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Abstract

In the Big Data era, systems in several application areas face significant efficiency and
effectiveness challenges, due to the ever increasing Volume, Variety and Velocity of data.
In this context, systems have to handle vast amounts of data in real time and operate in
environments where different users, working on different scenarios, generate, explore and
analyse different forms of data. To this direction, this thesis studies the development of
personalization, exploration and semantic techniques for facilitating Big Data management
and analysis. Specifically, we propose methods for: (a) scalable preference-aware data
management and analysis; (b) efficient exploration and visualization over large datasets;
and (c) semantic data integration, exploration and retrieval.

In the context of personalized data analysis, we study the following problems. First, we
study the problem of finding and ranking objects that are preferable by a group of users
based on their preferences. We propose an objective and fair interpretation of this problem.
Based on this interpretation, we develop efficient index-based algorithms and we introduce
an objective ranking scheme satisfying several theoretical properties. In the next problem,
we thoroughly study the performance of some of the most well-known external memory
skyline algorithms. Particularly, the considered algorithms are redesigned following a
formal external memory model. Then, we propose numerous different design choices and
we study the resulted algorithms’ variations.

Regarding exploratory data analysis two problems are considered. In the first one we
handle efficient on-the-fly visual exploration over large sets of data. For this problem
we propose a multilevel framework that exploits a tree-based structure to hierarchically
aggregate objects. Considering different exploration scenarios, we enable efficient explo-
ration via incremental hierarchy construction and prefetching based on user interaction.
Further, we provide on-the-fly efficient adaptation of the hierarchies based on user pref-
erences. The second problem considers the exploration and visualization of very large
graphs. We propose a new paradigm that allows efficient large graph visual exploration,
similar to the exploration paradigm used in maps. Also, we present a disk-based scheme
in order to index and store the visualized graph. In this setting, user’s interactions are
translated to efficient spatial operations. Finally, in order to visualize very large graphs,
a partition-based visualization approach is introduced.

With respect to semantic data analysis, we focus on three problems. The first problem
regards the integration between XML and Semantic Web. We present an interoperability
framework that bridges the heterogeneity gap by exploiting a model for the expression of
OWL–RDF/S to XML Schema mappings, a method for SPARQL to XQuery translation,
and model which transforms XML Schemas into OWL ontologies. The second problem
regards the use of semantics in document annotation and retrieval. For this problem we
propose a semantic-based annotation model, as well as a learning method for recommend-
ing annotations. Finally, we introduce an effective retrieval method that enriches infor-
mation retrieval techniques with semantics. In the last problem, we study the modelling
and the exploration of evolving data, adopting the Linked Data paradigm. As a result,
we propose a RDF-based change model and we develop a Linked Data infrastructure that
allows exploration and retrieval over evolving data.
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Περίληψη

Στην εποχή των Μεγάλων Δεδομένων (Big Data), τα συστήματα αντιμετωπίζουν σημαντι-
κές προκλήσεις που σχετίζονται με την αποδοτικότητα και την αποτελεσματικότητα τους. Οι

προκλήσεις αυτές απορρέουν κυρίως από τον ΄Ογκο, την Ετερογένεια και την Ταχύτητα που

χαρακτηρίζει τα δεδομένα σήμερα. Σε αυτό το πλαίσιο, τα σημερινά συστήματα πρέπει σε

πραγματικό χρόνο να διαχειρίζονται μεγάλους όγκους δεδομένων, καθώς και να λειτουργούν

σε περιβάλλοντα όπου διαφορετικοί χρήστες οι οποίοι εργάζονται σε διαφορετικά σενάρια, δη-

μιουργούν, διερευνούν και αναλύουν διαφορετικές μορφές δεδομένων. Προς την κατεύθυνση

αυτή, η παρούσα διατριβή μελετά την ανάπτυξη εξατομικευμένων, διερευνητικών και σημασιο-

λογικών τεχνικών για την διαχείριση και ανάλυση Μεγάλων Δεδομένων. Πιο συγκεκριμένα,

προτείνονται μέθοδοι για: (α) κλιμακούμενη διαχείριση και ανάλυση δεδομένων βασισμένη σε

προτιμήσεις χρηστών; (β) αποδοτική διερεύνηση και οπτικοποίηση μεγάλων συνόλων δεδο-
μένων; και (γ) σημασιολογική ολοκλήρωση, διερεύνηση και ανάκτηση δεδομένων.
΄Οσον αφορά στο πρώτο μέρος εργασιών, αντικείμενο έρευνας αποτέλεσε η εξατομικευ-

μένη ανάλυση δεδομένων, όπου μελετήθηκαν τα ακόλουθα προβλήματα. Αρχικά μελετάται

το πρόβλημα της εύρεσης και ταξινόμησης αντικείμενων τα οποία θεωρούνται προτιμητέα από

μια ομάδα χρηστών, με βάση τις προτιμήσεις τους. Αποτέλεσμα της μελέτης, είναι η δια-

τύπωση μιας αντικειμενική και δίκαιης ερμηνεία αυτού του προβλήματος. Με βάση αυτή την

ερμηνεία, αναπτύχθηκαν αποδοτικοί αλγόριθμοι βασισμένοι σε ευρετήρια και προτάθηκε ένα

σχήμα αντικειμενικής ταξινόμησης, το οποίο ικανοποιεί αρκετές θεωρητικές ιδιότητες. Σε ε-

πόμενο πρόβλημα, πραγματοποιήθηκε εκτεταμένη μελέτη και σύγκριση τεχνικών αποτίμησης

ερωτημάτων κορυφογραμμής δευτερεύουσας μνήμη. Πιο συγκεκριμένα, ένα σύνολο αλγορίθ-

μων κορυφογραμμής μοντελοποιήθηκαν και υλοποιήθηκαν σύμφωνα με το μοντέλο εξωτερικής

μνήμης. Επιπλέον, για τους υπό εξέταση αλγόριθμους προτείνεται ένα σύνολο παραλλαγών.

Η εκτεταμένη πειραματική μελέτη ανέδειξε νέα συμπεράσματα σχετικά με την σχεδίαση και

την απόδοση των αλγορίθμων κορυφογραμμής.

Στο δεύτερο μέρος εργασιών, του οποίου αντικείμενο έρευνας αποτέλεσε η διερευνητι-

κή ανάλυση δεδομένων, μελετήθηκαν δυο προβλήματα. Πιο συγκεκριμένα, μελετήθηκε το

πρόβλημα της αποδοτικής και άμεσης οπτικής διερεύνησης σε μεγάλα σύνολα δεδομένων. Α-

ποτέλεσμα της μελέτης, είναι η ανάπτυξη ενός πλαισίου πολλαπλών επιπέδων βασιζόμενο σε μια

δεντρική δομή η οποία πραγματοποιεί την ιεραρχική ομαδοποίηση των δεδομένων. Λαμβάνον-

τας υπόψη διαφορετικά σενάρια διερεύνησης, το πλαίσιο επιτρέπει την αποδοτική διερεύνηση

μέσω της σταδιακής κατασκευής της ιεραρχίας, η οποία βασίζεται στην αλληλεπίδραση του

χρήστη. Επιπλέον, περιγράφεται μια μέθοδος η οποία παρέχει αποδοτική και άμεση προσαρμο-

γή των ιεραρχιών με βάση τις προτιμήσεις του χρήστη. Τέλος, παρουσιάζεται μια εκτεταμένη

θεωρητική και πειραματική ανάλυση. Στο δεύτερο πρόβλημα μελετάται η διερεύνηση και οπτι-

κοποίηση πολύ μεγάλων γράφων. Από αυτή τη μελέτη προέκυψε μια καινοτόμα μεθοδολογία

η οποία επιτρέπει την αποδοτική οπτική διερεύνηση πολύ μεγάλων γράφων. Η μεθοδολογία

που προτείνεται είναι παρόμοια με την μεθοδολογία που έχει υιοθετηθεί για την διερεύνηση

γεωγραφικών χαρτών. Επιπλέον, παρουσιάζεται μια νέα τεχνική για την ευρετηρίαση και την

αποθήκευση γράφων. Σε αυτό το πλαίσιο, οι αλληλεπιδράσεις του χρήστη μεταφράζονται σε

αποδοτικούς χωρικούς τελεστές. Τέλος, προκειμένου να είναι εφικτή η οπτικοποίηση πολύ
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μεγάλων γράφων, μια προσέγγιση η οποία βασίζεται σε κατάτμηση εισάγεται.

΄Οσον αφορά στο τρίτο μέρος εργασιών, αντικείμενο έρευνας αποτέλεσε η σημασιολογι-

κή ανάλυση δεδομένων, όπου μελετήθηκαν τα ακόλουθα προβλήματα. Αρχικά μελετήθηκε

το πρόβλημα της ενοποίησης μεταξύ του Σημασιολογικού και του XML περιβάλλοντος. Για
το πρόβλημα αυτό, παρουσιάζεται ένα διαλειτουργικό πλαίσιο το οποίο προσφέρει δυνατότητες

μετάφρασης ερωτήσεων καθώς και αντιστοίχισης και μετασχηματισμού σχημάτων. Πιο συγκε-

κριμένα παρουσιάζονται: ένα μοντέλο για την διατύπωση αντιστοιχίσεων μεταξύOWL-RDF/S
και XML Schema, μια μέθοδος για την μετάφραση SPARQL ερωτήσεων σε XQuery, καθώς
και ένα μοντέλο για τον μετασχηματισμό XML Schemas σε OWL οντολογίες. Το δεύτερο
πρόβλημα αφορά στη χρήση της σημασιολογίας στην επισημείωση και ανάκτηση εγγράφων.

Για το πρόβλημα αυτό προτείνεται ένα σημασιολογικό μοντέλο επισημειώσεων, καθώς και μια

μέθοδο εκμάθησης για τη σύσταση επισημειώσεων. Τέλος, παρουσιάζεται μια αποτελεσματική

μέθοδος ανάκτησης, η οποία εμπλουτίζει τεχνικές ανάκτηση πληροφορίας με σημασιολογία.

Στο τελευταίο πρόβλημα, μελετάται η μοντελοποίηση και η εξερεύνηση εξελισσόμενων δεδο-

μένων, υιοθετώντας τεχνικές Διασυνδεμένων Δεδομένων (Linked Data). Αποτέλεσμα αυτής
της μελέτης είναι η περιγραφή ενός μοντέλου αλλαγών βασισμένο σε RDF, καθώς και η α-
νάπτυξη υποδομής Διασυνδεμένων Δεδομένων, η οποία επιτρέπει την διερεύνηση και ανάκτηση

εξελισσόμενων δεδομένων.
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Chapter 1

Introduction

Volume, Variety, and Velocity are the three main characteristics that are commonly used
to describe Big Data era. In this context, several challenges emerge for the today’s systems
which should be able to effectively handle massive amounts of data in real time. Further-
more, modern systems have to operate in highly heterogeneous environments which are
characterized by different users (e.g., interests, skills, characteristics) which work on a
plethora of different scenarios and generate, explore and analyse data in different forms.

In the described setting, a large number of tasks related to data management and
analysis are remarkably challenging for both users and systems. In what follows, we discuss
the adoption of personalization, exploration and semantic techniques towards facilitating
a series of tasks in the context of Big Data management and analysis, as well as describing
major challenges of the respective settings.

The large volume of data in conjunction with the diverse users and scenarios make it
extremely difficult for users to discover useful information according to their interests and
needs. In this context, the adoption of personalization techniques is a fundamental part in
the development of modern systems. Personalization techniques attempt to provide per-
sonalized services by exploiting users’ profiles, preferences, interests, etc. Personalization
systems help users to retrieve, organize and manage information, as well as to customize
their overall experience, based on their preferences and the needs emerged by their usage
context. Further, they allow service providers to increase their customer numbers, by
improving user user experience and satisfaction.

Therefore, the need for methods that provide personalized services to users is ever
increasing. Personalization techniques should be applicable to an even broader range of
real-life applications. Particularly, such techniques should be able to consider various and
complex types of objects, their relations, as well as possible existing schemas that describ-
ing them. Further, personalization systems should be able to address more complex tasks,
such as scenarios where the systems should offer personalized services to groups of users.
In this setting, personalization should take into account all users’ information in order
conclude to a result. Regarding performance, such methods should be able to efficiently
handle very large numbers of both objects and users, where the users’ information (e.g.,
preferences, needs, context) is constantly modified.

Another complementary direction towards improving user experience, consists in en-
abling users to effectively explore and analyse large and complex sets of data. The purpose
of data exploration is to facilitate information perception and manipulation, knowledge ex-
traction and inference. Exploratory systems are of great importance in nowadays’ era, in
which the volume and heterogeneity of available information make it extremely difficult
for humans to explore and analyse data. The visualization techniques adopted by the ma-
jority of modern exploratory systems, provides users with an intuitive means to explore
the content of the data, identify interesting patterns, infer correlations and causalities,
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and supports sense-making activities that are not always possible with traditional data
analysis techniques.

Exploration and visualization systems should be able to effectively handle billion ob-
jects datasets in real time. Further, modern systems should address issues related to visual
presentation and user comprehension, such as overploting. Visualizing a large number of
data objects is a challenging task; modern systems have to “squeeze a billion records into
a million pixels”. Finally, the requirement of scalable exploration must be coupled with
the diversity of preferences and requirements posed by different users and tasks. There-
fore, the systems should provide the user with the ability to customize the exploration
experience based on her preferences and the requirements posed by the examined task.

Beyond the challenges emerged by the variety of users, tasks and contexts, additional
challenges are posed by the variety that characterize today’s data, systems and tech-
nologies. Thus, offering uniform access to heterogeneous data sources, and establishing
interoperability between different systems and technologies, are of a great importance.
Such challenges have lead to the development of the Semantic Web (SW) vision, which
can be assumed as a collaborative environment where systems use and share data trans-
parently. Semantics allow information to be described in a formal and explicit manner,
where complex relations and concepts can be defined. The use of semantics can signifi-
cantly improve systems’ effectiveness in searching, sharing, and combining information in
several application areas.

The SW is an open environment comprised of hundreds of large interlinked, and, often,
user contributed datasets. It is founded on semantic technologies and standards for Web
information representation and management. Since the SW applications and services have
to coexist and interoperate with the existing applications that access legacy systems, it
is essential for its infrastructure to enable transparent access to information stored in
heterogeneous data sources. Additionally, SW users should not consider different data
models, languages and technologies for developing their applications or accessing data
sources. Therefore, it is crucial to develop methods that will provide interoperability
between different infrastructures, as well as facilitate transparent access over heterogeneous
data sources.

1.1 Contributions

This dissertation presents novel methods for managing and analysing data. Our work
comprises three complementary directions towards facilitating Big Data management and
analysis. Specifically, in the first direction, we propose scalable methods for preference-
aware data management and analysis. In the second direction we implement techniques for
efficient exploration and visualization over large sets of numeric, temporal and graph data.
Finally, we propose methods for semantic-based data integration, access and retrieval. Our
contributions include the following.

1. Considering a group of users, each specifying individual preferences over objects’ at-
tributes, we study the problem of finding and ranking the objects that are preferable
by all users. We introduce and propose an objective and fair interpretation of this
problem, based on Pareto-based aggregation. Considering this interpretation, we
study three related problems. The first is to find the set of objects that are unan-
imously considered ideal by the entire group. In the second problem, we relax the
requirement for unanimity and only require a percentage of users to agree. Then,
in the third problem, we devise an effective ranking scheme based on our Pareto-
based aggregation framework. To increase the efficiency when dealing with cate-
gorical attributes, we introduce an elegant transformation of categorical attribute
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values into numerical values, which exhibits certain nice properties and allows us to
use well-known index structures. Based on this transformation, we propose index-
based algorithms which employ a space partitioning index to hierarchically group
objects. Regarding the ranking problem, we theoretically study the behaviour of
our ranking scheme and present a number of theoretical properties satisfied by our
approach. Several interesting extensions of the aforementioned problems have also
been studied, involving the following issues: multi-values attributes, non-tree hi-
erarchies, subspace indexing, and objective attributes. A thorough experimental
evaluation validates the efficiency and the effectiveness of the proposed methods.
Particularly, our index-based techniques are an order of magnitude faster than base-
line approaches, scaling up to millions of objects and thousands of users. Finally,
our ranking scheme outperforms traditional rank aggregation methods in terms of
precision and recall. The methods discussed and the results obtained can be found
in [72, 71].

