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Abstract. Data exploration and visual analytics systems are of great importance
in Open Science scenarios, where less tech-savvy researchers wish to access and
visually explore big raw data files (e.g., json, csv) generated by scientific ex-
periments using commodity hardware and without being overwhelmed in the te-
dious processes of data loading, indexing and query optimization. In this work,
we present our work for enabling efficient in site query processing on big raw
data files for interactive visual exploration scenarios. We introduce a framework,
named RawVis, built on top of a lightweight in-memory tile-based index,
VALINOR, that is constructed on-the-fly given the first user query over a raw
file and adapted incrementally based on the user interaction. We evaluate the per-
formance of prototype implementation compared to three other alternatives and
show that our method outperforms in terms of response time, disk accesses and
memory consumption.

Keywords: In situ query, Big raw data, Adaptive processing, Visual analytics, Visual-
ization, Indexing, User Interaction, Exploratory data analysis

1 Introduction

In situ data exploration [1, 15–17] is a recent trend in raw data management, which
aims at enabling on-the-fly scalable querying over large sets of volatile raw data, by
avoiding the loading overhead of traditional DBMS techniques. A common scenario is
that users wish to have a quick overview, explore and analyze the contents of a raw data
file through a 2D visualization technique (e.g., scatter plot, map).

As an example, a scientist (e.g., astronomer) wishes to visually explore and analyze
sky observations stored in raw data files (e.g., csv) using the Sloan Digital Sky Survey
(SDSS) dataset (www.sdss.org), which describes hundreds of millions of sky objects
(e.g., stars). First, the scientist selects the file and visualizes a part of it using a scatter
plot with the sky coordinates (e.g., right ascension and declination). Then, she may fo-
cus on a sky region (e.g., defining coordinates and area size), for which all contained
sky objects are rendered;move (e.g., pan left) the visualized region in order to explore
a nearby area; or zoom-in/out to explore a part of the region or a larger area, respec-
tively. She may also click on a single or a set of sky objects and view details, such as
name and diameter; filter out objects based on a specific characteristic, e.g., diameter
larger than 50 km; or analyze data considering all the points in the visualized region,
e.g., compute the average age of the visualized objects.

www.sdss.org
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Fig. 1: RawVis Framework Overview

Most experimental and commercial visualization tools perform well for ad-hoc vi-
sualizations of small files (e.g., showing a trend-line or a bar chart) or over aggregated
data (e.g., summaries of data points, into which user can zoom in), which can fit in main
memory. For larger files, these tools usually require a preprocessing step for data to be
loaded and either indexed in a traditional database, or distributedly stored and queried
by non-commodity hardware (e.g., a Big Data tool).

On the other hand, in the in situ exploration scenarios, large data files which do not
fit in main memory, must be efficiently handled on-the-fly using commodity hardware
[1, 15–17]. In the in situ visual exploration scenarios, several challenges arise.

A first requirement is that no offline preprocessing is to be performed and any pre-
processing, such as indexing or repartitioning must be performed on-the-fly, minimiz-
ing the user involvement and time overhead. Secondly, a non-expert user with limited
programming or scripting skills must be supported to access and analyze data through
visual ways, i.e., via an intuitive set of visual rather than data-access (e.g., querying) op-
erations. Further, the response time of such visual operations must be significantly small
(e.g., less than 1sec) in order to be acceptable by the user. Finally, the aforementioned
operations have to be performed in machines with limited computational, memory and
space resources, i.e., using commodity hardware.

In this work, we address the aforementioned challenges for enabling interactive
2D visual exploration scenarios of large raw data files using commodity hardware. We
present the RawVis framework, which is built on top of a lightweight main memory
index, VALINOR (Visual AnaLysis Index On Raw data), constructed on-the-fly given
the first user query and adapted based on the user interaction.

In our working scenario (Figure 1), we assume that a user visually explores multi-
dimensional objects stored in a raw file, using a 2D visualization technique. The user
initially selects two attributes (Ax and Ay) as the X and Y axis of the visualization.
In the first user interaction, the entire raw file is parsed and an “abstracted” version of
the VALINOR is built on-the-fly, organizing the data objects into tiles based on their
Ax and Ay values. Further, the index stores auxiliary metadata in each tile regarding its
contents (e.g., average attribute values), in order to reduce computation cost and access
to the raw file. Throughout the exploration, visual user operations (e.g., pan, zoom, fil-
ter) are expressed as queries evaluated over VALINOR. Following the user interaction,



VALINOR incrementally reorganizes the objects’ grouping, constructs tile hierarchies,
and recomputes and enriches metadata.

