Semantic Based Accessover XML Data ™

Nikos Bikakis, Nektarios Gioldasis, Chrisa Tsinarak
Stavros Christodoulakis

Technical University of Crete, Department of Elentocoand Computer Engineering
Laboratory of Distributed Multimedia Information 8gms & Applications (TUC/MUSIC)
University Campus, 73100, Kounoupidiana Chania, Greec
{nbikakis, nektarios, chrisa, stavros}@ced.tuc.gr

Abstract. The need for semantic processing of informatiod services has
lead to the introduction of tools for the descoptiand management of knowl-
edge within organizations, such as RDF, OWL, and BRA However, se-
mantic applications may have to access data fromarsé sources across the
network. Thus, SPARQL queries may have to be subditind evaluated
against existing XML or relational databases, draresults transferred back to
be assembled for further processing. In this paper describe the
SPARQL2XQuerframework, which translates the SPARQL queriesetoan-
tically equivalent XQuery queries for accessing XMatabases from the Se-
mantic Web environment.

Keywords: Semantic Web, XML Data, Information Integrationtdioperabili-
ty, Query Translation, SPARQL, XQuery, SPARQL to X@uédransla-
tion/transformation, SPARQL2XQuery.

1 Introduction

XML has been extremely successful for informatioctenge in the Web. Over the
years XML was established as a tool for descrilthgcontent of diverse structured
or unstructured resources in a flexible manner. imfemation transferred with XML
documents across the internet lead to needs ofragsic management of the XML
documents in organizations. XML Schema and XQueé&iywere developed to give
the users database management functionality anadogothe Relational Model and
SQL. In the Web application environment the XML 8gfa acts also as a wrapper to
relational content that may coexist in the database

The need for semantic information processing in\Web on the other hand has
lead to the development of a different set of saadsl including OWL, RDF and
SPARQL[5]. Semantic Web application developers ekpge utilize SPARQL for
accessing RDF data. However, information acrossndteork may be managed by
databases that are based on other data modelasutL Schema or the Relational
model. Converting all the data that exist in the Xklatabases into Semantic Web
data is unrealistic due to the different data mededed (and enforced by different

* An extended version of this paper is availablR@j.

standardization bodies), the management requireni{ertluding updates), the diffi-
culties in enforcing the original data semantiosnership issues, and the large vol-
umes of data involved

In this paper we propose an environment where Seen®#eb users write their
gueries in SPARQL, and appropriate interoperabdlgftware undertakes the respon-
sibility to translate the SPARQL queries into setiwatly equivalent XQuery queries
in order to access XML databases across the netr83ults come back as RDF (N3
or XML/RDF) or XML [1] data. This environment acdspas input a set of mappings
between an OWL ontology and an XML Schema. We sippset of language level
correspondences (rules) for mappings between RDF&/@nd XML Schema. Based
on these mappings our framework is able to trams$ARQL queries into semanti-
cally equivalent XQuery expressions as well asdovert XML Data in the RDF
format. Our approach provides an important compbpérany Semantic Web mid-
dleware, which enables transparent access torxixfL databases.

The framework has been smoothly integrated withX82 OWLframework [15],
thus achieving not only the automatic generatiomappings between XML Schemas
and OWL ontologies, but also the transformatioiXbfL. documents in RDF format.

The design objectives for the development of SRARQL2XQuenframework
have been the following: a) Capability of transigtievery query compliant to the
SPARQL grammar b) Strict compliance with the SPAR&Imantics, c¢) Indepen-
dence from query engines and working environmenitsXQuery, d) Production of
the simplest possible XQuery expressions, e) Coctstm of XQuery expressions so
that their correspondence to SPARQL can be easitietstood, f) Construction of
XQuery expressions that produce results that daoeed any further processing, and
0) In combination with the previous objectives, stoaction of the most efficient
XQuery expressions possible.

The rest of the paper is organized as follows:dnti®n 2 the related work is pre-
sented. The mappings used for the translation dsaweheir encoding are described
in Section 3. Section 4 describes the query tréinslgprocess. An example presented
at Section 5. The transformation of the query tesiscribed at Section 6. The paper
concludes in section 7.