2. Skyline queries return the set of non-dominated objects, where an object is dom-
inated, if there exists another with better values on all attributes. Considering
the skyline problem, we thoroughly study some of the most well-known skyline al-
gorithms. Although the studied algorithms are specifically designed to operate in
external memory, little attention has been given to important implementation and
design details, regarding memory and object management. For example, all al-
gorithms assume that the unit of transfer during an I/O operation is the object,
whereas in a real system is the block, i.e., a set of objects. Our work addresses
such shortcomings by appropriately adapting the algorithms based on a realistic
I/O model that better captures performance in a real system. Furthermore, we
thoroughly study the core computational challenge in these algorithms, which is the
management of in-memory objects. In particular, we introduce various policies for
two basic tasks: traversing and evicting in-memory objects. Both tasks can have
significant consequences for the number of required I/Os and for the CPU time. For
the studied algorithms, we experimentally evaluate real disk-based implementations,
rather than simulations, and derive useful conclusions for synthetic and real datasets.
Particularly, we demonstrate that, in many cases and contrary to common belief,
algorithms that pre-process (typically sort) the database are not faster. Finally, we
perform an extensive study of our proposed policies, and reach the conclusion that
in some settings (dimensionality and dataset distribution) these policies can reduce
the number of dominance checks by more than 50%. The methods discussed and
the results obtained have been published in [79].

3. We study the problem of on-the-fly visual exploration over large sets of data. As
a result, we propose a framework that offers personalized multilevel exploration
and analysis over numeric and temporal data. Our framework is built on top of
a lightweight tree-based structure. This structure aggregates input objects into a
hierarchical multilevel model. We define two versions of this model, that adopt
different data organization approaches, well-suited to exploration and analysis con-
text. When user preferences are not available, a method that considers input data
characteristics, as well as environment settings (i.e., screen resolution, visualization
parameters) estimates the best-fit parameters for hierarchy construction. On top of
our model, we define different exploration scenarios, assuming various user explo-
ration preferences. In order to enable efficient exploration over large datasets, our
framework offers incremental hierarchy construction and prefetching based on user
interaction. Further, it provides a method which dynamically and efficiently adapts
an existing hierarchy to a new, taking into account a set of user preferences. A
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thorough theoretical analysis, a performance evaluation and a user study, illustrate
the efficiency and the effectiveness of the proposed framework. The framework is
realized in a web-based prototype tool, called synopsViz that offers multilevel visual
exploration and analysis over Linked Data datasets. The methods discussed and the
results obtained can be found in [78, 80, 81].

4. We consider the problem of visualizing and exploring very large graphs. For this
problem we introduce graphVizdb, a novel platform that offers large graph interactive
visualization. The proposed platform is based on a new paradigm to interact with
the visualized graph in a way that is similar to maps exploration. The platform
derives its efficiency from a novel technique for indexing and storing the graph.
The core idea is that in an offline preprocessing phase, the graph is drawn, using
a layout algorithm. After drawing the graph, the coordinates assigned to its nodes
(with respect to a Euclidean plane) are indexed with a spatial data structure, i.e.,
an R-tree, and stored in a database. In runtime, while the user is navigating over
the graph, our system maps user operations into efficient spatial operations (i.e.,
window queries). Based on the coordinates, specific parts of the graph are retrieved
from the database and sent to the user. In order to visualize very large graphs, we
propose a partition-based graph visualization approach. In this setting, the input
graph is divided into a set of smaller sub-graphs, then each sub-graph is visualized,
the resulting graphs are organized and combined into a single graph. The sub-
graphs are organized and combined based on a greedy algorithm that attempts to
improve (e.g., minimize edges length, avoid overlaps) the resulting graph layout. We
evaluate the performance of our methods using several real graph datasets. Our
platform can offer efficient visual exploration over very large graphs (e.g., 300M
edges/nodes) using commodity hardware. Finally, we develop a web-based prototype
which supports four main operations: interactive navigation, multilevel exploration,
subgraph management, and keyword search. The methods discussed and the results
obtained have been published in [77, 76].

5. We study the problem of interoperability between the XML and Semantic Web
worlds. As a result, we propose the SPARQL2XQuery framework which bridges
the heterogeneity gap and creates an interoperable environment. The framework
allows SPARQL queries posed over semantic sources to be automatically translated
to XQuery expressions w.r.t. a set of predefined mappings. In more detail, we define
a mapping model for the expression of OWL–RDF/S to XML Schema mappings,
as well as a method for SPARQL to XQuery translation. Further, our framework
supports both manual and automatic mapping specification between ontologies and
XML Schemas. In the automatic mapping specification scenario, a transformational
model which transforms XML Schemas into OWL ontologies has been defined, sup-
porting the latest versions of the schema standards (i.e., XML Schema 1.1 and
OWL 2). A thorough experimental evaluation has been conducted in order to
demonstrate the efficiency of the proposed methods. The methods discussed and
the results obtained can be found in [85, 82, 83, 353, 74, 75].

6. We consider the problem of semantic information retrieval. For this purpose, we
propose the GoNTogle framework that supports ontology-based annotation and re-
trieval, in a fully collaborative environment. The framework provides both man-
ual and automatic annotation mechanisms. Automatic annotation is based on a
learning method that exploits user annotation history and textual information to
automatically recommend annotations for new documents. Further, we introduce a
hybrid retrieval method that provides a flexible combination of textual-based and
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semantic-based retrieval in conjunction with advanced semantic-based operations.
The proposed methods are implemented in a fully functional tool and their effective-
ness is experimentally validated. The methods discussed and the results obtained
have been published in [73, 183].

7. We consider the problem of modeling, publishing and exploring evolving life science
data, adopting the Linked Data paradigm. We propose an RDF-based change model
to capture versioned entities. Based on this model we convert legacy data from
biological databases to evolving Linked Data. Our Linked Data infrastructure can
assist biologists to explore biological entities and their evolution, and provides a
SPARQL endpoint for applications and services to query historical miRNA data
and track changes, their causes and effects. Our methods have been published in
[142].

Table 1.1: Thesis overview

Part Problem Ch./Sec. Results

I: Personalized
Preferable Objects under Group Preferences 2 [72, 71]

External Memory Skyline Algorithms 3 [79]

II: Exploratory
Efficient Multilevel Exploration 4.1 [78, 80, 81]

Scalable Graph Exploration 4.2 [77, 76]

III: Semantic

XML & Semantic Web Interoperability 5 [85, 82, 83, 353, 74, 75]

Semantic Information Retrieval 6.1 [73, 183]

Publishing & Exploring Evolving Linked Data 6.2 [142]

1.2 Outline

The thesis is organized into three main parts: (I) Personalized, (II) Exploratory, and
(III) Semantic data analysis. We summarize the thesis structure as well as the results in
Table 1.1. Further, Figure 1.1 illustrates the relations between the examined problems
and the three main research areas.

1 2

3

4 5

6

7

3 Multilevel Exploration

4 Graph Exploration

5 XML vs. Semantic Web

6 Semantic Information Retrieval 

7 Publish & Explore Evolving LD

2 Skyline Algorithms

1 Group Preferences

Problems

SemanticExploration

Personalization

Figure 1.1: Problems vs. Research areas
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In more detail, the remainder of this thesis is structured as follows. Chapter 2 presents
our methods for finding and ranking objects considering preferences from a group of users.
Chapter 3 studies external memory skyline algorithms. Chapter 4 presents our approaches
on visual exploration and analysis over large sets of data. Chapter 5 presents our methods
for establishing interoperability between the XML and Semantic Web worlds. Chapter 6
introduces our approaches for semantic exploration and retrieval. Finally, Chapter 7 con-
cludes the discussion of this thesis summarizing its contributions, and presents possible
extensions and ideas for future work.
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Part I

Personalized Data Analysis
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Chapter 2

Preferable Objects under Group
Preferences

Considering a group of users, each specifying individual preferences over categorical at-
tributes, the problem of determining a set of objects that are objectively preferable by
all users is challenging on two levels. First, we need to determine the preferable objects
based on the categorical preferences for each user, and second we need to reconcile possible
conflicts among users’ preferences. A naive solution would first assign degrees of match
between each user and each object, by taking into account all categorical attributes, and
then for each object combine these matching degrees across users to compute the total
score of an object. Such an approach, however, performs two series of aggregation, among
categorical attributes and then across users, which completely obscure and blur individual
preferences. Our solution, instead of combining individual matching degrees, is to directly
operate on categorical attributes, and define an objective Pareto-based aggregation for
group preferences. Building on our interpretation, we tackle two distinct but relevant
problems: finding the Pareto-optimal objects, and objectively ranking objects with re-
spect to the group preferences. To increase the efficiency when dealing with categorical
attributes, we introduce an elegant transformation of categorical attribute values into nu-
merical values, which exhibits certain nice properties and allows us to use well-known
index structures to accelerate the solutions to the two problems. In fact, experiments on
real and synthetic data show that our index-based techniques are an order of magnitude
faster than baseline approaches, scaling up to millions of objects and thousands of users.

2.1 Introduction

Recommender systems have the general goal of proposing objects (e.g., movies, restau-
rants, hotels) to a user based on her preferences. Several instances of this generic problem
have appeared over the past few years in the Information Retrieval and Database com-
munities; e.g., [20, 215, 92, 355]. More recently, there is an increased interest in group
recommender systems, which propose objects that are well-aligned with the preferences
of a set of users [219, 284, 108, 97]. Our work deals with a class of these systems, which
we term Group Categorical Preferences (GCP), and has the following characteristics. (1)
Objects are described by a set of categorical attributes. (2) User preferences are defined
on a subset of the attributes. (3) There are multiple users with distinct, possibly con-
flicting, preferences. The GCP formulation may appear in several scenarios; for instance,
colleagues arranging for a dinner at a restaurant, friends selecting a vacation plan for a
holiday break.

To illustrate GCP, consider the following example. Assume that three friends in New
York are looking for a restaurant to arrange a dinner. Suppose that, the three friends
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Table 2.1: New York restaurants

Attributes

Restaurant Cuisine Attire Place Price Parking

o1 Eastern Business casual Clinton Hill $$$ Street
o2 French Formal Time Square $$$$ Valet
o3 Brazilian Smart Casual Madison Square $$ No
o4 Mexican Street wear Chinatown $ No

Table 2.2: User preferences

Preferences

User Cuisine Attire Place Price Parking

u1 European Casual Brooklyn $$$ Street
u2 French, Chinese – – – Valet
u3 Continental – Time Square, Queens – –

are going to use a Web site (e.g., Yelp1) in order to search and filter restaurants based on
their preferences. Note that in this setting, as well as in other Web-based recommendation
systems, categorical description are prevalent compared to numerical attributes. Assume
a list of available New York restaurants, shown in Table 2.1, where each is characterized
by five categorical attributes: Cuisine, Attire, Place, Price and Parking. In addition,
Figure 2.1 depicts the hierarchies for these attributes. Attire and Parking are three-
level hierarchies, Cuisine and Place are four-level hierarchies, and Price (not shown in
Figure 2.1) is a two-levels hierarchy with four leaf nodes ($, ...,$$$$). Finally, Table 2.2
shows the three friends’ preferences. For instance, u1 prefers European cuisine, likes to
wear casual clothes, and prefers a moderately expensive ($$$) restaurant in the Brooklyn
area offering also street parking. On the other hand, u2 likes French and Chinese cuisine,
and prefers restaurants offering valet parking, without expressing any preference on attire,
price and place.

Observe that if we look at a particular user, it is straightforward to determine his ideal
restaurant. For instance, u1 clearly prefers o1, while u2 clearly favors o2. These conclusions
per user can be reached using the following reasoning. Each preference attribute value
uj .Ak is matched with the corresponding object attribute value oi.Ak using a matching
function, e.g., the Jaccard coefficient, and a matching degree per preference attribute is
derived. Given these degrees, the next step is to “compose” them into an overall matching
degree between a user uj and an object oi. Note that several techniques are proposed for
“composing” matching degrees; e.g., [284, 283, 237, 355, 122]. The simplest option is to
compute a linear combination, e.g., the sum, of the individual degrees. Finally, alternative
aggregations models (e.g., Least-Misery, Most-pleasure, etc.) could also be considered.

Returning to our example, assume that the matching degrees of user u1 are:
⟨1/2,1/2,1/6,1,1⟩ for restaurant o1, ⟨1/4,0,0,0,0⟩ for o2, ⟨0,1/2,0,0,0⟩ for o3, and
⟨0,0,0,0,0⟩ for o4 (these degrees correspond to Jaccard coefficients computed as explained
in Section 3.2.1). Note that for almost any “composition” method employed (except those
that only, or strongly, consider the Attire attribute), o1 is the most favorable restaurant
for user u1. Using similar reasoning, restaurant o2, is ideal for both users u2, u3.

When all users are taken into consideration, as required by the GCP formulation,
several questions arise. Which is the best restaurant that satisfies the entire group? And
more importantly, what does it mean to be the best restaurant? A simple answer to the
latter, would be the restaurant that has the highest “composite” degree of match to all

1www.yelp.com
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Figure 2.1: Attribute hierarchies

users. Using a similar method as before, one can define a collective matching degree
that “composes” the overall matching degrees for each user. This interpretation, however,
enforces an additional level of “composition”, the first being across attributes, and the
second across users. These compositions obscure and blur the individual preferences per
attribute of each user.

To some extent, the problem at the first “composition” level can be mitigated by
requiring each user to manually define an importance weight among his specified attribute
preferences. On the other hand, it is not easy, if possible at all, to assign weights to users,
so that the assignment is fair. There are two reasons for this. First, users may specify
different sets of preference attributes, e.g., u1 specifies all five attributes, while u2 only
Cuisine and Parking. Second, even when considering a particular preference attribute,
e.g., Cuisine, users may specify values at different levels of the hierarchy, e.g., u1 specifies
a European cuisine, while u2 French cuisine, which is two levels beneath. Similarly, objects
can also have attribute values defined at different levels. Therefore, any “composition”
is bound to be unfair, as it may favor users with specific preferences and objects with
detailed descriptions, and disfavor users with broader preferences and objects with coarser
descriptions. This is an inherent difficulty of the GCP problem.

In this work, we introduce the double Pareto-based aggregation, which provides an
objective and fair interpretation to the GCP formulation without “compositing” across
preference attributes and users. Under this concept, the matching between a user and
an object forms a matching vector. Each coordinate of this vector corresponds to an
attribute and takes the value of the corresponding matching degree. The first Pareto-
based aggregation is defined over attributes and induces a partial order on these vectors.
Intuitively, for a particular user, the first partial order objectively establishes that an
object is better, i.e., more preferable, than another, if it is better on all attributes. Then,
the second Pareto-based aggregation, defined across users, induces the second and final
partial order on objects. According to this order, an object is better than another, if it is
more preferable according to all users.

Based on the previous interpretation of the GCP formulation, we seek to solve two dis-
tinct problems. The first, which we term the Group-Maximal Categorical Objects (GMCO)
problem, is finding the set of maximal, or Pareto-optimal, objects according to the final
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partial order. Note that since this order is only partial, i.e., two objects may not be
comparable, there may exist multiple objects that are maximal; recall, that an object is
maximal if there exists no other object that succeeds it in the order considered. In essence,
it is the fact that this order is partial that guarantees objectiveness. The GMCO problem
has been tackled in our previous work [71].

The second problem, which we term the Group-Ranking Categorical Objects (GRCO)
problem, consists of determining an objective ranking of objects. Recall that the double
Pareto-based aggregation, which is principal in guaranteeing objectiveness, induces only
a partial order on the objects. On the other hand, ranking implies a total order among
objects. Therefore, it is impossible to rank objects without introducing additional ordering
relationships among objects, which however would sacrifice objectiveness. We address this
contradiction, by introducing an objective weak order on objects. Such an order allows
objects to share the same tier, i.e., ranked at the same position, but defines a total order
among tiers, so that among two tiers, it is always clear which is better.