The main contributions of this work are: (1) we formulate visual user interactions as
data-access operations; (2) we design an index in the context of in situ visual exploration
over large data; (3) we describe the query processing techniques over this index; (3) we
conduct an experimental evaluation using real and synthetic datasets, as well as several
systems and structures; i.e., MySQL, PostgresRaw, and R-tree, which shows that our
technique outperforms competitors both in execution time and memory consumption.

2 Preliminaries

Data File & Objects. We assume a raw data file F containing a set of d-dimensional
objects O. Each dimension j corresponds to an attribute Aj ∈ A, where each attribute
may be numeric or textual. Each object oi contains a list of d attributes
oi = (ai,1, ai,2, ..., ai,d), and it is associated with an offset fi in F pointing to the
“position” of its first attribute, i.e., ai,1. Note that, object entries can be either fixed
or variable-length, in the latter case they are separated by a special-character; e.g., CR
for a text file, that precedes the offsets.

Visual Exploration Scenario. Given a set of d-dimensional objects, the user arbitrarily
selects two attributes Ax, Ay ∈ A, whose values are numeric and can be mapped to the
X and Y axis of a 2D visualization layout. Ax and Ay attributes are denoted as axis
attributes, while the rest as non-axis.

The user follows a sequence or combination of the following visual operations to
interact with the data: (1) render: visualizes the objects included in a specified 2D
area, denoted as visualized area. (2) move: changes the visualized area (i.e., pan).
(3) zoom in/out: specifies a new visualized area that is within (resp. covers) the cur-
rent visualized area. (4) filter: excludes objects from the visualized area, based on
conditions over non-axis attributes. (5) details: presents values of non-axis attributes.
(6) analyze: analyzes data from the objects included in the visualized area.

Note that, as previously illustrated, multiple visual operations can be performed in
a single user interaction; e.g, zoom in a region while filtering the presented objects.

Exploratory Query. Considering the aforementioned visual operations, we define the
corresponding data-access operators. In what follows, we formulate the notion of an
exploratory query. Given a set of d-dimensional objects O and the axis attributes Ax

and Ay , an exploratory query Q over O is defined by the tuple 〈S,F,D,N〉, where:

– The Select part S defines a 2D range query (i.e., window query) specified by two
intervals S.Ix and S.Iy over the axis attributesAx andAy , respectively. This part selects
the objects OS ⊆ O for each of which both of their axis attributes have values within
the respective intervals, defined by the window query. The select part is mandatory,
while the rest parts are optional.

– The Filter part F defines conditions over the non-axis attributes. As AF we denote
the set of attributes involved in F. In our current implementation, the conditions in
F are expressed using a single attribute, unary and binary arithmetic operations, and



constants. The filter part is applied over the objectsOS, selecting the objectsOQ ⊆ OS
that satisfy F. If the filter part is not defined (i.e., F = ∅), then OQ = OS.

– The Details part D defines a set AD of non-axis attributes. The query returns the
values of these attributes for each object in OQ.

– The Analysis part N defines aggregate, analytic, or user-defined functions over nu-
meric attributes of the objects OQ. As AN we denote the attributes that are used in
these functions. In our current implementation, we consider a single attribute and the
following aggregate functions: count, sum, average, min, and max. The analysis part
returns the values VN from the evaluation of the specified functions.

The semantics of query execution involves the evaluation of the four parts in the
following order: (1) Select part; (2) Filter part; (3) Details; (4) Analysis part.

Query Result. An exploratory query Q returns the axis values for the objects OQ

along with their values VD of the attributes specified in D, denoted as OD
Q; and the

numeric values VN resulted from the analytic part. Formally, the result is consisted by:
(1) a set of tuples OD

Q = 〈αi,x, αi,y, αi,AD1
, ...αi,ADd

〉, ∀oi ∈ OQ,∀d ∈ {1, ...|AD|}
with ADd

∈ AD; and (2) a list of numeric values VN.

Example (From Visual operations to Exploratory query). Each visual operation can be
expressed as an exploratory query. Specifically, the render operation is implemented
using only the Select part of the query, setting the intervals equal to the values of the vi-
sualized area. Assuming our running example, in whichAx = declination andAy = right
ascension. A render operation that visualizes the rectangle sky area from 100◦ to 110◦,
and from 20◦ to 25◦, is executed by defining S.Ix=[100◦, 110◦] and S.Iy=[20◦, 25◦].