2 Redated Work

Various attempts have been made in the literatraddress the issue of accessing
XML data from within Semantic Web Environments 8,6, 8, 9, 10, 11, 15, 16, 17,
18]. More relevant to our work are those that uBARBQL as a manipulation lan-
guage. To this end, tf@AWSDL Working Grouf8] uses XSLT to convert XML data
into RDF and a combination of SPARQL and XSLT toe inverse. Other approaches
[9, 10, 11] combine Semantic Web and XML technadggio provide a bridge be-
tween XML and RDF environmentsSPARQL[11] combines SPARQL and XQuery
in order to achieve Lifting and Lowering. In theftlrig scenario (which is relevant to
our work), XSPARQLuses XQuery expressions to access XML data andR§RA
Construct queries for converting the accessed iddaRDF. The main drawback of
these approaches is that there is no automatictavaypress an XML retrieval query
in SPARQL. Instead, the user must be aware of thi X6chema and create his/her

information retrieval query accordingly (XQuery X6LT). In our work, the user is
not expected to know the underlying XML Schemahégsgxpresses his/her query
only in SPARQL in terms of the knowledge that (sihaware of, and (s)he is able to
retrieve data that exist in XML databases. The af@ntioned attempts, as well as
others [12, 13, 14] that try to bridge relationatabases with the Semantic Web using
SPARQL, show that the issue of accessing legacy statrces from within Semantic
Web environments is a valuable and challenging one.

3 Mapping OWL to XML Schema

The framework described here allows XML encodea date accessed from Seman-
tic Web applications that are aware of some ontoleigcoded in OWL. To do that,
appropriate mappings between the OWL ontolo@y &nd the XML SchemaX®
should exist. These mappings may be produced eitbrmatically, based on our
previous work in theXS20WLframework [15], or manually through some mapping
process carried out by a domain expert. Howeverd#finition of mappings between
OWL ontologies and XML Schemas is not the subjé¢his paper. Thus, we do not
focus on the semantic correctness of the defingapings. We neither consider what
the mapping process is, nor how these mappings ltese produced

Such a mapping process has to be guided from |lgeglevel correspondences.
That is, the valid correspondences between the QW XML Schema language
constructs have to be defined in advance. The Egglevel correspondences that
have been adopted in this paper are well-acceptedwide range of data integration
approaches [2, 3, 6, 15, 16, 17]. In particular, support mappings that obey the
following language level correspondence rul®sClass corresponds %S Complex
Type, O DataType Property correspondsX& Simple Element or Attribute, and
Object Property correspondsx& Complex Element.

Then, at the schema level, mappings between cendmhain conceptualizations
have to be defined (e.g. tlnployeeclass is mapped to theorker complex type)
either manually, or automatically, following thermmspondences established at the
language level.

At the schema level mappings a mapping relationsbtpreerO and anXSis a bi-
nary association representing a semantic assatiativtong them. It is possible that
for a single ontology construct more than one nagpeélationships are defined. That
is, a single source ontology construct can be nppenore than one target XML
Schema elements (1:n mapping) and vice versa, winilee complex mapping rela-
tionships can be supported.

3.1 Encoding of the Schema Level Mappings

Since we want to translate SPARQL queries into seicelly equivalent XQuery
expressions that can be evaluated over XML dataviihg a given (mapped) sche-
ma, we are interested in XML data representatidiss.a consequence, based on
schema level mappings for each mapped ontologyg dagroperty, we store a set of
XPath expressionsXPath set” for the rest of this paper) that address all thees-

ponding instances (XML nodes) in the XML data level particular, based on the
schema level mappings, we construct:

= A Class XPath Set Xc for each mapped class, containing all the possible
XPaths of the complex types to which the claddsas been mapped to.

= A Property XPath Set Xp, for each mapped properr, containing all the possi-
ble XPaths of the elements or/and attributes tcRr has been mapped.