The GMCO problem has at its core the problem of finding maximal elements according
to some partial order. Therefore, it is possible to adapt an existing algorithm to solve the
core problem, as we discuss in Section 2.3.2. While there exists a plethora of main-
memory algorithms, e.g., [251, 63], and more recently of external memory algorithms
(termed skyline query processing methods), e.g., [98, 123, 300], they all suffer from two
performance limitations. First, they need to compute the matching degrees and form the
matching vectors for all objects, before actually executing the algorithm. Second, it makes
little sense to apply index-based methods, which are known to be the most efficient, e.g.,
the state-of-the-art method of [300]. The reason is that the entries of the index depend
on the specific instance, and need to be rebuilt from scratch when the user preferences
change, even though the description of objects persists.

To address these limitations, we introduce a novel index-based approach for solving
GMCO, which also applies to GRCO. The key idea is to index the set of objects that,
unlike the set of matching vectors, remains constant across instances, and defer expensive
computation of matching degrees. To achieve this, we apply a simple transformation of
the categorical attribute values to intervals, so that each object translates to a rectangle
in the Euclidean space. Then, we can employ a space partitioning index, e.g., an R∗-Tree,
to hierarchically group the objects. We emphasize that this transformation and index
construction is a one-time process, whose cost is amortized across instances, since the
index requires no maintenance, as long as the collection of objects persists. Based on the
transformation and the hierarchical grouping, it is possible to efficiently compute upper
bounds for the matching degrees for groups of objects. Therefore, for GMCO, we introduce
an algorithm that uses these bounds to guide the search towards objects that are more
likely to belong to the answer set, avoid computing unnecessary matching degrees.

For the GRCO problem, i.e., finding a (weak) order among objects, there has been
a plethora of works on the related topic of combining/fusing multiple ranked lists, e.g.,
[174, 157, 42, 292, 170, 284]. However, such methods are not suitable for our GCP formu-
lation. Instead, we take a different approach. We first relax the unanimity in the second
Pareto-based aggregation, and require only a percentage p% of users to agree, resulting
in the p-GMCO problem. This introduces a pre-order instead of a partial order, i.e., the
induced relation lacks antisymmetry (an object may at the same time be before and af-
ter another). Then, building on this notion, we define tiers based on p values, and rank
objects according to the tier they belong, which results in an objective weak order. To
support the effectiveness of our ranking scheme, we analyze its behaviour in the context
of rank aggregation and show that it posseses several desirable theoretical properties.
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Table 2.3: Notation
Symbol Description

A, d Set of attributes, number of attributes (∣A∣)
Ak, ∣Ak ∣ Attribute, number of distinct values in Ak

H(Ak), ∣H(Ak)∣ Hierarchy of Ak, number of hierarchy nodes
O, oi Set of objects, an object
U , uj Set of users, a user

oi.Ak, uj .Ak Value of attribute Ak in object oi, user uj
oi.Ik, uj .Ik Interval representation of the value of Ak in oi, uj

mj
i Matching vector of object oi to user uj

mj
i .Ak Matching degree of oi to user uj on attribute Ak

oa ≻ ob Object oa is collectively preferred over ob
T The R∗-Tree that indexes the set of objects

Ni, ei R∗-Tree node, the entry for Ni in its parent node
ei.ptr, ei.mbr The pointer to node Ni, the MBR of Ni

M j
i Maximum matching vector of entry ei to user uj

M j
i .Ak Maximum matching degree of ei to user uj on Ak

Contributions. The main contributions of this work are summarized as follows.

1. We introduce and propose an objective and fair interpretation of group categorical
preference (GCP) recommender systems, based on double Pareto-based aggregation.

2. We introduce three problems in GCP systems, finding the group-maximal objects
(GMCO), finding relaxed group-maximal objects (p-GMCO), and objectively rank-
ing objects (GRCO).

3. We present a method for transforming the hierarchical domain of a categorical at-
tribute into a numerical domain.

4. We propose index-based algorithms for all problems, which employ a space parti-
tioning index to hierarchically group objects.

5. We theoretically study the behaviour of our ranking scheme and present a number
of theoretical properties satisfied by our approach.

6. We present several extensions involving the following issues: multi-values attributes,
non-tree hierarchies, subspace indexing, and objective attributes.

7. We conduct a thorough experimental evaluation using both real and synthetic data.

2.2 Group Categorical Preferences

Table 6.1 shows the most important symbols and their definition. Consider a set of d
categorical attributes A = {A1, . . . , Ad}. The domain of each attribute Ak is a hierarchy
H(Ak). A hierarchy H(Ak) defines a tree, where a leaf corresponds to a lowest-level value,
and an internal node corresponds to a category, i.e., a set, comprising all values within
the subtree rooted at this node. The root of a hierarchy represents the category covering
all lowest-level values. We use the symbol ∣Ak∣ (resp. ∣H(Ak)∣) to denote the number
of leaf (resp. all hierarchy) nodes. With reference to Figure 2.1, consider the “Cuisine”
attribute. The node “Eastern” is a category and is essentially a shorthand for the set
{“Greek”, “Austrian”}, since it contains the two leaves, “Greek” and “Austrian”.

Assume a set of objects O. An object oi ∈ O is defined over all attributes, and the value
of attribute oi.Ak is one of the nodes of the hierarchy H(Ak). For instance, in Table 2.1,
the value of the “Cuisine” attribute of object o1, is the node “Eastern” in the hierarchy
of Figure 2.1.

13



Table 2.4: Matching vectors

User

Restaurant u1 u2 u3

o1 ⟨1/2,1/2,1/6,1,1⟩ ⟨0,1,1,1,0⟩ ⟨0,1,0,1,1⟩
o2 ⟨1/4,0,0,0,0⟩ ⟨1,1,1,1,1⟩ ⟨1/2,1,1,1,1⟩
o3 ⟨0,1/2,0,0,0⟩ ⟨0,1,1,1,0⟩ ⟨0,1,0,1,1⟩
o4 ⟨0,0,0,0,0⟩ ⟨0,1,1,1,0⟩ ⟨0,1,0,1,1⟩

Further, assume a set of users U . A user ui ∈ U is defined over a subset of the attributes,
and for each specified attribute ui.Aj , its value in one of the hierarchy H(Aj) nodes. For
all unspecified attributes, we say that user ui is indifferent to them. Note that, an object
(resp. a user) may has (resp. specify) multiple values for each attribute (see Section 2.6.1).

Given an object oi, a user uj , and a specified attribute Ak, the matching degree

of oi to uj with respect to Ak, denoted as mj
i .Ak, is specified by a matching function

M∶dom(Ak) × dom(Ak)→ [0,1]. The matching function defines the relation between the
user’s preferences and the objects attribute values. For an indifferent attribute Ak of a
user uj , we define mj

i .Ak = 1.

Note that, different matching functions can be defined per attribute and user; for
ease of presentation, we assume a single matching function. Moreover, note that this
function can be any user defined function operating on the cardinalities of intersections
and unions of hierarchy attributes. For example, it can be the Jaccard coefficient, i.e.,

mj
i .Ak = ∣oi.Ak∩uj .Ak ∣

∣oi.Ak∪uj .Ak ∣ . The numerator counts the number of leaves in the intersection,

while the denominator counts the number of leaves in the union, of the categories oi.Ak
and uj .Ak. Other popular choices are the Overlap coefficient:

∣oi.Ak∩uj .Ak ∣
min (∣oi.Ak ∣,∣uj .Ak ∣) , and the

Dice coefficient: 2
∣oi.Ak∩uj .Ak ∣
∣oi.Ak ∣+∣uj .Ak ∣ .

In our running example, we assume the Jaccard coefficient. Hence, the matching degree

of restaurant o1 to user u1 w.r.t. “Attire” is
∣“Business casual”∩“Casual”∣
∣“Business casual”∪“Casual”∣ =

∣{“Business casual”}∣
∣{“Business casual”,“Smart casual”∣ =

1
2 , where we substituted “Casual” with the set {“Business

casual”, “Smart casual”}.

Given an object oi and a user uj , the matching vector of oi to uj , denoted as mj
i , is

a d-dimensional point in [0,1]d, where its k-th coordinate is the matching degree with
respect to attribute Ak. Furthermore, we define the norm of the matching vector to be
∥mj

i ∥ = ∑Ak∈Am
j
i .Ak. In our example, the matching vector of restaurant o1 to user u1 is

⟨1/2,1/2,1/6,1,1⟩. All matching vectors of this example are shown in Table 2.4.

2.3 The Group-Maximal Categorical Objects (GMCO)
Problem

Section 2.3.1 introduces the GMCO problem, and Section 2.3.2 describes a straightforward
baseline approach. Then, Section 2.3.3 explains a method to convert categorical values
into intervals, and Section 2.3.4 introduces our proposed index-based solution.

2.3.1 Problem Definition

We first consider a particular user uj and examine the matching vectors. The first Pareto-
based aggregation across the attributes of the matching vectors, induces the following
partial and strict partial “preferred” orders on objects. An object oa is preferred over ob,
for user uj , denoted as oa ⪰j ob iff for every specified attribute Ak of the user it holds that

mj
a.Ak ≥ mj

b.Ak. Moreover, object oa is strictly preferred over ob, for user uj , denoted as
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oa ≻j ob iff oa is preferred over ob and additionally there exists a specified attribute Ak
such that mj

a.Ak > mj
b.Ak. Returning to our example, consider user u1 and its matching

vector ⟨0,1/2,0,0,0⟩ for o3, and ⟨0,0,0,0,0⟩ for o4. Observe that o3 is strictly preferred
over o4.

We now consider all users in U . The second Pareto-based aggregation across users,
induces the following strict partial “collectively preferred” order on objects. An object oa
is collectively preferred over ob, if oa is preferred over ob for all users, and there exists a
user uj for which oa is strictly preferred over ob. From Table 2.4, it is easy to see that
restaurant o1 is collectively preferred over o3, because o1 is preferred by all three users,
and strictly preferred by user u1.

Given the two Pareto-based aggregations, we define the collectively maximal objects in
O with respect to users U , as the set of objects for which there exists no other object that
is collectively preferred over them. In our running example, o1 and o2 objects are both
collectively preferred over o3 and o4. There exists no object which is collectively preferred
over o1 and o2, and thus are the collectively maximal objects. We next formally define
the GMCO problem.

Problem 1. [GMCO] Given a set of objects O and a set of users U defined over a set
of categorical attributes A, the Group-Maximal Categorical Objects (GMCO) problem
is to find the collectively maximal objects of O with respect to U .

2.3.2 A Baseline Algorithm (BSL)

The GMCO problem can be transformed to a maximal elements problem, or a skyline
query, where the input elements are the matching vectors. Note, however, that the GMCO
problem is different than computing the conventional skyline, i.e., over the object’s at-
tribute values.

The Baseline (BSL) method, whose pseudocode is depicted in Algorithm 1, takes ad-
vantage of this observation. The basic idea of BSL is for each object oi (loop in line 1 )
and for all users (loop in line 2 ), to compute the matching vectors mj

i (line 3 ). Sub-
sequently, BSL constructs a ∣U ∣-dimensional tuple ri (line 4 ), so that its j-th entry is a
composite value equal to the matching vector mj

i of object oi to user uj . When all users
are examined, tuple ri is inserted in the set R (line 5 ).

The next step is to find the maximal elements, i.e., compute the skyline over the records
in R. It is easy to prove that tuple ri is in the skyline of R iff object oi is a collectively
maximally preferred object of O w.r.t. U . Notice, however, that due to the two Pareto-
based aggregations, each attribute of a record ri ∈R is also a record that corresponds to a
matching vector, and thus is partially ordered according to the preferred orders defined in
Section 3.2.1. Therefore, in order to compute the skyline of R, we need to apply a skyline
algorithm (line 6 ), such as [98, 300, 188].

Algorithm 1. BSL

Input: objects O, users U
Output: CM the collectively maximal
Variables: R set of intermediate records

1 foreach oi ∈ O do
2 foreach uj ∈ U do

3 compute mj
i

4 ri[j]←mj
i

5 insert ri into R

6 CM ← SkylineAlgo (R)
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Computational Complexity. The computational cost of BSL is the sum of two parts.
The first is computing the matching degrees, which takes O(∣O∣ ⋅ ∣U ∣) time. The second is
computing the skyline, which requires O(∣O∣2 ⋅ ∣U ∣ ⋅ d) comparisons, assuming a quadratic
time skyline algorithms is used. Therefore, BSL takes O(∣O∣2 ⋅ ∣U ∣ ⋅ d) time.

2.3.3 Hierarchy Transformation

This section presents a simple method to transform the hierarchical domain of a categorical
attribute into a numerical domain. The rationale is that numerical domains can be ordered,
and thus tuples can be stored in multidimensional index structures. The index-based
algorithm of Section 2.3.4 takes advantage of this transformation.

Consider an attribute A and its hierarchy H(A), which forms a tree. We assume that
any internal node has at least two children; if a node has only one child, then this node
and its child are treated as a single node. Furthermore, we assume that there exists an
ordering, e.g., the lexicographic, among the children of any node that totally orders all
leaf nodes.

The hierarchy transformation assigns an interval to each node, similar to labeling
schemes such as [25]. The i-th leaf of the hierarchy (according to the ordering) is assigned
the interval [i−1, i). Then, each internal node is assigned the smallest interval that covers
the intervals of its children. Figure 2.1 depicts the assigned intervals for all nodes in the
two car hierarchies.

Following this transformation, the value on the Ak attribute of an object oi becomes an
interval oi.Ik = [oi.I−k , oi.I+k ). The same holds for a user uj . Therefore, the transformation
translates the hierarchy H(Ak) into the numerical domain [0, ∣Ak∣].

An important property of the transformation is that it becomes easy to compute
matching degrees for metrics that are functions on the cardinalities of intersections or
unions of hierarchy attributes. This is due to the following properties, which use the
following notation: for a closed-open interval I = [α,β), define ∥I∥ = β − α.

Proposition 1. For objects/users x, y, and an attribute Ak, let x.Ik, y.Ik denote the
intervals associated with the value of x, y on Ak. Then the following hold:

(1) ∣x.Ak∣ = ∥x.Ik∥

(2) ∣x.Ak ∩ y.Ak∣ = ∥x.Ik ∩ y.Ik∥

(3) ∣x.Ak ∪ y.Ak∣ = ∥x.Ik∥ + ∥y.Ik∥ − ∥x.Ik ∩ y.Ik∥

Proof. For a leaf value x.Ak, it holds that ∣x.Ak∣ = 1. By construction of the transfor-
mation, ∥x.Ik∥ = 1. For a non-leaf value x.Ak, ∣x.Ak∣ is equal to the number of leaves
under x.Ak. Again, by construction of the transformation, ∥x.Ik∥ is equal to the smallest
interval that covers the intervals of the leaves under x.Ak, and hence equal to ∣x.Ak∣.
Therefore for any hierarchy value, it holds that x.Ak = ∥x.Ik∥.

Then, the last two properties trivially follow. The third holds since
∣x.Ak ∪ y.Ak∣ = ∣x.Ak∣ + ∣y.Ak∣ − ∣x.Ak ∩ y.Ak∣. ∎

2.3.4 An Index-based Algorithm (IND)

This section introduces the Index-based GMCO (IND) algorithm. The key ideas of IND
are: (1) apply the hierarchy transformation, previously described, and index the resulting
intervals, and (2) define upper bounds for the matching degrees of a group of objects, so
as to guide the search and quickly prune unpromising objects.

We assume that the set of objects O and the set of users U are transformed so that
each attribute Ak value is an interval Ik. Therefore, each object (and user) defines a
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Figure 2.2: Transformed objects and users (considering Cuisine & Attire attributes)

(hyper-)rectangle on the d-dimensional cartesian product of the numerical domains, i.e.,
[0, ∣A1∣) × ⋅ ⋅ ⋅ × [0, ∣Ad∣).

Figure 2.2 depicts the transformation of the objects and users shown in Tables 2.1 & 2.2,
considering only the attributes Cuisine and Attire. For instance, object o1 is represented as
the rectangle [4,6)×[2,3) in the “Cuisine”×“Attire” plane. Similarly, user u1 is represented
as two intervals, [2,6), [1,3), on the transformed “Cuisine”, “Attire” axes, respectively.