Themove, zoom in/out operations are also implemented by defining a Select part,
having as parameters the coordinates of the neighboring, contained/containing visu-
alized regions, respectively. For example, a zoom-out operation over the previously
presented area is executed as S.Ix=[97.5◦, 112.5◦] and S.Iy=[18.75◦, 26.25◦]. Fur-
ther, the filter operation is implemented by including a Filter part. In our example
F = “diameter > 50 km”. Finally, the details and analyze operations correspond to
the Details and Analysis parts. For example the details and analyze operations described
in our example correspond to D = {name, diameter} and N = “avg(age)”, respectively.

3 The VALINOR Index

The VALINOR is a lightweight tile-based multilevel index, which is stored in memory,
organizing the data objects of a raw file, into tiles. The index is constructed on-the-
fly given the first user query and incrementally adjusts its structure to the user visual
interactions. In the construction, each tile is defined on a fixed range of values of the
Ax and Ay axis attributes, by dividing the euclidean space (defined by the Ax and Ay

domains) into initial tiles. Then, user operations split these tiles subsequent into more
fine-grained ones, thus forming a hierarchy of tiles. In each level of the hierarchy, all
tiles are disjoint (i.e., non-overlapping) and can belong to only one parent tile. Next we
formalize the main concepts of the proposed index.



Object Entry. For an object oi its object entry ei is defined as 〈ai,x, ai,y, fi〉, where
ai,x, ai,y are the values of the axis attributes, fi the offset of oi in the raw file.

Tile. A tile t is a part of the Euclidean space defined by two intervals t.Ix and t.Iy . Each
t is associated with a set of object entries t.E , if it is a leaf tile, or a set of child tiles
t.C, if it is a non-leaf tile. The set t.E is defined as a set of object entities, such that for
each ei ∈ t.E its attribute values ai,x and ai,y fall within the intervals of the tile t, t.Ix
and t.Iy respectively. Further, t is associated with a set t.M of metadata related with
the t.E objects contained in the tile, e.g., aggregated values over attributes. As t.MA

we denote the attributes for which metadata has been computed for the tile t.

VALINOR Index. Given a raw data file F and two axis attributes Ax, Ay , the index
organizes the objects into non-overlapping rectangle tiles based on its Ax, Ay values.
Specifically, the VALINOR index I is defined by a tuple 〈T , IP,AP,MH〉, where T is
the set of tiles contained in the index; IP is the initialization policy defining the initial
tile size; AP is the adaptation policy defining a criterion (e.g., the relation of a tile’s
size w.r.t. the query’s window size), and a method for splitting tiles and reorganizing
object entries following user’s interaction; and MH is the metadata handler defining
and computing the metadata stored in each tile.

Algorithm 1. Initialization (F , Ax, Ay , Q)
Input: F : raw data file; Ax, Ay : X and Y axis attributes;
Parameters: IP: initialization policy
Output: T : initialized index tiles;

OD
Q, VN: first query results

1 T ← ∅ //set of tiles

2 x0, y0 ← IP.getInitialTileSize() //initial tile size

3 foreach oi ∈ F do //read objects from raw file

4 read ai,x, ai,x from F
5 set fi ← offset of ai,1 in F
6 append 〈ai,x, ai,y, fi〉 to tile t.E , where t ∈ T

determined from ai,x, ai,y and x0, y0

7 compute first query result (OD
Q, VN) through file parsing

8 return T , OD
Q, VN

VALINOR Initialization. In our
approach we do not consider any
preprocessing for the index con-
struction, but rather the index is
constructed on-the-fly upon the
first time the user requests to vi-
sualize a part of the raw file. The
file is scanned once, for creat-
ing the initial VALINOR struc-
ture and computing the results of
the first query. The initial version
of VALINOR corresponds to a
flat tile structure that does neither
exhibit any hierarchy nor contain any metadata to the tiles. This phase, referred to as
initialization phase, aims at minimizing the response time of the first user action, by
avoiding computations which may not be used through exploration.

Algorithm 1 describes the initialization phase. The input initialization policy IP
determines the initial size of the tiles x0 × y0 (line 1). Algorithm 1 first scans the raw
fileF once (loop in line 3), reads the values of ai,x, ai,y fi of each object oi (line 4 & 5),
and appendsa new object ei to the entries t.E of the tile t (line 6). It, finally, evaluates
whether this entry should be included in the results of the initial query.