Example 1: Encodings of M appings

Fig. 1 shows the mappings between an OWL Ontologlysan XML Schema.

——————— -——_
e T e T - >~
— NN -
\\\ Persons \\\
~V\+'
Person Staff
= — ——==———— ———
F = /N\\N
FiréName LastName Nick email FN LN Salary contact_Infol
- _ v 4 4 A _-v 4
_______ T - oS
S L= /
g - /
_____ - ///
7/ -
______ P -
——— PR a—

Fig. 1. Mappings Between OWL & XML

To better explain the defined mappings, Fig. 1 shtlve structure that the XML
documents (which follow this schema) will have. T@reoding of these mappings in
our framework is shown in Fig. 2.

Classes:
Xas:person—{/Persons/Person, /Persons/Staff}
Xns:Employee= {/Persons/Staff}

Object Properties:
Xns:Has_person— {/Persons/Person }

DataType Properties:
Xas:First_ Name= {/Persons/Person/FirstName, /Persons/Staff/FN}
Xaus:sur_Name= {/Persons/Person/LastName, /Persons/Staff/LN}
Xas:Nick Name= {/Persons/Person/Nick }
Xns:e-mail ={/Persons/Person/email, /Persons/Staft/Contact_Info}
Xns:income={/Persons/Staff/Salary}

Fig. 2. Mappings Encodings

4 Query Trandlation Process

In this section we present in brief the entire $tation process using a UML activity
diagram Fig. 3 shows the entire process which sstiking as input the given
SPARQL query and the defined mappings between helagy and the XML Sche-

ma (encoded as described in the previous sectidi®.query translation process
comprises the activities outlined in the followipgragraphs.

4.1 SPARQL Graph Pattern Normalization

The SPARQL Graph Pattern Normalizati@etivity re-writes the Graph-PatterGR)

of the SPARQL query in an equivalent normal forrsdzhon equivalence rules. The
SPARQLGP normalization is based on tk&P expression equivalences proved in [4]
and re-writing techniques. In particular, e can be transformed in a sequeRde
UNION P2 UNION P3 UNION...UNION PnvherePi (1<i<n) is a Union-FreeGP
(i.e. GPsthat do not contain Union operators) [4]. This emkheGP translation
process simpler and more efficient, since it decosBp the entire query pattern into
sub-patterns that can be processed independergobfother.

[actsParaLzTUERY 7
Union-Free GraphPattern Processing N
Determination of
Variable Types
Meppings .
[Onto-Triples |
Exis] [Type Conflicts]
Processing
Onto-Triples
Union Operator
Translation
Solution Sequence
bdifiers Translation [More BGPs|
Query Form Based
Translation L
- .

Fig. 3 Overview of the SPARQL Translation Process

4.2 Union-Free Graph Pattern (UF-GP) Processing

The UF-GP Processingranslates the constituebf--GPsinto semantically equiva-
lent XQuery expressions. THéF-GP Processingactivity is a composite one, with
various sub-activities. This is actually the stepttmost of the “real work” is done
since at this step most of the translation protaisss place. Th&JF-GP Processing
activity is decomposed in the following sub-aciast

Determination of Variable Types. This activity examines the type of each variable
referenced in each UF-GP in order to determinefth@ of the results and, conse-
quently, the syntax of the Return clause in XQubtgreover, variable types are used
by the “Processing Onto-Triples”and “Variables Bindings” activities. Finally, this
activity performs consistency checking in variabsage in order to detect any possi-
ble conflict (e.g. the same variable name is usethé definitions of variables of

different types in the samdF-GP). In such a case, tHéF-GP is not going to be
translated, because it is not possible to be mdtalith any RDF dataset.

We define the following variable types: Th#ass Instance Variable Tyg€IVT),
TheLiteral Variable TypgLVT), TheUnknown Variable Typ@JVT), TheData Type
Predicate Variable Typ@TPVT), TheObject Predicate Variable Typ®PVT), The
Unknown Predicate Variable TygePVT).