The IND algorithm indexes the set of objects in this d-dimensional space. In particular,
IND employs an R∗-Tree T [58], which is well suited to index rectangles. Each T node
corresponds to a disk page, and contains a number of entries. Each entry ei comprises (1)
a pointer ei.ptr, and (2) a Minimum Bounding Rectangle (MBR) ei.mbr. A leaf entry ei
corresponds to an object oi, its pointer oi.ptr is null, and ei.mbr is the rectangle defined
by the intervals of oi. A non-leaf entry ei corresponds to a child node Ni, its pointer ei.ptr
contains the address of Ni, and ei.mbr is the MBR of (i.e., the tightest rectangle that
encloses) the MBRs of the entries in Ni.

Due to its enclosing property, the MBR of an entry ei encloses all objects that are
stored at the leaf nodes within the T subtree rooted at node Ni. It is often helpful to
associate an entry ei with all the objects it encloses, and thus treat ei as a group of objects.

Consider a T entry ei and a user uj ∈ U . Given only the information within entry ei,
i.e., its MBR, and not the contents, i.e., its enclosing objects, at the subtree rooted at
Ni, it is impossible to compute the matching vectors for the objects within this subtree.
However, it is possible to derive an upper bound for the matching degrees of any of these
objects.

We define the maximum matching degree M j
i .Ak of entry ei on user uj w.r.t. specified

attribute Ak as the highest attainable matching degree of any object that may reside
within ei.mbr. To do this we first need a way to compute lower and upper bounds on
unions and intersections of a user interval with an MBR.

Proposition 2. Fix an attribute Ak. Consider an object/user x, and let Ix, denote
the interval associated with its value on Ak. Also, consider another object/user y whose
interval Iy on Ak is contained within a range Ry. Given an interval I, δ(I) returns 0 if
I is empty, and 1 otherwise. Then the following hold:

(1) 1 ≤ ∣y.Ak∣ ≤ ∥Ry∥

(2) δ(Ix ∩Ry) ≤ ∣x.Ak ∩ y.Ak∣ ≤ ∥Ix ∩Ry∥

(3) ∥Ix∥ + 1 − δ(Ix ∩Ry) ≤ ∣x.Ak ∪ y.Ak∣ ≤ ∥Ix∥ + ∥Ry∥ − δ(Ix ∩Ry)

Proof. Note that for the object/user y with interval Iy on Ak, it holds that Iy ⊆ Ry.
(1) For the left inequality of the first property, observe that value y.Ak is a node
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that contains at least one leaf, hence 1 ≤ ∣y.Ak∣. Furthermore, for the right inequality,
∣y.Ak∣ = ∥Iy∥ ≤ ∥Ry∥.

(2) For the left inequality of the second property, observe that the value x.Ak ∩ y.Ak
contains either at least one leaf when the intersection is not empty, and no leaf otherwise.
The right inequality follows from the fact that Ix ∩ Iy ⊆ Ix ∩Ry.

(3) For the left inequality of the third property, assume first that Ix ∩ Iy = ∅; hence
δ(Ix ∩Ry) = 0. In this case, it holds that ∥Ix ∪ Iy∥ = ∥Ix∥ + ∥Iy∥. By the first property,
we obtain 1 ≤ ∥Iy∥. Combining the three relations, we obtain the left inequality. Now,
assume that Ix ∩ Iy ≠ ∅; hence δ(Ix ∩ Ry) = 1. In this case, it also holds that ∥Ix∥ ≤
∥Ix ∪ Iy∥, and the left inequality follows.

For the right inequality of the third property, observe that
∥Ix ∪ Iy∥ = ∥Ix∥ + ∥Iy∥ − ∥Ix ∩ Iy∥. By the first property, we obtain
∥Iy∥ ≤ ∥Ry∥, and −∥Ix ∩ Iy∥ ≤ −δ(Ix ∩ Ry), by the second. The right inequality fol-
lows from combining these three relations. ∎

Then, defining the maximum matching degree reduces to appropriately selecting the
lower/upper bounds for the specific matching function used. For example, consider the

case of the Jaccard coefficient,
∣oi.Ak∩uj .Ak ∣
∣oi.Ak∪uj .Ak ∣ . Assume ei is a non-leaf entry, and let ei.Rk

denote the range of the MBR on the Ak attribute. We also assume that uj .Ik and ei.Rk

overlap. Then, we define M j
i .Ak =

∥ei.Rk∩uj .Ik∥
∥uj .Ik∥ , where we have used the upper bound for

the intersection in the enumerator and the lower bound for the union in the denominator,
according to Proposition 2. For an indifferent to the user attribute Ak, we define M j

i .Ak =
1. Now, assume that ei is a leaf entry, that corresponds to object oi. Then the maximum
matching degree M j

i .Ak is equal to the matching degree mj
i .Ak of oi to uj w.r.t. Ak.

Computing maximum matching degrees for other metrics is straightforward. In any
case, the next lemma shows that an appropriately defined maximum matching degree is
an upper bound to the matching degrees of all objects enclosed in entry ei.

Proposition 3. The maximum matching degree M j
i .Ak of entry ei on user uj w.r.t.

specified attribute Ak is an upper bound to the highest matching degree in the group
that ei defines.

Proof. The maximum matching degree is an upper bound from Proposition 2. ∎

In analogy to the matching vector, the maximum matching vector M j
i of entry ei

on user uj is defined as a d-dimensional vector whose k-th coordinate is the maximum

matching degree M j
i .Ak. Moreover, the norm of the maximum matching vector is ∥M j

i ∥ =
∑Ak∈AM

j
i .Ak.

Next, consider a T entry ei and the entire set of users U . We define the score of an
entry ei as score(ei) = ∑uj∈U ∥M j

i ∥. This score quantifies how well the enclosed objects of
ei match against all users’ preferences. Clearly, the higher the score, the more likely that
ei contains objects that are good matches to users.

Algorithm Description. Algorithm 2 presents the pseudocode for IND. The algorithm
maintains two data structures: a heap H which stores T entries sorted by their score, and
a list CM of collectively maximal objects discovered so far. Initially the list CM is empty
(line 1 ), and the root node of the R∗-Tree is read (line 2 ). The score of each root entry
is computed and all entries are inserted in H (line 3 ). Then, the following process (loop
in line 4 ) is repeated as long as H has entries.

The H entry with the highest score, say ex, is popped (line 5 ). If ex is a non-leaf entry
(line 6 ), it is expanded, which means that the node Nx identified by ex.ptr is read (line
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Algorithm 2. IND

Input: R∗-Tree T , users U
Output: CM the collectively maximal
Variables: H a heap with T entries sorted by score()

1 CM ← ∅

2 read T root node
3 insert in H the root entries
4 while H is not empty do
5 ex ← pop H
6 if ex is non-leaf then
7 Nx ← read node ex.ptr
8 foreach ei ∈ Nx do
9 pruned← false

10 foreach uj ∈ U do

11 compute M j
i

12 foreach oa ∈ CM do

13 if ∀Aj ∶m
j
a⪰M

j
i ∧ ∃Ak ∶m

k
a≻M

k
i then

14 pruned← true
15 break

16 if not pruned then
17 insert ei in H

18 else
19 ox ← ex
20 result← true
21 foreach oa ∈ CM do
22 if oa ≻ ox then
23 result← false
24 break

25 if result then
26 insert ox in CM

7 ). For each child entry ei of Nx (line 8 ), its maximum matching degree M j
i with respect

to every user uj ∈ U is computed (lines 10–11 ). Then, the list CM is scanned (loop in
line 12 ). If there exists an object oa in CM such that (1) for each user uj , the matching

vector mj
a of oa is better than M j

i , and (2) there exists a user uk so that the matching
vector mk

a of oa is strictly better than Mk
i , then entry ei is discarded (lines 13–15 ). It is

straightforward to see (from Proposition 3) that if this condition holds, ei cannot contain
any object that is in the collectively maximal objects, which guarantees IND’ correctness.
When the condition described does not hold (line 16 ), the score of ei is computed and ei
is inserted in H (line 17 ).

Now, consider the case that ex is a leaf entry (line 18 ), corresponding to object ox (line
19 ). The list CM is scanned (loop in line 21 ). If there exists an object that is collectively
preferred over ox (line 22 ), it is discarded. Otherwise (line 25–26 ), ox is inserted in CM .

The algorithm terminates when H is empty (loop in line 4 ), at which time the list
CM contains the collectively maximal objects.

Computational Analysis. IND performs object to object comparisons as well as object
to non-leaf entries. Since there are at most ∣O∣ non-leaf entries, IND performs O(∣O∣2 ⋅∣U ∣⋅d)
comparisons in the worst case. Further it computes matching degrees on the fly at a cost
of O(∣O∣ ⋅ ∣U ∣). Overall, IND takes O(∣O∣2 ⋅ ∣U ∣ ⋅ d) time, the same as BSL. However, in
practice IND is more than an order of magnitude faster than BSL (see Section 2.7).
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Example. We demonstrate IND, using our running example, as depicted in Figure 2.2.
The four objects are indexed by an R∗-Tree, whose nodes are drawn as dashed rectangles.
Objects o1, o2 are grouped in entry eb, while o3, o4 in entry ec. Entries eb and ec are the
entries of the root ea. Initially, the heap contains the two root entries, H = {eb, ec}. Entry
eb has the highest score (the norm of its maximum matching vector is the largest), and is
thus popped. The two child entries o1 and o2 are obtained. Since the list CM is empty,
no child entry is pruned and both are inserted in the heap, which becomes H = {o1, o2, ec}.
In the next iteration, o2 has the highest score and is popped. Since this is a leaf entry, i.e.,
an object, and CM is empty, o2 is inserted in the result list, CM = {o2}. Subsequently, o1

is popped and since o2 is not collectively preferred over it, o1 is also placed in the result
list, CM = {o2, o1}. In the final iteration, entry ec is popped, but the objects in CM are
collectively preferred over both ec child. Algorithm IND concludes, finding the collectively
maximal CM = {o2, o1}.

2.4 The p-Group-Maximal Categorical Objects (p-GMCO)
Problem

Section 2.4.1 introduces the p-GMCO problem, and Section 2.4.2 presents an adaptation
of the BSL method, while Section 2.4.3 introduces an index-based approach.

2.4.1 Problem Definition

As the number of users increases, it becomes more likely that the users express very
different and conflicting preferences. Hence, it becomes difficult to find a pair of objects
such that the users unanimously agree that one is worst than the other. Ultimately,
the number of maximally preferred objects increases. This means that the answer to an
GMCO problem with a large set of users becomes less meaningful.

The root cause of this problem is that we require unanimity in deciding whether an
object is collectively preferred by the set of users. The following definition relaxes this
requirement. An object oa is p-collectively preferred over ob, denoted as oa ≻p ob, iff there
exist a subset Up ⊆ U of at least ⌈ p

100 ⋅ ∣U ∣⌉ users such that for each user ui ∈ Up oa is
preferred over ob, and there exists a user uj ∈ Up for which oa is strictly preferred over
ob. In other words, we require only p% of the users votes to decide whether an object
is universally preferred. Similarly, the p-collectively maximal objects of O with respect
to users U , is defined as the set of objects in O for which there exists no other object
that is p-collectively preferred over them. The above definitions give rise to the p-GMCO
problem.

Problem 2. [p-GMCO] Given a set of objects O and a set of users U defined over
a set of categorical attributes A, the p-Group-Maximal Categorical Objects (p-GMCO)
problem is to find the p-collectively maximal objects of O with respect to U .

Following the definitions, we can make a number of important observations, similar to
those in the k-dominance notion [112]. First, if an object is collectively preferred over some
other object, it is also p-collectively preferred over that same object for any p. As a result,
an object that is p-collectively maximal is also collectively maximal for any p. In other
words, the answer to the p-GMCO problem is a subset of the answer to the corresponding
GMCO.

Second, consider an object o that is not p-collectively maximal. Note that it is possible
that no p-collectively maximal object is p-collectively preferred over o. As a result checking
if o is a result by considering only the p-collectively maximal objects may lead to false
positives. Fortunately, it holds that there must exist a collectively maximal object that
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is p-collectively preferred over o. So it suffices to check o against the collectively maximal
objects only (and not just the subset that is p-collectively maximal).

Example. Consider the example in Tables 2.1 & 2.2. If we consider p = 100, we require all
users to agree if an object is collectively preferred. So, the 100-collectively maximal objects
are the same as the collectively maximal objects (i.e., o1, o2). Let’s assume that p = 60;
i.e., ⌈ 60

100 ⋅3⌉ = 2 users. In this case, only the restaurant o2 is 60-collectively maximal, since,
o2 is 60-collectively preferred over o1, if we consider the set of users u2 and u3. Finally, if
p = 30, we consider only one user in order to decide if an object is collectively preferred. In
this case, the 30-collectively maximal is an empty set, since o2 is 30-collectively preferred
over o1, if we consider either user u2 or u3, and also o1 is 30-collectively preferred over o2,
if we consider user u1.

2.4.2 A Baseline Algorithm (p-BSL)

Based on the above observations, we describe a baseline algorithm for the p-GMCO prob-
lem, based on BSL. Algorithm 3 shows the changes with respect to the BSL algorithm;
all omitted lines are identical to those in Algorithm 1. The p-BSL algorithm first com-
putes the collectively maximal objects applying BSL (lines 1–6 ). Then, each collectively
maximal object, is compared with all other collectively maximal objects (lines 7–14 ).
Particularly, each object oi is checked whether there exists another object in CM that
is p-collectively preferred over oi (lines 10–12 ). If there is no such object, object oi is
inserted in p-CM (line 14 ). When the algorithm terminates, the set p-CM contains the
p-collectively maximal objects.

Algorithm 3. p-BSL

Input: objects O, users U
Output: p-CM the p-collectively maximal
Variables: CM the collectively maximal

⋮

7 foreach oi ∈ CM do
8 inpCM ← true
9 foreach oj ∈ CM/oi do

10 if oj ≻p oi then
11 inpCM ← false
12 break;

13 if inpCM then
14 insert oi to p-CM

Computational Analysis. Initially, the algorithm is computing the collectively maximal
set using the BSL algorithm (lines 1–6 ), which requires O(∣O∣2 ⋅ ∣U ∣ ⋅ d). Then, finds
the p-collectively maximal objects (lines 7–14 ), performing in the worst case O(∣O∣2)
comparisons. Since, in worst case we have that ∣CM ∣ = ∣O∣. Therefore, the computational
cost of Algorithm 3 is O(∣O∣2 ⋅ ∣U ∣ ⋅ d).

2.4.3 An Index-based Algorithm (p-IND)

We also propose an extension of IND for the p-GMCO problem, termed p-IND. Algorithm 4
shows the changes with respect to the IND algorithm; all omitted lines are identical to
those in Algorithm 2.

In addition to the set CM , p-IND maintains the set p-CM of p-collectively maximal
objects discovered so far (line 1 ). It holds that p-CM ⊆ CM ; therefore, an object may
appear in both sets. When a leaf entry ox is popped (line 19 ), it is compared against
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Algorithm 4. p-IND

Input: R∗-Tree T , users U
Output: p-CM the p-collectively maximal
Variables: H a heap with T entries sorted by score(), CM the collectively maximal object

1 CM ← ∅; p-CM ← ∅
⋮

4 while H is not empty do
⋮

18 else
19 ox ← ex
20 inCM ← true; inpCM ← true
21 foreach oa ∈ CM do
22 if oa ≻ ox then
23 inCM ← false
24 break

25 if inpCM then
26 if oa ≻p ox then
27 inpCM ← false

28 if oa ∈ p-CM then
29 if ox ≻p oa then
30 remove oa from p-CM

31 if inCM then
32 insert ox to CM
33 if inpCM then
34 insert ox to p-CM

each object oa in CM (lines 21–30 ) in three checks. First, the algorithm checks if oa is
collectively preferred over ox (lines 22–24 ). In that case, object ox is not in the CM and
thus not in the p-CM . Second, it checks if oa is p-collectively preferred over ox (lines 25–
27 ). In that case, object ox is not in the p-CM , but is in the CM . Third, the algorithm
checks if the object ox is p-collectively preferred over oa (lines 28–30 ). In that case, object
oa is removed from the p-collectively maximal objects (line 30 ), but remains in CM .