The initialization policy IP is a parameter that defines the initial tile size. It can
be given either explicitly by the user (e.g., in a map the user defines a default scale of
coordinates for the initial visualization), be computed based on data characteristics (e.g.,
the ranges of the Ax, Ay attributes), or adjusted to the visualization setting considering
certain characteristics (e.g., screen size/resolution) [4, 13].



4 Query Processing and Index Incremental Adaptation

This section describes the evaluation of exploratory queries over the proposed index.

Query Processing Workflow. Algorithm 2 outlines the workflow of the query evalu-
ation. Given a query Q, we first look up the index I and determine the tiles TQ that
overlap with the query. In addition, we examine their objects and select the ones OS
(line 1) that are contained in the query window.

Algorithm 2. Query Processing (I, Q, F )
Input: I: index; Q: query; F : raw data file
Variables: OS: objects selected from select part;

TQ: tiles that overlapped with the select part;
TF : tiles for which file access is required

Parameters: AP: adaptation policy; MH: metadata handler
Output: OD

Q: objects of the result along with the detail values;
VN: analysis values

1 OS, TQ← evaluateSelectPart(I,S)
2 foreach t ∈ TQ do
3 if fileAcessRequired(t, Q) then
4 W ← AP.splitTile(t)
5 add W into TF

6 if TF 6= ∅ then
7 VAF , VAD , VAN ,← readFile(TF , F ,OS)
8 MH.updateMetadata(TF , Q, VAF , VAN )

9 OD
Q← evaluateFilterPart (OS , F, VAF ,VAD )

10 VN← evaluateAnalysisPart(OQ, VAN )
11 return OD

Q, VN

Considering TQ, we determine
the tiles TF for which we have to
access the raw file in order to an-
swer the query (line 3). In this step,
we also split the tiles t ∈ TF based
on the adaptation policy AP , cre-
ating a new set of tiles W , as ex-
plained later in the section. Next,
we access the file at each offset of
the objects in TF tiles and retrieve
in memory the attributes defined in
the details, filter, and analysis
parts (line 7). We use these val-
ues for the metadata handler MH
to compute and store metadata in
each tile (line 8). Finally, we eval-
uate the filter and analysis parts on
the retrieved objects (lines 9 & 10).
Each different operation of Alg. 2 is described below.

Evaluate Select Part. In order to evaluate the Select part over the index (Alg. 2, line 1),
we have to identify OS by accessing the leaf tiles TQ which overlap with the window
query specified in Q. Since window queries can be evaluated directly from the index,
the Select part is computed without performing any I/Os.

Procedure 1: fileAcessRequired(t, Q)
Input: t: tile; Q: query;
Output: true / false: file access is required

1 if D 6= ∅ then //detail part is included

2 return true //access file for the OQ objects in t

3 else if F = ∅ and N = ∅ then//no filter & analysis parts

4 return false
5 else if AN ⊆ t.MA and F can be evaluated from

t.MA then //filter and/or analysis part is included

6 return false
7 else
8 return true //access file for the OQ objects in t

Determine File Read. Procedure 1 de-
termines whether and for which objects,
file reads are required . The check is per-
formed for each tile t independently and
distinguishes between the type of opera-
tion is requested by the query. If details
are requested, we always have to access
the file (line 1); otherwise for each t we
check if the Analysis and Filter parts can
be evaluated using the metadata that has
been already computed for t (line 5), by a previous query.

Incremental Computation of Metadata & Query Processing. The metadata is com-
puted incrementally and help improving the performance evaluation of the filter expres-
sions and the functions defined in the analysis part. Incremental computation implies



Procedure 2: splitTile(t)
Input: t: tile
Parameters: AP: adaptation policy
Output: Ta: tiles resulted from

adaptation

1 if AP.checkCondition (t) =
reconstruction required then

2 Ta← AP.reconstruct (t)
3 else
4 Ta ← t

5 return Ta;

Procedure 3: readFile(TF , F , OS)
Input: TF : tiles for which file access is required;
F : raw data file OS : data selected from the select part
Output: VAF , VAD , VAN , attributes values required

for the filter, details & analysis part

1 forall oi included in tiles TF , with oi ∈ OS do
2 access F at file offset fi
3 VAFi

, VADi
, VANi

← read the oi attributes values

that are required for the F, D and N parts
4 insert: VAFi

into VAF ; VADi
into VAD ; VANi

into VAN

5 return VAF , VAD , VAN

that metadata for a tile is not fully computed during the (initial) index construction, but
rather, during user exploration, i.e., the first time a query access a tile.