The form of the results depends on the variablegygnd they are structured in
such a way that allows their transformation to RiyRtax. The transformation can be
done by processing the information regarding thenfof the results and the input
mappings. In order to allow the construction ofufegorms, appropriate XQuery
functions (using standard XQuery expressions) hé&een implemented (like
func:CIVT,etc.).

Processing Onto-Triples. Onto-Triplesactually refer to the ontology structure and/or
semantics. The main objective of this activity gsprocess onto-triples against the
ontology (using SPARQL) and based on this analysisind (i.e. assigning the rele-
vant XPaths to variables) the correct XPaths téatséas contained in the onto-triples.
These bindings are going to be used in the negsste inpuVariable Bindingactivi-

ty. This activity processe®nto-Triplesusing standard SPARQL in order to perform
any required inference so that any schema-levelygsemantics to be analyzed and
taken into account later on in the translation pssc Since we are using SPARQL for
Onto-Triple processing against the ontology, we can processgamyn Onto-Triple
regardless the complexity of its matching againstdntology graph.

UF-GP2XQuery. This activity translates th&lF-GP into semantically equivalent
XQuery expressions. The concept d&RB, and thus the concept OF-GF, is defined
recursively. TheBGP2XQueryactivity translates the basic components @R(i.e.
Basic Graph PatterrBGPswhich are sequences of triple patterns and fjiter®
semantically equivalent XQuery expressions. To ltht & variables binding step is
needed. FinallyBGPsin the context of &P have to be properly associated. That is,
to apply the SPARQL operators among them using X@Qe&pressions and func-
tions. These operators a@PT, AND, andFILTER and are implemented using stan-
dard XQuery expressions without any ad hoc prongssi

— Variables Binding. In the translation process the term “variable bigd” is
used to describe the assignment of the correcth$Patthe variables referenced
in a given Basic Graph PatterBGP), thus enabling the translation BGP to
XQuery expressions. In this activit@nto-Triplesare not taken into account since
their processing has taken place in the previas ahd their bindings are used as
input in this activity. The same holds for Filtesince they don’t affect the bind-
ing process (more details can be found at [19]).

— BGP2XQuery. This activity translates thBGPsto semantically equivalent
XQuery expressions based on B@8P2XQuenalgorithm. The algorithm manipu-
lates a sequence of triple patterns and filtees 6BGP) and translates them into
XQuery expressions, thus allowing the evaluatioa BGP on a set of XML data.
The algorithm takes as input the mappings betwlenontology and the XML

schema, th&GP, the determined variable types, as well as th&alkr bindings
and generates XQuery expressions (more detailbedound at [19]).

4.3 Union Operator Translation

This activity translates thdNION operator that appears amod§-GPsin aGP, by
using theLet andReturn XQuery clauses in order to return the union of shkition
sequence produced by tb&-GPsto which the Union operator applies.

4.4 Solution Sequence M odifiers Trandation

This activity translates the SPARQL solution segqgemodifiers. Solution Modifiers
are applied on a solution sequence in order tatemaother, user desired, sequence.
The modifiers supported by SPARQL dbéstinct, Order By, Reduced Limit and
Offset

For the implementation of thRistinct andReducednodifiers, our software gener-
ates XQuery functions (in standard XQuery syntaxjung:DISTINCT
func:REDUCED according to the humber and the names of theims for which
the duplicate elimination is to be performed. Regay the rest of the solution se-
guence modifiers, the next table shows the XQuepyessions and built-in functions
that are used for their translation in XQuery (X@uery variable3Resultshas been
bound to the solution sequence produced by XQuepyessions, antll, M are posi-
tive integers).

Table 1. Translation of Solutions Sequence Modifiers

SPARQL Modifier XQuery Translation
LIMIT N return($Results[position()<=N])
OFFSET N return($Results[position()> N])
LIMIT N & OFFSET M return(SResults[position()> M and position()<= N+M])

for $res in $Results
ORDER BY DESC(?x) ASC(?y) order by Sres/x descending empty least, $res/y empty least

return $res

45 Query FormsBased Trandation

SPARQL has four forms of querieS€lect, Ask, Construand Describg. According

to the query form, the structure of the final réssildifferent. The query translation is
heavily dependent on the query form. In particuddter the translation of any solu-
tion modifier is done, the generated XQuery is eckd with appropriate expressions

in order to achieve the desired structure of tiselte (e.g. to construct an RDF graph,
or a result set) according to query form.