After the three checks, if ox is collectively maximal (line 31 ) it is inserted in CM (line
32 ). Further, if ox is p-collectively maximal (line 33 ) it is also inserted in p-CM (line
34 ). When the p-IND algorithm terminates, the set p-CM contains the answer to the
p-GMCO problem.

Computational Analysis. p-IND performs at most 3 times more object to object com-
parisons than IND. Hence its running time complexity remains O(∣O∣2 ⋅ ∣U ∣ ⋅ d).

2.5 The Group-Ranking Categorical Objects (GRCO)
Problem

Section 2.5.1 introduces the GRCO problem, and Section 2.5.2 describes an algorithm for
GRCO. Then, Section 2.5.3 discusses some theoretical properties of our proposed ranking
scheme.

2.5.1 Problem Definition

As discussed in Section 2.1, it is possible to define a ranking among objects by “composing”
the degrees of match for all users. However, any “compositing” ranking function is unfair,
as there is no objective way to aggregate individual degrees of match. In contrast, we
propose an objective ranking method based on the concept of p-collectively preference.
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The obtained ranking is a weak order, meaning that it is possible for objects to share
the same rank (ranking with ties). We define the rank of an object o to be the smallest
integer τ , where 1 ≤ τ ≤ ∣U ∣, such that o is p-collectively maximal for any p ≥ τ

∣U ∣ ⋅ 100. The

non-collectively maximal objects are assigned the lowest possible rank ∣U ∣+ 1. Intuitively,
rank τ for an object o means that any group U ′ ⊆ U of at least τ users (i.e., ∣U ′∣ ≥ τ) would
consider o to be preferable, i.e., o would be collectively maximal for these U ′ users. At the
highest rank 1, an object o is preferred by each user individually, meaning that o appears
in all possible p-collectively maximal object sets.

Problem 3. [GRCO] Given a set of objects O and a set of users U defined over a set
of categorical attributes A, the Group-Ranking Categorical Objects (GRCO) problem is
to find the rank of all collectively maximal objects of O with respect to U .

Example. Consider the restaurants and the users presented in Tables 2.1 & 2.2. In our
example, the collectively maximals are the restaurants o1 and o2. As described in the
previous example (Section 2.4), the restaurant o2 is collectively maximal for any group of
two users. Hence, the rank for the restaurant o2 is equal to two. In addition, o1 requires
all the three users in order to be considered as collectively maximal; so its rank is equal
to three. Therefore, the restaurant o2 is ranked higher than o1.

2.5.2 A Ranking Algorithm (RANK-CM)

The RANK-CM algorithm (Algorithm 5), computes the rank for all collectively maximal
objects. The algorithm takes as input, the collectively maximal objects CM , as well as the
number of users ∣U ∣. Initially, in each object is assigned the highest rank; i.e., rank(oi)← 1
(line 2 ). Then, each object is compared against all other objects in CM (loop in line 3 ).
Throughout the objects comparisons, we increase τ (lines 5–11 ) from the current rank
(i.e., rank(ox)) (line 4 ) up to ∣U ∣. If oi is not p-collectively maximal (line 7 ), for p = τ

∣U ∣ ⋅100

(line 6 ), then ox cannot be in the p-CM and can only have rank at most τ + 1 (line 8 ).
Finally, each object is inserted in the rCM based on its rank (line 12 ).

Algorithm 5. RANK-CM

Input: CM the collectively maximal objects, ∣U ∣ the number of users
Output: rCM the ranked collectively maximal objects

1 foreach oi ∈ CM do
2 rank(oi)← 1
3 foreach oj ∈ CM/oi do
4 τ ← rank(oi)
5 while τ ≤ ∣U ∣ − 1 do
6 p← τ

∣U ∣
⋅ 100

7 if oj ≻p oi then
8 rank(oi) = τ + 1
9 else

10 break;

11 τ ← τ + 1

12 insert oi in rCM at rank(oi)

Computational Analysis. The algorithm compares each collective maximal object with
all other collective maximal objects. Between two objects the algorithm performs at most
∣U ∣− 1 comparisons. Since, in worst case we have that ∣CM ∣ = ∣O∣, the computational cost
of Algorithm 5 is O(∣O∣2 ⋅ ∣U ∣).
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2.5.3 Ranking Properties

In this section, we discuss some theoretical properties in the context of the rank aggre-
gation problem. These properties have been widely used in voting theory as evaluation
criteria for the fairness of a voting system [366, 41, 319]. We show that the proposed
ranking scheme satisfies several of these properties.

Property 1. [Majority] If an object is strictly preferable over all other objects by the
majority of the users, then this object is ranked above all other objects.

Proof. Assume that ka users strictly prefer oa over all other objects, where ka > ∣U ∣
2 .

We will prove that the rank ra of the object oa is lower than the rank of any other
object.

Since, ka users strictly prefer oa over all other objects, any group of at least ∣U ∣−ka+1
users, will consider oa as collectively maximal. This holds since, any group of at least
∣U ∣−ka+1 users, contains at least one user which strictly prefers oa over all other objects.
Note that, ∣U ∣−ka + 1 may not be the smallest group size. That is, it may hold that, for
any group of less than ∣U ∣ − ka + 1 users, oa is collectively maximal.

Recall the definition of the ranking scheme, if the rank of an object o is τ , then
τ is the smallest integer that, for any group of at least τ users, o will be collectively
maximal (for this group). Therefore, in any case we have that, the rank ra of oa is at
most ∣U ∣ − ka + 1, i.e., ra ≤ ∣U ∣ − ka + 1 (1).

On the other hand, let an object oi ∈ O/oa. Then, oi is not collectively maximal,

for any group with ∣U ∣ − ka + 1 users. This holds since, we have that ka > ∣U ∣
2 . So, there

is a group of ∣U ∣ − ka + 1 users, for which, each user strictly preferred oa over oi. As a
result, in order for oi to be considered as collectively maximal for any group of a specific
size, we have to consider groups with more than ∣U ∣− ka + 1 users. From the above, it is
apparent that, in any case, the rank ri for an object oi is greater than ∣U ∣ − ka + 1, i.e.,
ri > ∣U ∣ − ka + 1 (2).

Therefore, from (1) and (2), in any case the rank of the object oa will be lower than
the rank of any other object. This concludes the proof of the property. ∎

Property 2. [Independence of Irrelevant Alternatives] The rank of each object
is not affected if non-collectively maximal objects are inserted or removed.

Proof. According to the definition of the ranking scheme, if the rank of an object
o is τ , then τ is the smallest integer that, for any group of at least τ users, o will be
collectively maximal (for this group).

As a result, the rank of an object is specified from the minimum group size, for
which, for any group of that size, the object is collectively maximal. Therefore, it is
apparent that, the rank of each object is not affected by the non-collectively maximal
objects. To note that, the non-collectively maximal objects are ranked with the lowest
possible rank, i.e., ∣U ∣ + 1. ∎

Property 3. [Independence of Clones Alternatives] The rank of each object is
not affected if non-collectively maximal objects similar to an existing object are inserted.

Proof. Similarly to the Property 2. Based on the ranking scheme definition, the
non-collectively maximal objects do not affect the ranking. ∎

Property 4. [Users Equality] The result will remain the same if two users switch
their preferences. This property is also know as Anonymity.

Proof. According to the definition of the ranking scheme, if the rank of an object
o is τ , then τ is the smallest integer that, for any group of at least τ users, o will be
collectively maximal (for this group).
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As a result, the rank of an object is specified from the minimum group size, for
which, for any group of that size, the object is collectively maximal. Hence, if two users
switch preferences, it is apparent that, the minimum group of any users, for which an
object is collectively maximal, remains the same, for all objects. Therefore, the rank of
all objects remains the same. ∎

Let an object oi ∈ O and a user uj ∈ U . Also, let mj
i be the matching vector between

uj and oi. We say that the user uj increases his interest over oi, if ∃Ak ∶mj
i .Ak < m̀

j
i .Ak,

where m̀j
i is the matching degree resulted by the interest change.

Property 5. [Monotonicity] If an object oa is ranked above an object ob, and a user
increases his interest over oa, then oa maintains its position above ob.

Proof. Let ra and rb be the rank of objects oa and ob, respectively. Since, oa is ranked
above the object ob, we have that ra < rb.

According to the definition of the ranking scheme, if the rank of an object o is τ ,
then τ is the smallest integer that, for any group of at least τ users, o will be collectively
maximal (for this group). So, we have that for any group of at least ra and rb members,
oa and ob will be collectively maximal.

Assume a user uj ∈ U increases his interest over the object oa. Further, assume that
r′a and r′b are the new ranks of the objects oa and ob, resulting from the interest change.
We show that in any case r′a ≤ ra and r′b ≥ rb.

First let us study what holds for the new rank of the object oa. After the interest
change, r′a is the smallest group size that oa is collectively maximal for any group of
that size. We suppose for the sake of contradiction that r′a > ra. Hence, after the
interest change, we should consider larger group sizes in order to ensure that oa will
be collectively maximal for any group of that size. This means that, after the interest
change, there is a group of ra users for which oa is not collectively maximal. Hence, since
oa is not collectively maximal, there must exist an object oi ∈ O/oa that is collectively
preferred over oa. To sum up, considering ra users, we have that: before the interest
change, there is no object that is collectively preferred over oa; and, after the interest
change, there is an object that is collectively preferred over oa. This cannot hold, since
the matching degrees between all other users and objects remain the same, while some
matching degrees between oa and uj have increased (due to interest change). So, for
any group of ra users, there cannot exist an object oi which is collectively preferred over
oa. Hence, we proved by contradiction that in any case r′a ≤ ra.

Now, let us study what holds for the new rank of the object ob. After the interest
change, r′b is the smallest group size, that, for any group of that size, ob is collectively
maximal. For the sake of contradiction, we assume that r′b < rb. Hence, after the
interest change, we should consider smaller group sizes, in order to ensure that ob will
be collectively maximal for any group of that size. This means that, before the interest
change, there is a group of r′b users, for which ob is not collectively maximal. Hence,
since ob is not collectively maximal, there must be an object oi ∈ O/ob that is collectively
preferred over ob. To sum up, considering r′b users, we have that: before the interest
change, there is an object that is collectively preferred over ob; and, after the interest
change, there is no object that is collectively preferred over ob. It is apparent that this
also cannot hold. So, we proved by contradiction, that in any case r′b ≥ rb.

We show that, r′a ≤ ra and r′b ≥ rb. Since, ra < rb, in any case the object oa will be
ranked above ob. This concludes the proof. ∎

For some user u, the following property ensures that the result when u participates is
the same or better (w.r.t. u’s preferences) compared to that when u does not participate.
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Property 6. [Participation] Version 1: If the object oa is ranked above the object
ob, then after adding one or more users, which strictly prefer oa over all other objects,
object oa maintains its position above ob.

Version 2: Assume an object oa that is ranked above the object ob, and that there is
at least one user u ∈ U which has not stated any preferences; then if u expresses that
strictly prefers oa over all other objects, object oa maintains its position above ob.

Proof. Version 1: Let ra and rb be the ranks of the objects oa and ob, respectively.
Since, oa is ranked above the object ob, we have that ra < rb.

According to the definition of the ranking scheme, if the rank of an object o is τ ,
then τ is the smallest integer that, for any group of at least τ users, o will be collectively
maximal (for this group). Hence, we have that for any group of at least ra and rb
members, oa and ob will be collectively maximal, respectively.

We assume a new user un, where un ∩ U = ∅. The new user un strictly prefers oa
over all other objects O/oa. For the sake of simplicity, we consider a singe new user;
the proof for more users is similar. The new user set Un is generated by adding the new
user un to the user set U , i.e., Un = U ∪ un.

Let r′a and r′b be the ranks for the objects oa and ob, respectively, for the new user
set Un. We show that, in any case, rank r′a is lower than r′b.

First let us study what holds for the new rank of the object oa. We show that for
any group of ra members from the new user set Un, oa will be collectively maximal. We
assume a set S of ra members from Un; i.e., S ⊆ Un and ∣S∣ = ra. Then, based on the
users contained in S, we have two cases: (a) All users from S initially belong to U ; i.e.,
S ⊆ Un. In this case oa is collectively maximal based on the initial hypothesis. (b) The
new user un is included to S; i.e., un ∈ S. Also in this case oa is collectively maximal,
since for the user un, oa is strictly preferred over all other objects.

Hence, in any case for any group of ra members from Un, oa will be collectively
maximal. Also, depending on U , the minimum size of any group of Un for which oa is
collectively maximal, may be smaller than ra; i.e., r′a ≤ ra. Therefore, we have that in
any case r′a ≤ ra (1).

Now, let’s determine the new rank for the object ob. It easy to verify that, if we
consider groups of less than rb users from Un, then ob cannot be collectively maximal
for any group of that size. Therefore, we have to select groups with equal to or greater
than rb users from Un, in order for any group of that size to consider ob as collectively
maximal. Hence, we have that in any case r′b ≥ rb (2).

Since, ra < rb, for (1) and (2) we have that r′a < r′b. This concludes the proof of
Version 1.

Version 2: The second version can be proved in similar way, since it can be “trans-
formed” into the first version.

Assume we have a user uj ∈ U that has not expressed any preferences. Note that
the following also holds if we have more than one users that have not expressed any
preferences.

In this case, it is apparent that the ranking process “ignores” the user uj . In other
words: let ra and rb be the rank for the objects oa and ob, respectively, when we consider
the set of users U . In addition, let r′a and r′b be the ranks if we consider the users U/uj .
Based on our ranking scheme, it is apparent that, if ra > rb, then r′a > r′b.

In this version of the property, we assume that a user uj has not initially expressed
any preferences. Afterwards, uj states that he strictly prefers oa over any other object.
This scenario is equivalent to the following.

Since, as described above, the rankings are not effected if we remove uj ; we initially
consider the users U/uj . Afterwards, a user that strictly prefers oa over all other objects
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is inserted in the users set U/uj . This is the same as the first version of our property.

Note that, in order for the second version to be considered in our implementation,
we have to modify the initialization of matching vector for the indifferent attributes.
Particularly, the matching vector for indifferent attributes should be setting to 0, instead
of 1. ∎

The following property ensures a low possibility of objects being ranked in the same
position.

Property 7. [Resolvability] Version 1: If two objects are ranked in the same position,
adding a new user can cause an object to be ranked above the other.

Version 2: Assume that two objects are ranked in the same position, and that there is
at least one user u which has not stated any preferences; if u expresses preferences, then
this can cause an object to be ranked above the other.

Proof. Version 1: Assume that we have the objects oa and ob. Let ra and rb be the
rank of objects oa and ob, respectively. Initially, the objects are ranked in the same
position, so we have that ra = rb. In order to prove this property, we consider the
following example.

Assume that we have an object set O and four users U (i.e., ∣U ∣ = 4). For each of the
first two users (i.e., u1 and u2) the object oa is strictly preferred over all other objects
in O.

On the other hand, for each of the users u3 and u4, the object ob is strictly preferred
over the all other objects in O.

So, for the object oa, we have that, for any group of three members, oa will be
collectively maximal. This holds, since at least one of the three members is one of the
first two users (u1 or u2), for which oa is strictly preferred over all other objects. In
addition, it is apparent that three is the smallest size for which, for any group of that
size, oa will be collectively maximal.

According to the definition of the ranking scheme, if the rank of an object o is τ ,
then τ is the smallest integer that, for any group of at least τ users, o will be collectively
maximal (for this group).

As a result, for the rank of oa we have that ra = 3. Using similar reasoning, for the
rank of ob we have that rb = 3. Hence, we have that in our example both objects oa and
ob have the same rank, i.e., ra = rb = 3.

Now lets assume that we add a new user u5, for which the object oa is strictly
preferred over the all other objects in O. So, for the following, we consider the new
users set U ′ that includes the new user u5, i.e., U ′ = U ∪ u5. We show that, considering
the new users set U ′, the new rank r′b of object ob will be greater than the initial rank
rb; and for oa its new rank r′a will be the same as the initial ra rank. Hence, in any case,
if we also consider a new user u5, the objects oa and ob will have different ranks.

Considering the new users U ′, there is a group with three users for which ob is not
collectively maximal. For example, if we select the users u1, u2 and u5, then ob is not
collectively maximal. Hence, in order for ob to be collectively maximal, we have to select
a larger group (at least four users) from U ′. So, four users is the smallest group, for
which for any group of that size, ob will be collectively maximal. As a result, r′b = 4.
Hence, the new rank of the object ob is greater than the initial rank.