For example, the Analysis part of a user query requires the aggregate (min, sum,
etc.) value of a non-axis attribute that was already computed for the tiles overlapping
with the query, from a previous user visit. In this case, we do not need to read the
non-axis attribute from the file, as we can aggregate the precomputed values for com-
puting the output value of the query. Further, assume that we have a Filter part, e.g.,
F=“diameter > 50 km”, evaluated over the objects of a tile t, on which we have stored
as metadata the maximum value of the diameter if its containing objects, e.g., 60 km.
Similarly, we can easily answer the query through a single lookup at the index and avoid
processing the objects in t. Currently, we consider aggregate values over attributes of
the t.E objects as metadata – i.e., count, sum, average, min, max.

The metadata handler MH, using the values retrieved from file, for each tile (Algo 2,
line 8): (1) determines for which attributes to compute metadata; (2) computes meta-
data; and (3) updates metadata in the tiled accessed by the query. The attributes for
which metadata is computed are: the attributes t.MA for which metadata has been
previously computed in t, as well as the attributes included in the query filter AF and
analysis part AN.

Incremental Index Adaptation. Procedure 2 reorganizes objects in the index by split-
ting tiles into smaller ones, based on the adaptation policy AP. It first checks whether
a tile t must be split (checkCondition, line 1) and, if so, places all objects in t into
the new tiles T that are resulted from splitting (line 2). Note that, a tile’s splitting (if
required) is performed, each time (i.e., incrementally) a query accesses the particular
tile (i.e., adaptively). The incremental adaptation attempts to maximize the number of
tiles which are fully-contained in a query window. For a fully-contained tile t, there is
no need to: (1) access the file if the required metadata have been computed for t; and
(2) examine the objects in t in order to find the objects that are included in the window.
Thus, fully-contained tiles reduce both computation and I/O cost.

In our current implementation, AP defines a numeric threshold h > 0, defining the
relation between the tile and the window size. The checkCondition method (line 1) ex-
amines if the size of the t is more than 1/h times larger than the window size. Then, us-
ing the reconstruct method (line 2), t is split into more tiles constructing a tile hierarchy.
The splitting is performed following the method used in either Quadtree or k-d tree.

Read File. We use the file offset stored in object entries, in order to access the file (Pro-
cedure 3). For each object we read the attributes values required for the filter, details &
analysis part. A crucial issue in our index is to improve the execution time of the queries
when file access is required. Exploiting the way that VALINOR constructs and stores



the object entries, we are able to scan the raw file in a sequential manner.The sequential
file scan increases the number of I/Os over continuous disk blocks and improves the
utilization of the look-ahead disk cache.

During the initialization phase, the object entries are appended into tiles as the file
is parsed (Alg. 1, line 5). As a result, the object entries in each tile are sorted based
on object’s file offset. In the query evaluation, we identify the tiles TF for which we
have to read the file (Alg. 2, line 3). Considering the lists of objects entries in TF , we
read the objects from lists following a k-way merge, i.e., all objects are sorted on their
offset before reading the file. This way, objects values are read by accessing the file in
sequential order. Note that, in our experiments, the sequential access results in about
8-times faster I/O operations compared to accessing the file by reading objects on a tile
basis (i.e., read the objects of tile w, then read the objects of tile v, etc.).

Evaluate Filter, Details and Analysis Parts. In the general case, the Filter part re-
quires access to the file to retrieve the values of the attributes included in the filter
conditions. However, there are cases where precomputed values in metadata (e.g., min,
max) can be exploited to avoid files access. On the other hand, the Details part always
requires access to the raw file (Procedure 3), since our index does not keep in memory
attribute values other than the two axis attributes. Particularly, for each object oi in,
using the file offset pointers, we retrieve the values VDi

of the attributes included in the
details part. Finally, the Analysis part is first evaluated on existing metadata stored in
the index; otherwise it requires access to the values VAN read from the file.

5 Experimental Analysis

5.1 Experimental Setup

Datasets. We have used a real dataset, the “Yahoo! Flickr” (YAHOO), which is a
csv file, containing information regarding public Flickr photos/videos1. YAHOO con-
tains 100M objects and each object refers to a photo/video described by 25 attributes
(e.g., longitude, latitude, accuracy, tags). We consider a map-based visualization, with
the axis attributes being the longitude and latitude of the location where a photo was
taken. From this dataset, we select the photos/videos posted in USA region, resulting to
13M data objects and a csv file of 7 GB. Regarding the synthetic datasets (SYNTH),
we have generated csv files of 100M data objects, having 2, 10, and 50 attributes (2,
11, and 51 GB, respectively), with 10 being the default value. Each attribute value is a
real number in the range (0, 1000) and follows a uniform distribution.