5 Example

We demonstrate in this example the use of the iestframework in order to allow
a SPARQL query to be evaluated in XML Data (basedEgample 1). Fig. 4 shows
how a given SPARQL query is translated by our fraomk into a semantically
equivalent XQuery query.

Translated XQuery Query :
declare namespace func = "http://www.music.tuc.gr/funcs";
let $doc := collection("http://www.music.tuc.gr/...")
let $Modified_Results :=(
let $Results :=(
let SBGP_1:=(
for $empl in $doc/Persons/Staff]./FN="Nick"]
for $Iname in Sempl/LN
let Semail := Sempl/Contact_Info

Consider the query: “For Person subclasses, return their
instances, their last name and their income, the first
name of which is “Nick”, the last name begins with “B”,
and they have an e-mail address. The (existence of)
income is optional. The query will return at most
20(LIMIT 20) solutions ordered by last name value at

descending order and skipping the first 5 solutions
(OFFSET 5)”.

SPARQL Query:

PREFIX ns: <http://example.com/ns#>

where(exists($Semail) and matches($lname, ""B"))
return(<Result> <empl>{func:CIVT(Sempl) } </empl>,
<Iname>{ string($Iname)} </Iname> </Result>)
)
let $BGP_2:=(

for Sempl in $doc/Persons/Staff

for Sinc in $empl/Salary

return(<Result> <empl>{func:CIVT(Sempl)} </empl>,
<inc>{ string($inc)} </inc> </Result>)

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

SELECT ?empl ?Iname ?inc

WHERE{ { 2emplCl rdfs:subClassOf ns:Person .)
return (func:OPTIONAL(SBGP_1, $BGP_2))

2empl rdfitype 2 emplCl .
2empl ns:First Name "Nick" . BGP_1
%empl ns:Sur Name 2lname . return (let $Ordered Results:=(
2empl ns:email 2email . for Siter in SResults
FILTER regex(?Iname, "B") } order by Siter/Iname descending empty least
gex(? 5 .
OPTIONAL{ ?empl ns:Income ?inc. } BGP_2 return(Siter)) . .
} return ($Ordered_Results[position()>5 and position()<=25]))
ORDER BY DESC(?Iname))

LIMIT 20 OFFSET 5 return (<Results>{$Modified_Results }</Results>)

Fig. 4. SPARQL Query Translation Example

6 Transformation of the Query Results

An important issue in the entire approach is tmacstire of the returned results. In
our work and for théAsk and Selectquery forms we encode the returned results ac-
cording to the SPARQL Query Result XML Format [dhich is a W3C recommen-
dation. Moreover the values returned with the tssuan be easily transformed into
RDF (N3 or RDF/XML) syntax by processing the infa@tion of the results and the
input mappings.

7 Conclusions

We have presented an environment that allows tladuation of SPARQL queries
over XML data which are stored in XML databases andessed with the XQuery
language. The environment assumes that a set giinggpbetween the OWL ontolo-
gy and the XML Schema exists. The mappings obetaicewell accepted language
correspondences.

The SPARQL2XQueryramework has been implemented as a prototypevaodt
service using Java related technologies (Java 232, and Jena) on top of the
Berkeley DB XML. The service can be configured witie appropriate mappings
(between an ontology and an XML Schema) and tréasthe input SPARQL queries
into XQuery queries that are answered over the XDétabase.

This work is part of as more generic framework thatare pursuing which aims to
providing algorithms, proofs and middleware for ttnansparent access from the
Semantic Web environment to federated heterogerdatabases across the web.

