation to verify whether it continues to
correspond to a counterfactual. If the exclusion results in a non-counterfactual explanation, the
item is classified as essential and reinserted; otherwise, the exclusion is preserved, yielding a more
concise explanation.

Algorithm Description. Algorithm 4 implements the Grow&Prune strategy. The algorithm first
executes a grow phase (lines 1-10) identical to GreedyGrow algorithm, incrementally adding items
until a counterfactual explanation is identified. If no such explanation is found, the algorithm
terminates and returns the empty set (line 20).

Once a counterfactual explanation is obtained, the items in the candidate set S are sorted in
ascending order of score (line 12), and the algorithm enters the prune phase. In this phase, each
item i € S is temporarily removed from the explanation (line 15), and the algorithm checks whether
the reduced set still constitutes a valid counterfactual by invoking isCF (Proc. 1) (line 16).

If the counterfactual condition is preserved, the removal is retained (line 17); otherwise, the item
is restored. This process continues until no further items can be removed, and the resulting set is
returned as the final counterfactual explanation CF (line 18).

Complexity Analysis. In line 3, each item i € [ is assigned a score via the aggregation of d metric

functions fi, ..., fz. As shown in Section 5.1, the complexity to compute the metric functions for
an item is O(|U|¢). Thus, computing all item scores has a total cost:
O (I11IU1¢)

Sorting the scored list H (line 6) takes O(|I|log |I|). Then, during the grow phase (lines 7-10), the
algorithm incrementally builds a candidate set S by scanning items in H in descending order. After
each addition, the isCF function is invoked. In the worst case, this loop iterates |I| times, leading to:

o(ll-¢)

In prune phase (lines 11-20), the items in S (of size at most |I|) are sorted in descending score order,
costing at most O(|I|log|I|). Then, for each item i € S, the algorithm checks whether removing i
still yields a valid counterfactual by calling isCF. In the worst case, this requires O(|I|) additional
calls, resulting in:

O (Il log 1] + |I1¢)
Combining all parts, the overall worst-case time complexity of the Grow&Prune algorithm is:

O ([1[U1¢ + [T|log |I] + |Il$ + |I|log |I| + |T|¢) = O ({I[|[U]¢ + |I|log |1])
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Algorithm 4. Grow&Prune (I, t)

Input: I: interacted items; ¢: target item

Output: CF: counterfactual explanation

Parameters: m: group recommender; fi, f3,..., fg: item metrics functions
Variables: H:items list; i:item; S: selected items set; cfFound: boolean variable

1 H—o

2 foreachie€Ido // compute items scores & initialize items list
3 L i.score < Zg:l fg(l) //compute item score by aggregating item metrics
4 insert i into H

5 sort H in descending order based on items scores

6 S— U

7 for j « 1to |H| do // grow phase
8 S — SUHJj]

9 cfFound « isCF(I, S, t)

10 if cfFound = true then break
11 if c¢fFound = true then

12 sort S in ascending order based on item scores

13 CF « S

14 foreachi € S do //prune phase
15 CF" « CF\ {i}

16 if isCF(I,CF’, t) then //check if P’ still a counterfactual
17 L CF « CF’

18 return CF
19 else // counterfactual not found

20 L return &

Space Complexity. The space complexity is O(|I[), due to the storage of lists H, S, and temporary
counterfactual sets.

Recommender Calls. The total number of recommender calls in the worst case is O(|I||U]).

5.5 ExpRebuild Search

The ExpRebuild search approach extends GreedyGrow by incorporating items explanatory power
(Eq. 4) to guide items selections. Specifically, exploiting explanatory power, it prioritizes items
whose removal is expected to most strongly degrade the rank of the target item, or eliminate it
entirely from the recommendation list.

Initially the method applies the GreedyGrow procedure to efficiently find an initial counterfactual
explanation. During this process, the algorithm computes the exploration power (Equation 4) of
each item.

After an initial explanation is identified, the items are sorted in descending order of explanatory
power, placing the most impactful items first. The algorithm then constructs a new explanation
incrementally: starting from an empty set, items are added one by one in order of decreasing
explanatory power. After each addition, the recommender is invoked to check whether the growing
set constitutes a counterfactual explanation.
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Algorithm 5. ExpRebuild (I, t)

Input: I: interacted items; ¢: target item;

Output: CF: counterfactual explanation;

Parameters: m: group recommender; fi, f3,..., fg: item metrics functions

Variables: H:items list; i:item; S: selected items set; Q:items set; inflScore: influence score ;
cfFound: boolean variable; P: selected items from S

1 He—o

2 foreachi € Ido // compute items scores & initialize items list
3 i.score < ZZ:I fé(l) //compute item score by aggregating item metrics
4 insert i into H