Competitors. We have compared with: (1) A traditional DBMS (MySQL 5.5.58), where
the user has to load all data in advance in order to execute queries; three indexing set-
tings are considered: (a) no indexing (SQL-0I); (b) one composite B-tree on the two axis
attributes (SQL-1I); and (c) two single B-trees, one for each of the two axis attributes
(SQL-2I). MySQL also supports SQL querying over external files (see CSV Storage

1 Available at: https://research.yahoo.com

https://research.yahoo.com


Fig. 2: From-Raw Data-to-1stResult Time (SYNTH dataset)

Engine in Sect. 6); however, due to low performance [1], we do not consider it as a com-
petitor in our evaluation. (2) PostgresRaw (RAW)2 (build on top of Postgres 9.0.0) [1],
which is a generic platform for in situ querying over raw data (see Sect. 6). (3) A main
memory Java implementation of the R*-tree3. We have tested various configurations
for the index fan-out, ranging from 4 to 128; as the difference in the performance is
marginal, we only report on the best one, i.e., 16.

Implementation. We have implemented VALINOR4 in Java and the experiments were
conducted on an 2.67GHz Intel Xeon E5640 with 64GB of RAM. We applied memory
constraints (max Java heap size) in order to measure the performance of our approach
and our competitors in a commodity hardware setting. For large datasets, the available
version of RAW, required a significant amount of memory (in some cases more than
32GB); the same held for the in-memory R-Tree implementation (more than 16GB in
most cases). In contrast, VALINOR performed well for heap size less than 10GB for
the larger dataset of 100M objects, 50 attributes (51 GB).

Evaluation Scenario & Metrics. We study the following visual exploration scenarios:
(1) first, the user requests to view a region of the data from the raw file. For this action,
referred to as “From-Raw Data-to-1stResult”, we measure the time for creating the
index and fetching the query results. (2) Next, the user explores neighboring areas, using
render, move and zoom operations, denoted as “Basic Visual Operations”, for which we
measure the query response time. (3) Finally, the user explores neighboring areas of the
dataset, requesting also aggregate values for the included objects. For that, we examine
the efficiency of our adaptive method, over a sequence of overlapping window queries.

In our experiments, we measured time, memory consumption and file accesses vary-
ing the following parameters: cardinality (number of objects), dimensionality (number
of attributes), and query selectivity (i.e., objects included in the examined area).

5.2 Results

From-Raw Data-to-1stResult Time. In this experiment, we measured the time re-
quired to answer the first query. This corresponds to loading and indexing the data
for MySQL, and to constructing the positional map for RAW. For the VALINOR and
R-tree cases the in-memory indexes must be built. For the R-tree construction, bulk-
loading was used. In VALINOR we used 100 × 100 tiles for the initialization of the

2 https://github.com/HBPMedical/PostgresRAW
3 https://github.com/davidmoten/rtree
4 The source code is available at https://github.com/Ploigia/RawVis

https://github.com/HBPMedical/PostgresRAW
https://github.com/davidmoten/rtree
https://github.com/Ploigia/RawVis


Fig. 3: Execution Time for Basic Visual Operations (SYNTH dataset)

index (this number of tiles is used in all the experiments). Note that, we also examined
different number of tiles; however, the effect on the performance was negligible and we
do not report on these results. Figure 2 presents the results varying the dimensionality
of the objects. VALINOR outperforms the MySQL and R-tree methods, with the differ-
ence getting more significant as the dimensionality increases. As expected, VALINOR
exhibits a lower initialization time than R*-tree; the latter must determine multilayer
MBRs and assign objects to leaf nodes as opposed to our approach which is initialized
with fixed tile sizes exhibiting no hierarchy. In this experiment, VALINOR is outper-
formed by RAW, due to its non-optimized CSV parsing and slower I/O Java operations,
as opposed to the efficiency provided by RAW’s programming language (i.e., C). This
is something we plan to address in the future.

Performance of Basic Visual Operations. In this experiment we study the perfor-
mance of the render, move and zoom in/out visual operations. Recall that, these
operations are expressed as queries over the axis attributes (i.e., windows queries). We
use the SYNTH dataset to evaluate these operations over regions that contain different
numbers of objects (100K, 1M, 5M). Figure 3 presents the query execution time. As
expected, execution time increases for higher values of selectivity. VALINOR signifi-
cantly outperforms all methods in all cases.