Regarding the object oa, for any group of three users from U ′, oa will be collectively
maximal. This hold since, for the three out of the five users (i.e., u1, u2, u5), the object
oa is strictly preferred over all other objects. In addition, three users is the smallest
group, for which for any group of that size, oa will be collectively maximal. Therefore,
the new rank of oa is r′a = 3.
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So, the new ranks after the addition of user u5 will be r′a = 3 and r′b = 4, i.e., the
objects oa and ob will have different ranks. This concludes the proof of Version 1.

Version 2: The second version can be proved in similar way, since it can be “trans-
formed” to the first version as in the proof of Property 6. ∎

Property 8. [Users’ Preferences Neutrality] Users with different number of pref-
erences, or different preference granularity, are equally important.

Proof. It is apparent from the ranking scheme definition that this property holds. ∎

Property 9. [Objects’ Description Neutrality] Objects with different description
(i.e., attributes values) granularity are equal important.

Proof. It is apparent from the ranking scheme definition that this property holds. ∎

2.6 Extensions

Section 2.6.1 discusses the case of multi-valued attributes and Section 2.6.2 the case of
non-tree hierarchies. Section 2.6.3 presents an extension of IND (and thus of p-IND) for
the case when only a subset of the attributes is indexed. Section 2.6.4 discusses semantics
of objective attributes.

2.6.1 Multi-valued Attributes

There exist cases where objects have, or users specify, multiple values for an attribute.
Intuitively, we want the matching degree of an object to a user w.r.t. a multi-valued
attribute to be determined by the best possible match among their values. Note that,
following a similar approach, different semantics can be adopted for the matching degree
of multi-valued attributes. For example, the matching degree of multi-valued attributes
may be defined as the average or the minimum match among their values.

Consider an attribute Ak, an object o and a user u, and also let {o.Ak[i]}, {u.Ak[j]}
denote the set of values for the attribute Ak for object o, user u, respectively. We define the
matching degree of o to u w.r.t. Ak to be the largest among matching degrees computed
over pairs of {o.Ak[i]}, {u.Ak[j]} values. For instance, in case of Jaccard coefficient we

have, m.Ak = maxi,j
∣o.Ak[i]∩u.Ak[j]∣
∣o.Ak[i]∪u.Ak[j]∣ .

In order to extend IND to handle multi-valued attributes, we make the following
changes. We can relate an object ox to multiple virtual objects {ox[i]}, corresponding
to different values in the multi-valued attributes. Each of these virtual objects correspond
to different rectangles in the transformed space. For object ox, the R∗-Tree T contains a
leaf entry ex whose MBR is the MBR enclosing all rectangles of the virtual objects {ox[i]}.
The leaf entry ex also keeps information on how to re-construct all virtual objects. During
execution of IND, when leaf entry ex is de-heaped, all rectangles corresponding to virtual
objects {ox[i]} are re-constructed. Then, object ox is collectively maximal, if there exists
no other object which is collectively preferred over all virtual objects. If this is the case,
then all virtual objects are inserted in the list CM , and are used to prune other entries.
Upon termination, the virtual objects {ox[i]} are replaced by object ox.

2.6.2 Non-Tree Hierarchies

We consider the general case where an attribute hierarchy forms a directed acyclic graph
(dag), instead of a tree. The distinctive property of such a hierarchy is that a category
is allowed to have multiple parents. For example, consider an Attire attribute hierarchy
slightly different than that of Figure 2.1, which also has an new attire category “Sport
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casual”. In this case, the “Sport casual” category will have two parents, “Street wear”
and “Casual”.

In the following, we extend the hierarchy transformation to handle dags. The extension
follows the basic idea of labeling schemes for dags, as presented in [25]. First, we obtain a
spanning tree from the dag by performing a depth-first traversal. Then, we assign intervals
to nodes for the obtained tree hierarchy as in Section 2.3.3. Next for each edge, i.e.,
child to parent relationship, not included in the spanning tree, we propagate the intervals
associated with a child to its parent, merging adjacent intervals whenever possible. In the
end, each node might be associated with more than one interval.

The IND algorithm can be adapted for multi-interval hierarchy nodes similar to how
it can handle multi-valued attributes (Section 2.6.1). That is, an object may be related
to multiple virtual objects grouped together in a leaf entry of the R∗-Tree.

The following properties extend Proposition 1 for the general case of non-tree hierar-
chies.

Proposition 4. For objects/users x, y, and an attribute Ak, let {x.Ik}, {y.Ik} denote
the set of intervals associated with the value of x, y on Ak. Then it holds that:

(1) ∣x.Ak∣ = ∑
Ix∈{x.Ik}

∥Ix∥

(2) ∣x.Ak ∩ y.Ak∣ = ∑
Ix∈{x.Ik}
Iy∈{y.Ik}

∥Ix ∩ Iy∥

(3) ∣x.Ak ∪ y.Ak∣ = ∑
Ix∈{x.Ik}

∥Ix∥ + ∑
Iy∈{y.Ik}

∥Iy∥ − ∑
Ix∈{x.Ik}
Iy∈{y.Ik}

∥Ix ∩ Iy∥

Proof. Regarding the first property, observe that ∣x.Ak∣ = ∥⋃Ix∈{x.Ik} Ix∥ = ∑Ix∈{x.Ik} ∥Ix∥,
since the intervals Ix are disjoint.

Also, ∣x.Ak ∩ y.Ak∣ = ∥(⋃Ix∈{x.Ik} Ix) ∩ (⋃Iy∈{y.Ik} Iy)∥ = ∥⋃Ix∈{x.Ik},Iy∈{y.Ik} Ix ∩ Iy∥
= ∑Ix∈{x.Ik},Iy∈{y.Ik} ∥Ix ∩ Iy∥, since the intervals Ix ∩ Iy are disjoint.

Finally, the third property holds since ∣x.Ak ∪ y.Ak∣ = ∣x.Ak∣ + ∣y.Ak∣− ∣x.Ak ∩ y.Ak∣.
∎

2.6.3 Subspace Indexing

This section deals with the case that the index on the set of objects is built on a subset of
the object attributes. Recall that R∗-Tree indices are efficient for small dimensionalities,
e.g., when the number of attributes is less than 10. Therefore, to improve performance,
it makes sense to build an index only on a small subspace containing the attributes most
frequently occuring in users’ preferences. In the following, we present the changes to the
IND algorithm necessary to handle this case.

First, a leaf R∗-Tree entry ei contains a pointer to the disk page storing the non-indexed
attributes of the object oi corresponding to this entry. Second, given a non-leaf R∗-Tree

entry ei, we define its maximum matching degree on user uj to be M j
i .Ak =

∥ei.mbr.Ik∩uj .Ik∥
∥uj .Ik∥

with respect to an indexed attribute Ak (as in regular IND), and M j
i .Ak′ = 1 with respect

to a non-indexed attribute Ak′ . Third, for a leaf entry ei corresponding to object oi, its
maximum matching degree is equal to the matching degree of oi to uj w.r.t. Ak, as in
regular IND. Note that in this case an additional I/O operation is required to retrieve the
non-indexed attributes.
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It is easy to see that the maximum matching degree M j
i .Ak of entry ei on user uj

w.r.t. specified attribute Ak is an upper bound to the highest matching degree among all
objects in the group that ei defines. However, note that it is not a tight upper bound as
in the case of the regular IND (Proposition 3).

The remaining definitions, i.e., the maximum matching vector and the score of an
entry, as well as the pseudocode are identical to their counterparts in the regular IND
algorithm.

2.6.4 Objective Attributes

In this section we describe objective attributes. As objective attributes we refer to the
attributes that the order of their values is the same for all users. Hence, in contrast
to the attributes considered before, the users are not expressing any preferences over
the objective attributes. Particularly, in objective attributes, their preference relation is
derived from the attributes’ semantics and it is the same for all users. For instance, in our
running example in addition to the restaurants’ attributes in which different users may
have different preferences (i.e., subjective attributes); we can assume an objective attribute
“Rating”, representing the restaurant’s score. Attribute Rating is totally ordered, and
higher rated restaurants are more preferable from all users.

Based on the attributes’ semantics, we categorized attributes into two groups: (1)
objective attributes, and (2) subjective attributes. Let Ao ∈ A and As ∈ A denote the
objective and subjective attributes respectively, where Ao ∪As = A and Ao ∩As = ∅.

Let two objects oa and ob, having an objective attribute Ak ∈ Ao. As oa.Ak we denote
the value of the attribute Ak for the object oa. Here, without loss of generality, we assume
that objective attributes are single-value numeric attributes, and the object oa is better
than another object ob on the objective attribute Ak, iff oa.Ak > ob.Ak.

Considering objects with both objective and subjective attributes, the preferred and
strictly preferred relations presented in Section 3.2.1, are defined as follows.

An object oa is preferred over ob, for user uj , denoted as oa ⪰j ob iff (1) for every

specified subjective attribute Ah ∈ As it holds that mj
a.Ah ≥ mj

b.Ah, and (2) for each
objective attribute Ak ∈ Ao hold that oa.Ak ≥ ob.Ak. Moreover, object oa is strictly
preferred over ob, for user uj , denoted as oa ≻j ob iff (1) oa is preferred over ob, (2) there

exists a specified subjective attribute Ah ∈ As such that mj
a.Ah > mj

b.Ah, and (3) there
exists an objective attribute Ak ∈ Ao such that oa.Ak > ob.Ak.

2.7 Experimental Analysis

Section 2.7.1 describes the datasets used for the evaluation. Sections 2.7.2 and 2.7.3 study
the efficiency of the GMCO and p-GMCO algorithms, respectively. Finally, Section 2.7.4
investigates the effectiveness of the ranking in the GRCO problem.

2.7.1 Datasets & User preferences

We use five datasets in our experimental evaluation, one synthetic and four real. The
first is Synthetic, where objects and users are synthetically generated. All attributes have
the same hierarchy, a binary tree of height log ∣A∣, and thus all attributes have the same
number of leaf hierarchy nodes ∣A∣. To obtain the set of objects, we fix a level, `o (where
`o = 1 corresponds to the leaves), in all attribute hierarchies. Then, we randomly select
nodes from this level to obtain the objects’ attribute value. The number of objects is
denoted as ∣O∣, while the number of attributes for each object is denoted as d. Similarly,
to obtain the set of users, we fix a level, `u, in all hierarchies. The group size (i.e., number
of users) is denoted as ∣U ∣.
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Table 2.5: Real datasets basic characteristics

Dataset Number of Objects Attributes (Hierarchy height)

RestaurantsF 85,691 Cuisine (6), Attire (3), Parking (3)
ACM 281,476 Category (4)
Cars 30,967 Engine (3), Body (4), Transmission (3)
RestaurantsR 130 Cuisine (5), Smoke (3), Dress (3), Ambiance (3)

The second dataset is RestaurantsF, which contains 85,681 US restaurant retrieved
from Factual2. We consider three categorical attributes, Cuisine, Attire and Parking. The
hierarchies of these attributes are presented in Figure 2.1 (the figure only depicts a subset
of the hierarchy for Cuisine). Particularly, for the attributes Cuisine, Attire and Parking,
we have 6, 3, 3 levels and 126, 5, 5 leaf hierarchy nodes, respectively.

The third dataset is ACM, which contains 281,476 research publications from the ACM,
obtained from datahub3. The Category attribute is categorical and is used by the ACM
in order to classify research publications. The hierarchy for this attributed is defined by
the ACM Computing Classification System4, and is organized in 4 levels and has 325 leaf
nodes.

The fourth dataset is Cars, containing a set of 30,967 car descriptions retrieved from
the Web5. We consider three attributes, Engine, Body and Transmission, having 3, 4, 3
levels, and 11, 23, 5 leaf hierarchy nodes, respectively. We note that this is not the same
dataset used in [71].

The fifth dataset is RestaurantsR, obtained from a recommender system prototype6.
This dataset contains a set of 130 restaurants descriptions and a set of 138 users along
with their preferences. For our purposes, we consider four categorical attributes, Cuisine,
Smoke, Dress, and Ambiance, having 5, 3, 3, 3 levels, and 83, 3, 3, 3 leaf hierarchy nodes,
respectively. This dataset is used in the effectiveness analysis of the GRCO problem, while
the other datasets are used in the efficiency evaluation of the GMCO algorithms.

For the efficiency evaluation, the user preferences for real datasets are obtained fol-
lowing two different approaches. In the first approach, denoted as Real preferences, we
attempt to simulate real user preferences. Particularly, for the RestaurantF dataset, we
use as user preferences the restaurants’ descriptions from the highest rated New York
restaurant list7. For the Car dataset, the user preferences are obtained from the top rated
cars8. Finally, for the ACM dataset, the user preferences are obtained by considering ACM
categories from the papers published within a research group9. In the second approach,
denoted as Synthetic preferences, the user preferences are obtained using a method similar
to this followed in Synthetic dataset. Particularly, the user preferences are specified by
randomly selecting hierarchy nodes from the second hierarchy level (i.e., `u = 2). Table 2.5
summarizes the basic characteristics of the employed real datasets.

2.7.2 Efficiency of the GMCO algorithms

For the GMCO problem, we implement IND (Section 2.3) and three flavors of the BSL
algorithm (Section 2.3.2), denoted BSL-BNL, BSL-SFS, and BSL-BBS, which use the
skyline algorithms BNL [98], SFS [123], BBS [300], respectively.

2www.factual.com
3datahub.io/dataset/rkb-explorer-acm
4www.acm.org/about/class/ccs98-html
5www.epa.gov
6archive.ics.uci.edu/ml/datasets/Restaurant+&+consum er+data
7www.yelp.com
8www.edmunds.com/car-reviews/top-rated.html
9www.dblab.ntua.gr/pubs
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Table 2.6: Parameters (Synthetic)

Description Symbol Values

Number of objects ∣O∣ 50K, 100K, 500K, 1M, 5M
Number of attribute d 2, 3, 4, 5, 6
Group size ∣U ∣ 2, 4, 8, 16, 32
Hierarchy height log ∣A∣ 4, 6, 8, 10, 12
Hierarchy level for objects `o 1, 2, 3, 4, 5
Hierarchy level for users `u 2, 3, 4, 5, 6

To gauge the efficiency of all algorithms, we measure: (1) the number of disk I/O op-
erations, denoted as I/Os; (2) the number of dominance checks, denoted as Dom. Checks;
and (3) the total execution time, denoted as Total Time, and measured in secs. In all cases,
the reported time values are the averages of 3 executions. All algorithms were written in
C++, compiled with gcc, and the experiments were performed on a 2GHz CPU.

2.7.2.1 Results on Synthetic Dataset

In this section we study the efficiency of the GMCO algorithms using the Synthetic dataset
described in Section 2.7.1.

Parameters. Table 2.6 lists the parameters that we vary and the range of values examined
for Synthetic. To segregate the effect of each parameter, we perform six experiments, and
in each we vary a single parameter, while we set the remaining ones to their default (bold)
values.
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Figure 2.3: GMCO algorithms, Synthetic: varying ∣O∣
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Figure 2.4: GMCO algorithms, Synthetic: varying d
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Figure 2.5: GMCO algorithms, Synthetic: varying ∣U ∣
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Figure 2.6: GMCO algorithms, Synthetic: varying log ∣A∣

Varying the number of objects. In the first experiment, we study performance with
respect to the objects’ set cardinality ∣O∣. Particularly, we vary the number of objects
from 50K up to 5M and measure the number of I/Os, the number of dominance checks,
and the total processing time, in Figures 2.3a, 2.3b and 2.3c, respectively.

When the number of objects increases, the performance of all methods deteriorates.
The number of I/Os performed by IND is much less than the BSL variants, the reason
being BSL needs to construct a file containing matching degrees. Moreover, the SFS and
BBS variants have to preprocess this file, i.e., sort it and build the R-Tree, respectively.
Hence, BSL-BNL requires the fewest I/Os among the BSL variants.