5 sort H in descending order based on items scores

6 S— U
7 for je1to |H| do //select top items
8 Q «— S //1f a counterfactual is found, Q will contains the items excluding the last selected items (i.e., the most recently inserted

item into S that led to the counterfactual)

9 S«—Su H[]] //items set to be checked as counterfactual
10 cfFound, inflScore «— checkForCFandComputeExplPwr(I, 2, S) //checkif S is counterfactual and compute H j]
influence score

1 H[]] oW — exPlP0W€T/|S| //set explanatory power score to item H| j]
12 if c¢fFound = true then break

13 if chound = true then //rebuild based on explanatory power
14 sort S in descending order based on the explanatory power score

15 P—g

16 for j «— 1to |S| do

17 P—PUS []] //items set to be checked as counterfactual
18 if P ¢ Q then

19 L cfFound « isCF(I, P, t)

20 if c¢fFound = true then return P

21 return S;

22 else // counterfactual not exist

23 L return &

This approach offers a compromise between minimality and interpretability, ensuring that the
explanation is both compact and grounded in a transparent attribution of item effects.

Algorithm Description. Algorithm 5 implements the ExpRebuild strategy. The algorithm begins
by computing the total score for all items and sorting them into a ranked list H (lines 1-5). It then
incrementally builds a candidate set S (lines 6-12), invoking the procedure checkForCFandCom-
puteExplPwr (Proc. 2) at each step to determine whether a counterfactual explanation has been
found and to compute the explanatory power of the current set.

Once a counterfactual explanation is identified, the items in S are ordered according to their
explanatory power (line 14). The algorithm then reconstructs the explanation by incrementally
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Procedure 2: checkForCFandComputeExplPwr(l, £, S)
Input: I: interacted items; ¢: target item; S: interacted items to be checked as counterfactual;
Output: isCF: boolean value (if S is a counterfactual); explPower: explanatory power score of item i
Parameters: : group recommender
Variables: L: recommendation list generated considering I\S as interacted

1 Len (I \S ) //call recommender system
2 explPower «— min { %, 1} //compute S explanatory power (Eq. 4)
3 if t ¢ L then

4 ‘ isCF « true

5 else

6 L isCF « false

return isCF, explPower

<

adding items in descending explanatory power order (lines 16—20), checking after each addition
whether the counterfactual condition holds.

The first subset that satisfies the counterfactual condition is returned as the final explanation.
If no such subset is found, the full set S is returned (line 21). If no counterfactual explanation is
identified during the initial phase, the algorithm returns the empty set (line 23).

Complexity Analysis. In line 3 item scores are computed for all items i € I using d metric

functions fi, ..., f7 As shown in Section 5.1, the complexity to compute the metric functions for an
item is O(|U|¢). Thus, computing all item scores has a total cost:
O (l1lUl¢)

Sorting the scored list H costs O(]I|log |I|). The main loop (lines 7-12) adds items one-by-one to
the candidate set S and invokes the checkForCFandComputelnfluence procedure at each step. In
the worst case, the loop is performed |I| times.

The checkForCFandComputeExplPwr procedure calls the recommender system once (line 1),
and computes the item exploratory power score (Eq. 4), which can be done in O(1) (if a hash-based
indexing is used over L). Hence, each invocation of checkForCFandComputeExpIPwr costs:

0(9)

Therefore, the total cost of the main loop (lines 7-12) is:

O(l1l¢)

Next, if a counterfactual explanation is found (line 13), the algorithm sorts S based on item
influence power scores, requiring O(|I|log |I|). Then, in the loop (lines 16-20), attempts to rebuild
the minimal explanation set P C S by adding one item at a time and calling isCF. In the worst case,
|S| = |1, so this phase invokes the recommender system at most |I| times, resulting to O(|I|¢).
Summing up all parts, the overall worst-case time complexity of the ExpRebuild algorithm is:

O (N|Ulg + I log|I] + [I|¢ + [I|log |I| + |I|$) = O (lI|U]¢ + |I| log |1])

Space Complexity. The space complexity is O(|I|), for storing lists H, S, and P.

Recommender Calls. In the worst case, the number of recommender calls for metrics computations
is O(|I||U]), during the grow phase (via checkForCFandComputeExplPwr) is O(|I]), and O(|1]) calls
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during the rebuild phase (via isCF). Therefore, in the worst case, the total number of recommender
calls is O(|I||U)).

Table 3. Number of Users, Items, and Ratings

Dataset Users Items  Ratings

MovieLens 69,878 10,677 10,000,054
Amazon 344,747 373,665 5,573,065

6 Experimental Evaluation
6.1 Experimental Setting

Our experimental design aims to demonstrate the effectiveness and reliability of the proposed
heuristic methods for group counterfactual explanations across various recommendation contexts.