Regarding RAW, its positional map is used to minimize file parsing and tokenizing
costs, which can not be exploited to reduce the number of objects examined in range
queries. R-tree is the best competing method. However, its performance is significantly
affected by the number of objects. Overall, VALINOR is around 5-12× faster than
R-tree, and more than 1 magnitude faster than the other methods.

Index Adaptation. We define a sequence of neighboring and overlapping queries in
order to study the adaptation of the index, and we measure the execution time for each
query. To assess the effect of VALINOR’s adaptation policy, we compare its perfor-
mance with that of a “static” VALINOR version (denoted as VALINOR-S), for which
tiles are not split as a result of user queries, and we measure the number of objects read
from the file for each version. As adaptation policy we consider standard Quadtree split-
ting of tiles and we only present MySQL-1I, which has exhibited the best performance.

First, we use the real YAHOO dataset (Fig. 4). We constructed a sequence of ten
queries (Q1-Q10), each one defined over an area of 10km × 10km size (i.e., window
size), requesting the average value of one of the non-axis attributes. Every query is
shifted by 10% of the window size (i.e., 1km) in relation to its previous one, where the
shift direction (N, E, S, W) is randomly selected, with the first query Q1 posed in central
LA. Note that, we were not able to run RAW in this dataset, due to the types of the
attributes included in YAHOO (i.e., textual). For the synthetic dataset (Fig. 5), we use



Fig. 4: Execution Time & File Accesses for each Query (YAHOO dataset)

a default window size with approximately 100K objects, and uniform data distribution,
shifting each query by 10% of the window size.

Comparing VALINOR with its non-adaptive version, we observe that in both datasets
(Fig. 4-5) the adaptive method exhibits better performance in time and file reads. The
number of objects read from file is defined in the right axis and depicted with slashed
lines. This improvement, as a result of the tile splittings and the computed aggregate
values, is obvious even after the first query Q1, with the difference getting more sig-
nificant after the query Q3. Variations in these improvements are due to the different
number of objects contained in each window query, as well as to its position of the
query w.r.t. to its previous one. Overall, for the real dataset, the adaptive method re-
quires up to 6× less file reads (slashed lines) and up to 5× less time; 25× and 17× for
the synthetic one, respectively.

Compared to the other methods, VALINOR outperforms all methods with the ex-
ception of the first 3 queries in the YAHOO dataset (Fig. 4) where SQL performs bet-
ter. Regarding the RAW method (Fig 5), we observe that it requires approximately the
same time for every query, since it does not adapt to the workload and the positional
map cannot be exploited to answer the aggregate queries. Considering all the workload
(Q1-Q10), in YAHOO, VALINOR requires 4 sec to execute all queries, VALINOR-S 12
sec, R-tree 15 sec, and SQL-1I 6sec; in SYNTH, 74, 82, 105 and 145 sec, respectively.

Memory Consumption. We measured the memory used to build VALINOR and R-tree
varying the number of objects in the SYNTH dataset (Fig.6). Note that, the memory
consumption in VALINOR and R-tree is not affected by the objects’ dimensionality,
since in each case, only the two axis attributes are indexed. We did not consider RAW
and MySQL settings since they exhibit different memory requirements due to their
tight-coupling with the DBMS. We can observe that VALINOR requires significantly
less memory than R-tree, with R-tree requiring 2× more memory for 100M objects.

6 Related Work

In situ Query Processing. Data loading and indexing usually take a large part of the
overall time-to-analysis for both traditional RDBMs and Big Data systems [11]. In situ
query processing aims at avoiding data loading in a DBMS by accessing and operating
directly over raw data files. NoDB [1] is one of the first efforts for in situ query process-
ing. NoDB incrementally builds on-the-fly auxiliary indexing structures called “posi-
tional maps” which store the file positions of data attributes in order to reduce parsing
and tokenization costs during query evaluation, as well as it stores previously accessed



Fig. 5: Execution Time & File Accesses for each Query
(SYNTH dataset)

Fig. 6: Memory
Consumption

(SYNTH dataset)

data into cache. The authors have also developed PostgresRaw, which is an implemen-
tation of NoDB over PostgreSQL. DiNoDB [17] is a distributed version of NoDB. In
the same direction, RAW [15] extends the positional maps to index and query file for-
mats other than CSV. Recently, Slalom [16] exploits the positional maps and integrates
partitioning techniques that take into account user access patterns.