All methods require roughly the same number of dominance checks as seen in Fig-
ure 2.3b. IND performs fewer checks, while BSL-BNL the most. Compared to the other
BSL variants, BSL-BNL performs more checks because, unlike the others, computes the
skyline over an unsorted file. IND performs as well as BSL-SFS and BSL-BBS, which have
the easiest task. Overall, Figure 2.3c shows that IND is more than an order of magnitude
faster than the BSL variants.

Varying the number of attributes. Figure 2.4 investigates the effect as we increase
the number of attributes d from 2 up to 6. The I/O cost, shown in Figure 2.4a of the
BSL variants does not depend on ∣O∣ and thus remains roughly constant as d increases.
On the other hand, the I/O cost of IND increases slightly with d. The reason is that
d determines the dimensionality of the R-Tree that IND uses. Further, notice that the
number of dominance checks depicted in Figure 2.4b is largely the same across methods.
Figure 2.4c shows that the total time of IND increases with d, but it is still significantly
smaller (more than 4 times) than the BSL methods even for d = 6.
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Figure 2.7: GMCO algorithms, Synthetic: varying `o
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Figure 2.8: GMCO algorithms, Synthetic: varying `u

Varying the group size. In the next experiment, we vary the users’ set cardinality
∣U ∣ from 2 up to 32; results are depicted in Figure 2.5. The performance of all methods
deteriorates with ∣U ∣. The I/O cost for IND is more than an order of magnitude smaller
than the BSL variants, and the gap increases with ∣U ∣, as Figure 2.5a shows. As before,
BSL-BNL requires the fewest I/Os among the BSL variants.

Regarding the number of dominance checks, shown in Figure 2.5b, IND performs
the fewest, except for 2 and 4 users. In these settings, the BBS variant performs the
fewest checks, as it is able to quickly identify the skyline and prune large part of the
space. Note that ∣U ∣ determines the dimensionality of the space that BSL-BBS indexes.
As expected, for more than 4 dimensions the performance of BBS starts to take a hit.
Overall, Figure 2.3c shows that IND is more than an order of magnitude faster than all
the BSL variants, among which BSS-BNL is the fastest.

Varying the hierarchy height. In this experiment, we vary the hierarchy height log ∣A∣
from 4 up to 12 levels. Figure 2.6 illustrates the results. All methods are largely unaffected
by this parameter. Note that the number of dominance checks varies with log ∣A∣, and IND
performs roughly as many checks as the BSL variants which operated on a sorted file, i.e.,
BSL-SFS and BSL-BBS. Overall, IND is more than an order of magnitude faster than all
BSL variants.

Varying the objects level. Figure 2.7 depicts the results of varying the level `o from
which we draw the objects’ values. The performance of all methods is not significantly
affected by `o. Note though that the number of dominance checks increases as we select
values from higher levels.

Varying the users level. Figure 2.8 depicts the results of varying the level `u from
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which we draw the users’ preference values. As with the case of varying `o, the number
of dominance checks increases with `u, while the performance of all methods remains
unaffected. The total time of IND takes its highest value of `u = 6, as the number of
required dominance checks increases sharply for this setting. Nonetheless, IND is around
3 times faster than BSL-BNL.

2.7.2.2 Results on Real Datasets

In this section we study the efficiency of the GMCO algorithms using the three real
datasets described in Section 2.7.1. For each dataset, we examine both real and synthetic
preferences, obtained as described in Section 2.7.1. Also, we vary the group size ∣U ∣ from
2 up to 32 users.

Figures 2.9 & 2.10 present the result for RestaurantsF dataset, for real and synthetic
preferences, respectively. Similarly, Figures 2.11 & 2.12 present the result for ACM dataset,
and Figures 2.13 & 2.14 for Cars dataset. As we can observe, the performance of the
examined methods is almost similar for all datasets, real and synthetic. Also, similar
performance is observed in real and synthetic user preferences. In most cases, IND out-
performs the BSL methods by at least an order of magnitude in terms of I/Os and total
time. Additionally, IND performs less dominance checks than the BSL methods in almost
all cases.

Regarding BSL methods, BSL-BNL outperforms the others in terms of I/Os and total
time; while BSL-SFS and BNL-BBS have the almost the same performance. Regarding the
number of dominance checks, for less than 16 users BSL-BNL performs more dominance
checks than other BSL methods; while for 32 users, in many cases (Figures 2.9b, 2.10b,
2.11b) BSL-BNL performs the fewest dominance checks from BSL methods. Finally, for
less than 8 users, BNL-BBS perform fewer dominance checks than other BSL methods.

2.7.3 Efficiency of the p-GMCO Algorithms

In this section, we investigate the performance of the p-GMCO algorithms (Section 2.4).
For the p-GMCO problem, we implement the respective extensions of all algorithms (IND
and BSL variants), distinguished by a p prefix. As before, we measure the number of I/O
operations, dominance checks and the total time. In the following experiments, we use
the three real datasets and vary the number of users from 2 up to 1024, while p = 30%.
Also, we also vary the parameter p from 10% up to 50%. However, the performance of all
methods (in terms of I/Os and total time) remains unaffected by p; hence, the relevant
figures are omitted.

Figures 2.15 & 2.16 present the result for RestaurantsF dataset, for real and synthetic
preferences, respectively. Similarly, Figures 2.17 & 2.18 corresponds to the ACM dataset,
and Figures 2.19 & 2.20 to Cars.

As we can observe, IND outperforms the BSL methods in almost all cases. Particularly,
the number of I/O operations performed by IND is several order of magnitude lower than
the BSL variants. In addition, in almost all cases, IND performs fewer dominance checks
than the BSL methods. The number of I/Os performed by IND remains stable for more
than 16 users; while for BSL methods, the I/O operations are constantly increased up to
256 users. Regarding dominance check, the number of dominance checks increases with
∣U ∣ following an almost similar trend for all methods.

Finally, regarding BSL methods, BSL-BNL outperforms the other BSL methods in
terms of I/Os and total time; while BSL-SFS and BNL-BBS have almost the same per-
formance. As far as dominance checks, in some cases (Figures 2.15b & 2.17b) BSL-BNL
outperforms all BSL methods, while in other cases (Figures 2.16b, 2.18b, 2.19b, 2.20b),
BSL-BNL performs more dominance checks than the other BSL methods.
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Figure 2.9: GMCO algorithms, RestaurantsF (Real preferences): varying ∣U ∣
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Figure 2.10: GMCO algorithms, RestaurantsF (Synthetic preferences): varying ∣U ∣
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Figure 2.11: GMCO algorithms, ACM (Real preferences): varying ∣U ∣
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Figure 2.12: GMCO algorithms, ACM (Synthetic preferences): varying ∣U ∣
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Figure 2.13: GMCO algorithms, Cars (Real preferences): varying ∣U ∣
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Figure 2.14: GMCO algorithms, Cars (Synthetic preferences): varying ∣U ∣
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Figure 2.15: p-GMCO algorithms, RestaurantsF (Real preferences): varying ∣U ∣
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Figure 2.16: p-GMCO algorithms, RestaurantsF (Synthetic preferences): varying ∣U ∣
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Figure 2.17: p-GMCO algorithms, ACM (Real preferences): varying ∣U ∣
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Figure 2.18: p-GMCO algorithms, ACM (Synthetic preferences): varying ∣U ∣
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Figure 2.19: p-GMCO algorithms, Cars (Real preferences): varying ∣U ∣
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Figure 2.20: p-GMCO algorithms, Cars (Synthetic preferences): varying ∣U ∣
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2.7.4 Effectiveness of GRCO

In this section we study the effectiveness of the GRCO problem (Section 2.5). We compare
our RANK-CM algorithm (Section 2.5.1) to nine popular aggregations strategies adopted
by most group recommender systems [108]. Particularly, we implement the following
aggregation strategies:

− Additive (ADD): adds the individual matching degrees.

− Multiplicative (MULT): multiplies the individual matching degrees.

− Least Misery (MISERY): considers the minimum of individual matching degrees.

− Most Pleasure (PLEASURE): considers the maximum of individual matching de-
grees.

− Average Without Misery (AVG MISERY): takes the average matching degrees, ex-
cluding matching degrees below a threshold;

− Average Without Misery Threshold-free (AVG MISERY+): is a strategy introduced
here, similar to AVG MISERY, with the difference that the threshold is set to the
minimum of individual matching degrees.

− Copeland Rule (COPELAND): counts the number of times an object has higher
individual matching degrees than the rest of the objects, minus the number of times
the object has lower individual matching degrees.

− Approval Voting (APPROVAL): counts the number of individual matching degrees
with values greater than or equal to a threshold.

− Borda Count (BORDA): adds the scores computed per matching degree according
to its rank in a user’s preference list (the matching degree with the lowest value gets
a zero score, the next one point, and so on).

Note that, the threshold in AVG MISERY and APPROVAL strategies is set to 0.5.

To gauge the effectiveness of our ranking scheme, we use the RestaurantsR dataset. We
use the reviews from all users and extract a ranked list of the most popular restaurants
to serve as the ground truth. Then, we compare the ranked lists returned by RANK-CM
and the other aggregation strategies to the ground truth, computing Precision and the
Generalized Spearman’s Footrule [168], in several ranks and for different group sizes. In
order to construct group of users, for each group size, we randomly select users, composing
500 groups of the same size. Hence, in each experiment the average measurements are
presented.

Varying the group size. In the first experiment (Figures 2.21 & 2.22), we consider
different group sizes, varying the number of users, from 5 to 138. We compute the precision
and the Spearman’s footrule for the ranked listed returned by all methods, compared to
the ground truth list, at rank 10 (Figure 2.21) and rank 20 (Figure 2.22).

In Figure 2.21, we consider the first ten restaurants retrieved (i.e., at rank 10); the
precision for each method is defined as the number of common restaurants between the
ground truth list and the ranked list returned by each method, divided by ten. For
example, in Figure 2.21a, for the groups of 20 users, RANK-CM has precision around
0.2; that is, among the first ten restaurants retrieved, RANK-CM retrieves in average two
popular restaurants. On the other hand, BORDA and COPELAND retrieve in average
one popular restaurant, and have precision around 0.1.

Regarding the results at rank 10, as we can observe from Figure 2.21, RANK-CM
outperforms all other methods in both metrics. Note that, Spearman’s footrule values
range from 0 to 1, where lower values indicate a better match to the ground truth (0
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Figure 2.21: RestaurantsR (Rank 10): varying ∣U ∣
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Figure 2.22: RestaurantsR (Rank 20): varying ∣U ∣

means that the two lists are identical). Regarding the other aggregation strategies, the
best results are provided by COPELAND, BORDA and AVG MISERY+, while MISERY
and PLEASURE performed the worst.

Similar results and observations hold at rank 20 (Figures 2.22), where RANK-CM
outperforms all other methods, with COPELAND, ADD and AVG MISERY being the
best alternatives.

Overall, RANK-CM performs better in terms of precision and Spearman’s footrule
than the other strategies, in all cases. The COPELAND strategy seems to be the best
alternative, while MISERY and PLEASURE the worst.

Varying rank. In this experiment, we consider three different group sizes (i.e., 10, 20, 30)
and compute the precision and the Spearman’s footrule from rank 4 to rank 32. As we can
observe from Figures 2.23, 2.24 & 2.25, the performance of all methods is almost similar
for the examined group sizes. The RANK-CM achieves better performance in terms of
precision and Spearman’s footrule in almost all examined ranks, with the exceptions at
ranks 4 and 6 for group sizes 10 and 30, where COPELAND achieves almost the same
performance with RANK-CM. Regarding the other methods, the best performance is from
COPELAND, ADD and AVG MISERY+.
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Figure 2.23: RestaurantsR (∣U ∣ = 10): varying rank
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Figure 2.24: RestaurantsR (∣U ∣ = 20): varying rank
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Figure 2.25: RestaurantsR (∣U ∣ = 30): varying rank
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2.8 Related Work

This section reviews work on recommender systems and algorithms for skyline computa-
tion.

2.8.1 Recommender Systems

There exist several techniques to specify preferences on objects [355, 252]. The quantitative
preferences, e.g., [26, 211, 246], assign a numeric score to attribute values, signifying
importance. For example, values a, b, c are assigned scores 0.9, 0.7, 0.1, respectively,
which implies that a is more preferable than b, which in turn is more preferable than c.
There also exist qualitative preferences, e.g., [237, 122], which are relatively specified using
binary relationships. For example, value a is preferred over b and c, but b, c are indifferent.
This work assumes the case of boolean quantitative preferences, where a single attribute
value is preferred, while others are indifferent.

The general goal of recommendation systems [20, 92, 400, 230] is to identify those
objects that are most aligned to a user’s preferences. Typically, these systems provide a
ranking of the objects by aggregating user preferences. Particularly, the work in [26] defines
generic functions that merge quantitative preferences. The works in [114, 211] deal with
linear combinations of preference scores and propose index and view based techniques for
ranking tuples. For preferences in general, [237, 122] introduce a framework for composing
or accumulating interests. Among the discussed methods is the Pareto composition, which
is related to the skyline computation, discussed below.

Recently, several methods for group recommendations are proposed [219, 284, 108, 97].
These methods, recommend items to a group of users, trying to satisfy all the group mem-
bers. The existing methods are classified into two approaches. In the first, the preferences
of each group member are combined to create a virtual user; the recommendations to the
group are proposed w.r.t. to the virtual user. In the second, individual recommendations
for each member is computed; the recommendations of all members are merged into a
single recommendation. A large number of group recommendation methods have been
developed in several domains such as: music [350, 130, 309, 286, 115, 406], movies [298],
TV programs [283, 401, 386, 52], restaurants [301, 285], sightseeing tours [179, 39, 235],
vacation packages [288, 218], food [159], news [310], and online communities [182, 239, 48].
Finally, several works study the problem of rank aggregation in the context of group
recommendations [326, 50, 66, 287, 297].

Several methods to combine different ranked lists are presented in the IR literature.
There the data fusion problem is defined. Given a set of ranked lists of documents returned
by different search engines, construct a single ranked list combining the individual rankings
[157]. Data fusion techniques can be classified based on whether they require knowledge of
the relevance scores [42]. The simplest method based solely on the documents’ ranks is the
Borda-fuse model. It assigns as score to each document the summation of its rank in each
list. The Condorcet-fuse method [292] is based on a majoritarian voting algorithm, which
specifies that a document d1 is ranked higher in the fused list than another document d2

if d1 is ranked higher than d2 more times than d2 is ranked higher than d1. The approach
in [170], assumes that a document is ranked better than another if the majority of input
rankings is in concordance with this fact and at the same time only a few input rankings
refute it. When the relevance scores are available, other fusion techniques, including
CombSUM, CombANZ and CombMNZ, can be applied [174]. In CombSUM, the fused
relevance score of a document is the summation of the scores assigned by each source.
In CombANZ (resp. CombMNZ), the final score of a document is calculated as that
of CombSUM divided (resp. multiplied) by the number of lists in which the document
appears.
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2.8.2 Skyline Computation

The work of [98] rekindled interest in the problem of finding the maximal objects [251] and
re-introduces it as the skyline operator (a.k.a. skyline query). Given a database of objects,
the skyline query returns those objects which are not dominated, refereed as skyline or
maximal objects. An object is dominated if there exists another object before it according
to the partial order enforced by the Pareto-based aggregation. In other words, an object
dominates another, if it has better values on all attributes, and strictly better value on at
least one. Finding the skyline is also known as the Pareto-optimal set, or maximal vectors
problem in multi-objective optimization research, where it has been studied extensively in
the past, for in-memory computations [251, 64, 63].

External memory skyline algorithms can be classified into three categories: (1) scan-
based, (2) index-based, and (3) partitioning-based algorithms.

The scan-based approaches perform multiple passes over the dataset and use a small
window of candidate objects, which is used to prune dominated objects. The algorithms
of this category can be further classified into two approaches: with and without pre-
processing. Algorithms of the first category, directly process the set of objects, in the
order in which they are stored, or produced (e.g., in the case of pipelining multiple op-
erators). The Block Nested Loops (BNL) [98] and Randomize multi-pass (RAND) [332]
algorithms lie in this category (for more details see Section 3.4). On the other hand,
methods in the second category perform an external sort of the objects before, or par-
allel to the skyline computation. These methods are based on the fact that examining
points according to a monotone (in all attributes) preference function reduces the average
number of dominance checks. The Sort Filter Skyline (SFS) [123] and Linear Elimination
Sort for Skyline (LESS) [188], belong to this category (for more details see Section 3.4).
Other algorithm, include Sort and Limit Skyline algorithm (SaLSa) [53], which is similar
to SFS and additionally introduces a condition for early terminating the input file scan,
and Skyline Operator on Anti-correlated Distributions (SOAD) [338], which is also similar
to SFS but uses different sorting functions for different sets of attributes.