8 References

1. Beckett D.(eds), “SPARQL Query Results XML Format”. W3C Recomdwaion, 15
January 2008, (http://www.w3.0rg/TR/rdf-spargl-XMEkrge

2. Bohring H., Auer S.: “Mapping XML to OWL Ontologiesl eipziger Informatik-Tage
2005: 147-156

3. Lehti P., Fankhauser P.: “XML Data Integration wahVL: Experiences & Challenges”,
Proceedings of the 2004 International Symposiumgplications and the Internet

4. J.Perez, M. Arenas, C. Gutierrez. Semantics and @aitypof SPARQL. 5th Interna-
tional Semantic Web Conference (ISWC-06), Novemio@62

5. Prud’hommeaux E., Seaborne A. (eds), “SPARQL Quanglage for RDF". W3C Rec-
ommendation, 15 January 2008. (http://www.w3.orgf@iRéparql-query/).

6. Rodrigues T., Rosa P, Cardoso J., “Mapping XML toiBgiOWL ontologies”, Interna-
tional Conference WWW/Internet 2006, Murcia, Spak8 October 2006.

7. Siméon J., Chamberlin D. (eds): XQuery 1.0: an XMle€y Language. W3C Recom-
mendation, 23 Jan. 2007. http://www.w3.org/TR/xgliery

8. Joel Farrell and Holger Lausen. Semantic Annotatfon WSDL and XML Schema.
W3C Recommendation, W3C, August 2007. Available aqttitww.w3.org/TR/sawsdl/

9. Sven Groppe, Jinghua Groppe, Volker Linnemann, Rirkulenz, Nils Hoeller, Chris-
toph Reinke: Embedding SPARQL into XQuery/XSLT. SAQ202271-2278

10. Matthias Droop, Markus Flarer, Jinghua Groppe, Ssesppe, Volker Linnemann, Jakob
Pinggera, Florian Santner, Michael Schier, FeliRdapf, Hannes Staffler, Stefan Zugal:
“Embedding XPATH Queries into SPARQL Queries” Ino€rof the 10th International
Conference on Enterprise Information Systems(ICEI®20

11. Waseem Akhtar, Jacek Kopecky, Thomas Krennwalkveg] Polleres : XSPARQL:
Traveling between the XML and RDF Worlds - and Avwoglthe XSLT Pilgrimage.
ESWC 2008:432-447

12. Christian Bizer, Richard Cyganiak : D2R Server. htmiv4.wiwiss.fu-
berlin.de/bizer/d2r-server/index.html

13. OpenLink Software : Virtuoso Universal Server.phfirtuoso.openlinksw.com/

14. CCNT Lab. Zhejiang Univ. China : Dart Grid. http:#M¢zju.edu.cn/projects/dartgrid/

15. Tsinaraki C., Christodoulakis S., “InteroperabilifyXML Schema Applications with
OWL Domain Knowledge and Semantic Web Tools”. Ind?of the ODBASE 2007.

16.

17.

18.

19.

20.

Cruz I.R., Huiyong Xiao Feihong Hsu: “An Ontologgded Framework for XML Se-
mantic Integration”, Database Engineering and Aggtions Symposium, 2004.
V.Christophides, G. Karvounarakis, |. Koffina, Golkinidis, A. Magkanaraki, D. Plex-
ousakis, G. Serfiotis, V. Tannen: “The ICS-FORTH SWIMPowerful Semantic Web In-
tegration Middleware”. Proceedings of the Firsemational Workshop on Semantic Web
and Databases 2003 (SWDB 2003), pages 381-393.

Bernd Amann, Catriel Beeri, Irini Fundulaki, Michelt®dl: Querying XML Sources
Using an Ontology-Based Mediator. CooplS/DOA/ODBASIB2 429-448

Bikakis N., Gioldasis N., Tsinaraki C., Christodoutal.: “Querying XML Data with
SPARQL" In Proceeding. of the ®nternational Conference on Database and Expert
Systems Applications (DEXA'09)

Bikakis N., Gioldasis N., Tsinaraki C., Christodoutald.: “The SPARQL2XQuery
Framework” Technical Reponttp://www.music.tuc.gr/reports/SPARQL2XQUERY.PDF