Raw data access methods have been also employed for the analysis of scientific
data, usually stored in array-based files. In this context, Data Vaults [12] and SDS/Q [5]
rely on DBMS technologies to perform analysis over scientific array-based file formats.
Further, SCANRAW [6] considers parallel techniques to speed up CPU intensive pro-
cessing tasks associated with raw data accesses.

Recentlly, several well-known DBMS support SQL querying over raw csv files. Par-
ticularly, MySQL provides the CSV Storage Engine, Oracle offers the External Tables,
and Postgres has the Foreign Data. However, these tools do not focus on user interac-
tion, parsing the entire file for each posed query, and resulting in significantly low query
perfomance [1] for interactive scenarios.

All the aforementioned works study the generic in situ querying problem without
focusing on the specific needs for raw data visualization and exploration. Instead, our
work is the first effort trying to address these aspects, considering the in situ processing
of a specific query class, that enables user operations in 2D visual exploration scenarios;
e.g., pan, zoom, details. The goal of our solution is to optimize these operations, such
that visual interaction with raw data is performed efficiently on very large input files
using commodity hardware.

Indexes for Visual Exploration. VisTrees [9] and HETree [4] are tree-based main-
memory indexes that address visual exploration use cases; i.e., they offer exploration-
oriented features such as incremental index construction and adaptation. Compared to
our work, both indexes focus on one-dimensional visualization techniques (e.g., his-
tograms), and they do not consider disk storage; i.e., data is stored in-memory.

Hashedcubes [8] is a main-memory data structure supporting a wide range of in-
teractive visualizations, such as heatmaps, time series, plots. It is based on multiple
hierarchical multidimensional (spatial, categorical, temporal) indexes, which are con-
structed during the loading phase. The construction requires multiple sortings on the
input values, which may result in increased amount of time for large datasets. In com-
parison with our approach, Hashedcubes requires that all data resides in memory, and
thus it does not address the need of reducing the overall time-to-visualization (both
loading and query processing time) over raw data files and it does not feature any adap-



tive technique based on the user interaction. Further, graphVizdb [3] is a graph-based
visualization tool, which employs a 2D spatial index (e.g., R-tree) and maps user inter-
actions into window 2D queries. Compared to our work, graphVizdb requires a loading
phase where data is first stored and indexed in a relational database system. In addition,
it targets only graph-based visualization and interaction, whereas our approach offers
interaction in 2D layouts, such as maps or scatter diagrams.

In different contexts, tile-based structures are used in visual exploration scenarios.
Semantic Widows [14] considers the problem of finding rectangular regions (i.e., tiles)
with specific aggregate properties in an interactive data exploration scenario. This work
uses several techniques (e.g., sampling, adaptive prefetching, data placement) in order
to offer interactive online performance. ForeCache [2] considers a client-server archi-
tecture in which the user visually explores data from a DBMS. The approach proposes
a middle layer which prefetches tiles of data based on user interaction. Prefetching is
performed based on strategies that predict next user’s movements. Our work considers
different problems compared to the aforementioned approaches. However, some of their
methods can be exploited in our framework to further improve efficiency.

Traditional Indexes. A vast collection of index structures has been introduced in tradi-
tional databases, as well as Big Data systems (see e.g., M-trees [7] ). Traditional spatial
indexes, such as the R-tree family and kd-trees, are designed to improve the evaluation
of a variety of spatial queries and are widely available in both disk-based and main
memory implementations. Due to their objective (i.e., support of various spatial query
operations), even main memory spatial indexes require substantial memory and time
resources to construct [10], which makes them inappropriate for enabling the users to
quickly start exploring and interacting with the data, as in the case of in situ data explo-
ration (see also the results in Sect. 5). On the contrary, our approach proposes a main-
memory lightweight index, which aims at accelerating the raw data-to-visualization
time and offering a simple set of 2D visual operations to the user, rather than covering
all aspects of spatial data management.

7 Conclusions

In this paper, we have presented the RawVis framework and the VALINOR index, a
lightweight main memory structure, which enables interactive 2D visual exploration
scenarios of very large raw data files in the presence of limited memory resources.
VALINOR is constructed from a raw data file given the first user query and adapted
based on the user interaction. We have formulated a set of simple visual operations and
mapped them to query operators evaluated on the VALINOR index. We have conducted
a thorough experimental evaluation with real and synthetic datasets and compared with
three competitors; i.e., MySQL, PostgresRaw, and R-tree. The results showed that our
technique outperforms both in query execution time and memory consumption.
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