Datasets. We employed two benchmark datasets, MovieLens 10M [15] and Amazon [17], which
differ considerably in their characteristics. While MovieLens represents a dense and well-studied
domain of movie ratings, the Amazon dataset is much sparser and reflects a more heterogeneous
item space. Table 3 presents the characteristics of each dataset.

Group Formation. To represent realistic group recommendation scenarios, we simulated groups
of two sizes: five members (Group 5), reflecting smaller and more common decision-making units,
and ten members (Group 10), representing larger and more diverse groups. We limited our analysis
to users with a minimum of 50 ratings to ensure sufficient preference information and minimize
noise in the recommendation process. This choice also increases the size of the candidate item pool,
creating a more challenging environment for identifying group counterfactual explanations.

Recommender System. For constructing group recommendation lists, we followed a two-step
process. Individual recommendations were first generated for each group member using user-
based collaborative filtering, after which group-level rankings were obtained through the average
aggregation strategy. This setup offers a balanced and transparent baseline against which the
performance of our counterfactual explanation methods can be assessed.

Evaluation Scenario. We evaluate our proposed methods using the two datasets, MovieLens
and Amazon, reporting average results over 20 randomly generated groups for each group size
(5 and 10). Each method is evaluated both with and without a Pareto-filtering phase. When a
Pareto-filtering phase is applied, we denote the corresponding variants as Pareto-filtering. In the
absence of Pareto-filtering, the methods are denoted as Sorted List, reflecting the fact that each
algorithm begins by sorting the interaction item list.

We impose a maximum budget of 1000 calls to the group recommender system. The group
recommendation list length is fixed at 10. For consistency and to minimize randomness, the target
item for which we seek a counterfactual explanation is always the top-1 recommendation in the
group list. We consider it as no longer recommended if it disappears entirely from the top-10
recommendation list. For the FixedWindow method, the initial window size w is set to 15.
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Fig. 3. Explanation Size and Cost on the Amazon dataset

6.2 Explanation Size and Cost Evaluation

MovieLens. Figure 2 reports results for the MovieLens dataset, comparing explanation size and
cost with and without Pareto-filtering. The GreedyGrow heuristic consistently yields the lowest cost
but produces the largest explanations among all methods. By contrast, the FixedWindow approach
often identifies minimal explanations but at a substantially higher cost. The Grow&Prune method
also achieves minimal explanations, though for smaller group sizes it incurs the highest costs. For
larger groups, FixedWindow struggles to identify a suitable search window that contains a valid
counterfactual explanation, which further increases the cost.

Amazon. Figure 3 presents results for the Amazon dataset. Due to the dataset’s higher sparsity com-
pared to MovieLens, the FixedWindow approach fails in its standard form. The required window size
becomes excessively large when attempting to locate the initial counterfactual window, forcing ex-
haustive search over a large number of possible combinations. This quickly reaches the available bud-
get. To address this, we introduce two hybrid variants of FixedWindow: FixedWindow-GreedyGrow,
where the exhaustive search is replaced by GreedyGrow, and Fixed Window-Grow&Prune, where it is
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Fig. 5. Pareto-filtering vs. Sorted List: Explanation Cost

replaced by Grow&Prune. Although these variants execute successfully within the budget limit, the
additional overhead incurred when first identifying an initial counterfactual explanation leads to
the highest overall cost. This highlights a key limitation of FixedWindow: when the items forming a
counterfactual explanation are not close in ranking, the window size becomes impractically large.

The other techniques behave similarly to the MovieLens case: GreedyGrow yields the largest
explanations at the lowest cost, whereas Grow&Prune produces the smallest explanations at a
higher cost.

6.3 Pareto-filtering Method Evaluation

Figures 4 and 5 provide a direct comparison of results with and without Pareto-filtering. Figure 4
illustrates explanation sizes. In the MovieLens dataset, Pareto-filtering slightly reduces explanation
size for GreedyGrow, particularly with smaller groups. In the Amazon dataset, the impact is more
pronounced: Pareto-filtering consistently reduces explanation sizes, confirming its utility when
explanations are more difficult to locate.

For explanation cost (Figure 5), Pareto-filtering reduces costs across most heuristics in the
MovieLens dataset, with the exception of Fixed Window. This is because items with high total scores
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Fig. 7. Explanation Fairness on the Amazon dataset

are more likely to influence the group recommendation outcome, making them more likely to
appear in early windows. In such cases, the overhead of computing the Pareto skyline outweighs
its benefits. In contrast, in the sparser Amazon dataset and for larger group sizes, Pareto-filtering
substantially reduces explanation costs, demonstrating its value in more challenging scenarios.

6.4 Explanation Fairness Evaluation

Figures 6 and 7 present the fairness scores (Eq. 11) for the MovieLens and Amazon datasets,
respectively. For the MovieLens dataset, group size does not substantially affect fairness, as the
scores remain consistent across all heuristics. In contrast, the Amazon dataset shows a clearer
trend: fairness increases with larger group sizes. This effect is primarily explained by the difference
in explanation sizes between small and large groups. For smaller groups, heuristics tend to produce
larger explanations on average (Figure 4). As the explanation size grows, the items it contains are
less evenly shared across group members. This uneven distribution leads to greater variability in
individual contributions, reflected in a higher standard deviation, and consequently results in lower
fairness.
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Fig. 9. Explanation Interpretability on the Amazon dataset

Across heuristics, those that yield smaller explanations also achieve higher fairness, consistent
with the above relationship. Specifically, in the MovieLens dataset, ExpRebuild, Grow&Prune, and
FixedWindow achieve the highest fairness, whereas GreedyGrow produces the lowest. The same
pattern is observed in the Amazon dataset. This highlights a trade-off: heuristics optimized for low
cost (such as GreedyGrow) may do so at the expense of fairness, whereas heuristics that prioritize
minimality (e.g., Grow&Prune) tend to yield explanations that are more balanced across group
members.

Taken together, these results underline the importance of considering fairness alongside cost
and minimality when evaluating counterfactual explanation methods, especially in sparse datasets
where the distribution of interactions is more uneven.

6.5 Explanation Interpretability Evaluation

We evaluate explanation interpretability by measuring the recognition of the items included in a
counterfactual explanation (Eq. 8). Recognition is considered both within the group and across all
users in the system.

As shown in Figures 8 and 9, for the MovieLens and Amazon datasets respectively, interpretability
decreases slightly as group size increases. This effect arises because with larger groups it becomes
less likely that all members have interacted with the items in the explanation.
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For the MovieLens dataset (Figure 8), Pareto-filtering has a strong positive effect on interpretabil-
ity. This is expected since two of the dimensions considered in the Pareto skyline are precisely the
components of interpretability: item recognition within the group and item recognition across the
system. By promoting items along these dimensions, Pareto-filtering systematically increases the
interpretability of the resulting explanations.

In contrast, for the Amazon dataset (Figure 9), counterfactual explanations are harder to identify
due to the dataset’s sparsity. In this case, Pareto-filtering has little effect, as the main challenge lies
in locating any valid explanation at all rather than in refining the recognition characteristics of the
items it contains.

Overall, these results highlight that interpretability is strongly influenced by dataset density.
Pareto-filtering is especially beneficial in denser domains such as MovieLens, while in sparse
domains like Amazon, its impact is limited.

6.6 Explanation Utility Evaluation

Figures 10 and 11 report the utility scores (Eq. 10). Recall that utility is an aggregation of explanation
minimality and interpretability. We normalize each metric using min-max normalization and
compute the utility as an equally weighted sum, ensuring that both metrics contribute comparably
despite differing dynamic ranges. These results reflect trends under the aggregated utility metric;
detailed trade-offs among individual criteria are analyzed in previous sections.

Additionally, we evaluate the sensitivity of the utility score to different aggregation weights
between minimality and interpretability. In particular, we consider weight configurations of 0.3-0.7
and 0.7-0.3. The variations in aggregation weights does not alter the relative ranking of methods,
with Grow&Prune remaining dominant across all settings. Differences primarily affect weaker
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heuristics: increasing the weight on the minimality metric improves the utility of GreedyGrow in
MovieLens, whereas emphasizing the interpretability metric degrades GreedyGrow but slightly
benefits ExpRebuild in Amazon. The resulting plots are omitted for brevity.

7 Conclusions

In this paper, we introduced the first systematic framework for generating counterfactual explana-
tions in group recommender systems. By formalizing group-level counterfactuals, we highlighted
how explanations can reveal the influence of individual interactions on collective outcomes, while
also addressing important dimensions such as minimality, interpretability, utility, and fairness.
To cope with the inherent combinatorial complexity of explanation discovery, we proposed a
family of heuristic algorithms, including GreedyGrow, Grow&Prune, ExpRebuild, and Fixed Window,
as well as a Pareto-based filtering strategy. Our experimental evaluation on the MovieLens and
Amazon datasets demonstrated clear trade-offs between efficiency, explanation size, and fairness,
and showed the benefits of Pareto-filtering in sparse settings. Looking ahead, several research
directions remain open. A promising avenue is to extend the framework to dynamic and sequential
group recommendations, where both group composition and preferences evolve over time.
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