In index-based approaches, various types of indices are used to guide the search for
skyline points and prune large parts of the space. The most well-known and efficient
method is the Branch and Bound Skyline (BBS) [300] algorithm. BBS employs an R-tree,
and is shown to be I/O optimal with respect to this index. Similarly, the Nearest Neighbor
algorithm (NN) [245] also uses an R-tree performing multiple nearest neighbor searches to
identify skyline objects. A bitmap structure is used by Bitmap [362] algorithm to encode
the input data. In the Index [362] algorithm, several B-trees are used to index the data,
one per dimension. Other methods, e.g., [258, 266], employ a space-filling curve, such as
the Z-order curve, and use a single-dimensional index. The Lattice Skyline (LS) algorithm
[293] builds a specialized data structure for low-cardinality domains.

In partitioning-based approaches, algorithms divide the initial space into several par-
titions. The first algorithm in this category, D&C [98] computes the skyline objects
adopting the divide-and-conquer paradigm. A similar approach with stronger theoreti-
cal guarantees is presented in [341, 340]. Recently, partitioning-based skyline algorithms
which also consider the notion of incomparability are proposed in [404, 256]. Object-based
space partitioning scheme (OSP) [404] attempts to reduce the number of checks between
incomparable points by recursively partition the skyline points. BSkyTree [256] enhances
[404] by considering both the notions of dominance and incomparability while partitioning
the space.

Considering specific settings, several algorithms are proposed to efficiently compute the
skyline over partially ordered domains [111, 394, 329, 405], metric spaces [119], non-metric
spaces [299], or anticorrelated distributions [338].

Further, several lines of research attempt to address the issue that the size of skyline
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cannot be controlled, by introducing new concepts and/or ranking the skyline (see [269]
for a survey). [398] ranks tuples based on the number of records they dominate. [112]
deals with high-dimensional skylines, and relaxes the notion of dominance to k-dominance,
according to which a record is k-dominated if it is dominated in a subspace of k dimensions.
[272] uses a skyline-based partitioning to rank tuples. The k most representative skyline
operator is proposed in [263], which selects a set of k skyline points, so that the number of
points dominated by at least one of them is maximized. In a similar spirit, [363] tries to
select the k skyline points that best capture the trade-offs among the parameters. Finally,
[257] attempts to find a small and focused skyline set. The size of the skyline is reduced
by asking from users to state additional preferences.

2.9 Summary

This work addressed objective ranking techniques for a group of preferences over cate-
gorical attributes, where the goal is to rank objects based on what is considered ideal
by all users. In particular, we study three related problems based on a double Pareto
aggregation. The first is to return the set of objects that are unanimously considered ideal
by the entire group. In the second problem, we relax the requirement for unanimity and
only require a percentage of users to agree. Then, in the third problem, we devise an ef-
fective ranking scheme based on our double Pareto aggregation framework. The proposed
methods take advantage of a transformation of the categorical attribute values in order to
use a standard index structure. A detailed experimental study verified the efficiency and
effectiveness of our techniques.
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Chapter 3

External Memory Skyline
Algorithms

Skyline queries return the set of non-dominated tuples, where a tuple is dominated if there
exists another with better values on all attributes. In the past few years the problem has
been studied extensively, and a great number of external memory algorithms have been
proposed. We thoroughly study the most important scan-based methods, which perform
a number of passes over the database in order to extract the skyline. Although these
algorithms are specifically designed to operate in external memory, there are many im-
plementation details which are neglected, as well as several design choices resulting in
different flavors for these basic methods. We perform an extensive experimental evalua-
tion using real and synthetic data. We conclude that specific design choices can have a
significant impact on performance. We also demonstrate that, contrary to common belief,
simpler skyline algorithm can be much faster than methods based on pre-processing.

3.1 Introduction

The skyline query, or skyline operator as it was introduced in [98], has in the past few
years received great attention in the data management community. Given a database
of objects, the skyline query returns those objects which are not dominated. An object
dominates another, if it has better values on all attributes, and strictly better value on at
least one. Finding the skyline is also known as the Pareto-optimal set, or maximal vectors
problem in multi-objective optimization research, where it has been studied extensively
in the past, but only for in-memory computations. For example the well-known divide
and conquer algorithm of [251] has complexity O(N logd−2N), for d ≥ 2, where N is the
number of objects, and d their dimensionality; the algorithm is optimal for d = 3.

The interest in external memory algorithms has sparked after the seminal work in [98].
The most efficient method in terms of worst-case Input/Output (I/O) operations is the

algorithm in [341], which requires in the worst case O ((N/B) logd−2
M/B(N/B)) I/Os, where

M is the memory size and B the block (minimum unit of transfer in an I/O operation)
size in terms of objects. However, in practice, other external-memory algorithms proposed
over the past years can be faster.

This work studies in detail an important class of practical algorithms, the scan-based
skyline algorithms. An algorithm of this class performs multiple passes over an input file,
where the input file in the first pass is the database, and in a subsequent pass it is the
output of the previous pass. The algorithm terminates when the output file remains empty
after a pass concludes. Generally speaking, during each pass, the algorithm maintains in
main memory a small window of incomparable objects, which it uses to remove dominated
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objects from the input file. Any object not dominated is written to the output file.
Although the studied algorithms are specifically designed to operate in external mem-

ory, little attention has been given to important implementation details regarding memory
management. For example, all algorithms assume that the unit of transfer during an I/O
operation is the object, whereas in a real system is the block, i.e., a set of objects. Our
work addresses such shortcomings by introducing a more realistic I/O model that better
captures performance in a real system. Furthermore, by thoroughly studying the core com-
putational challenge in these algorithms, which is the management of the objects within
the window, we introduce several novel potentially interesting policies.

Contributions. Summarizing, the contributions of our study are the following:

1. Based on a standard external memory model [22], we appropriately adapt four pop-
ular scan-based algorithms, addressing in detail neglected implementation details
regarding memory management.

2. We focus on the core processing of scan-based algorithms, the management of objects
maintained in the in-memory window. In particular, we introduce various policies
for two tasks: traversing the window and evicting objects from the window. Both
tasks can have significant consequences in the number of required I/Os and in the
CPU time.

3. We experimentally evaluate concrete disk-based implementations, rather than simu-
lations, of all studied algorithms and derive useful conclusions for synthetic and real
datasets. In particular, we demonstrate that, in many cases and contrary to common
belief, algorithms that pre-process (typically, sort) the database are not faster.

4. We perform an extensive study of our proposed policies, and reach the conclusion
that in some settings (dimensionality and dataset distribution) these policies can
reduce the number of dominance checks by more than 50%.

3.2 Preliminaries

3.2.1 Definitions

Let O be a set of d-dimensional objects. Each object o ∈ O is represented by its attributes
o = (o1, o2, . . . , od). The domain of each attribute, is the positive real numbers set R+.
Without loss of generality, we assume that an object o1 is better than another object o2 on
an attribute j, iff oj1 < o

j
2. An object o1 dominates another object o2, denoted by o1 ≻ o2,

iff (1) ∀i ∈ [1, d], oi1 ⩽ oi2 and (2) ∃j ∈ [1, d], oj1 < oj2. The skyline of an object set O,
denoted as SL(O), is the set of objects in O that are not dominated by any other object
of O. Formally, SL(O) = {oi ∈ O ∣ ∄ok ∈ O ∶ ok ≻ oi}.

3.2.2 External Memory I/O Model

This section describes an external memory model, similar to that of [22]. The unit of trans-
fer between the main memory and the external memory (i.e., the disk) is a single block.1

Any external memory algorithm, like the skyline methods, read/write blocks from/to disk
files. We assume that files are stored contiguously on disk, and therefore a new block is
written always at the end of a file.

We denote as N = ∣O∣ the size of the database, i.e., N is the total number of objects
to be processed. We measure the fixed size B of a block in terms of objects (tuples).
Similarly, main memory can fit M objects, with the requirements that M < N (and often

1[22] assumes that P blocks can be transferred concurrently; in this work we set P = 1
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much smaller) to justify the need for external memory algorithms, and M > 2B to support
basic in-memory operations.

We next discuss Input/Output (I/O) operations. We assume no input or output
buffers, so that blocks from the disk are transferred directly to (resp. from) the disk
from (resp. to) the main memory. Equivalently, the input/output buffers share the same
memory of size M with the algorithm.

We categorize I/O operations in two ways. Naturally, a read transfers data from the
disk, whereas a write transfers data to the disk. The second categorization is based on the
number of blocks that are transferred. Note that a read (resp. write) operation transfers
at least one block and at most ⌊MB ⌋ blocks into main memory (resp. disk). We also remark
that in disks, the seek time, i.e., the time it takes for the head to reach the exact position
on the ever spinning disk where data is to be read or written, is a crucial parameter in
disk performance. Reading or writing k consecutive blocks on the disk is much faster than
reading or writing k blocks in arbitrary positions on the disk. The reason is that only one
seek is required in the first case, compared to the k seeks for the second. Therefore, we
distinguish between sequential and random I/Os. A random I/O incorporates the seek
time, whereas a sequential I/O does not. For example, when a procedure reads k blocks
sequentially from the disk, we say that it incurs 1 random read and k−1 sequential reads.

3.3 A Model for Scan-based Skyline Algorithms

All skyline algorithms maintain a set of objects, termed window, which consists of possible
skyline objects, actual skyline objects, or some arbitrary objects in general. A common
procedure found in all algorithms is the following. Given some candidate object not in
the window, traverse the window and determine if the candidate object is dominated by
a window object, and, if not, additionally determine the window objects that it domi-
nates. Upon completion of the traversal and if the candidate is not dominated, the skyline
algorithm may choose to insert it into the window, possible evicting some window objects.

In the aforementioned general procedure, we identify and focus on two distinct design
choices. The first is the traversal policy that determines the order in which window objects
are considered and thus dominance checks are made. This design choice directly affects
the number of dominance checks performed and thus the running time of the algorithm.
An ideal (but unrealistic) traversal policy would require only one dominance check in the
case that the candidate is dominated, i.e., visit only a dominating window object, and/or
visit only those window objects which the candidate dominates.

The second design choice is the eviction policy that determines which window object(s)
to remove so as to make room for the candidate object. This choice essentially determines
the dominance power of the window, and can thus indirectly influence both the number
of future dominance checks and the number of future I/O operations.

We define three basic window traversal policies:

− The sequential traversal policy (sqT ), where window objects are traversed sequen-
tially, i.e., in the order they are stored. This policy is the one adopted by all existing
algorithms.

− The random traversal policy (rdT ), where window objects are traversed in random
order. This policy is used to gauge the effect of others.

− The entropy-based traversal policy (enT ), where window objects are traversed in
ascending order of their entropy (i.e., ∑di=1 ln(oi + 1)) values. Intuitively, an object
with a low entropy value has greater dominance potential as it dominates a large
volume of the space.
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In addition to basic traversal policies, we define various ranking schemes for objects,
which will be discussed later. These schemes attempt to capture the dominance potential
of an object, with higher ranks suggesting greater potential. Particularly, we also consider
the following window traversal policies:

− The ranked-based traversal policy (rkT ), where window objects are traversed in de-
scending order based on their rank values. Moreover, we consider three hybrid
random-, rank-based traversal policies.

− The highest-random traversal policy (hgRdT ), where the k objects with the highest
rank are traversed first, in descending order of their rank; then, the random traversal
policy is adopted.

− The lowest-random traversal policy (lwRdT ), where the k objects with the lowest
rank are compared first, before continuing with a random traversal.

− The recent-random traversal policy (rcRdT ), where the k most recently read objects
are compared first, before continuing with a random traversal.

Moreover, we define three eviction policies:

− The append eviction policy (apE ), where the last inserted object is removed. This
is the policy adopted by the majority of existing algorithms.

− The entropy-based eviction policy (enE ), where the object with the highest entropy
value is removed.

− The ranked-based eviction policy (rkE ), where the object with the lowest rank value
is removed. In case of ties in entropy or rank values, the most recent object is
evicted.

We next discuss ranking schemes used in the ranked-based traversal and eviction poli-
cies. Each window object is assigned a rank value, initially set to zero. Intuitively, the
rank serves to identify “promising” objects with high dominance power, i.e., objects that
dominate a great number of other objects. Then, the skyline algorithm can exploit this
information in order to reduce the required dominance checks by starting the window
traversal from promising objects, and/or evict non-promising objects.
We define the following ranking schemes:

− r0R: the rank of an object o at a time instance t, is equal to the number of objects
that have been dominated by o until t. In other words, this ranking scheme counts
the number of objects dominated by o.

− r1R: this ranking is similar to r0R. However, it also considers the number of objects
that have been dominated by the objects that o dominates. Let rank(o) denote the
rank of an object o. Assume that object o1 dominates o2, Then, the rank of o1 after
dominating o2 is equal to rank(o1) + rank(o2) + 1.

− r2R: this ranking assigns two values for each object o, its r1R value, as well as the
number of times o is compared with another object and none of them is dominated
(i.e., the number of incomparable dominance checks). The r1R value is primarily
considered to rank window objects, while the number of incomparable check is only
considered to solve ties; the more incomparable checks an object has, the lower its
rank.

Finally, several scan-based skyline algorithm perform a preprocessing step in which
the input objects are sorted according to a function monotone on all attributes. In this
study, we consider the three most common sorting functions:
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− The entropy sorting function (Entr) defined as Entr(o) = ∑di=1 ln(oi + 1).
− The sum sorting function (Sum), defined as the sum of the object’s attributes values.

− The minimum sorting function (minC), which sorts objects ascending on their min-
imum attribute value; the Sum function is used to solve ties and guarantee mono-
tonicity.

3.4 Algorithm Adaptations for the I/O Model

3.4.1 Block Nested Loop Algorithm (BNL)

The Block Nested Loop (BNL) [98] algorithm is one of the first external memory algorithms
for skyline computation. All computations in BNL occur during the window traversal.
Therefore, BNL uses a window as big as the memory allows. In particular, let W denote
the number of objects stored in the window, and let Ob denote the number of objects
scheduled for writing to disk (i.e., in the output buffer). The remaining memory of size
Ib = M −W −Ob serves as the input buffer, to retrieve objects from the disk. Note that
the size of the I/O buffers Ib and Ob vary during the execution of BNL, subject to the
restriction that the size of the input buffer is always at least one disk block, i.e, Ib ≥ B,
and that the output buffer never exceeds a disk block, i.e., Ob ≤ B; we discuss later how
BNL enforces this requirements.

We next describe memory management in the BNL algorithm. BNL performs a number
of passes, where in each an input file is read. For the first pass, the input file is the
database, whereas the input file in subsequent passes is created at the previous pass. BNL
terminates when the input file is empty. During a pass, the input file is read in chunks,
i.e., sets of blocks. In particular, each read operation transfers into main memory exactly
⌊ IbB ⌋ blocks from disk, incurring thus 1 random and ⌊ IbB ⌋− 1 sequential I/Os. On the other
hand, whenever the output buffer fills, i.e., Ob = B, a write operation transfers into disk
exactly 1 block and incurs 1 random I/O.

We now discuss what happens when a chunk of objects is transfered into the input
buffer within the main memory. For each object o in the input buffer, BNL traverses the
window, adopting the sequential traversal policy (sqT ). Then, BNL performs a two-way
dominance check between o and a window object w. If o is dominated by w, o is discarded
and the traversal stops. Otherwise, if o dominates w, object w is simply removed from
the window.

At the end of the traversal, if o has not been discarded, it is appended in the window.
If W becomes greater than M −Ob −B, BNL needs to move an object from the window to
the output buffer to make sure that enough space exists for the input buffer. In particular,
BNL applies the append eviction policy (apE ), and selects the last inserted object, which
is o, to move into the output buffer. If after this eviction, the output buffer contains
Ob = B objects, its contents are written to the file, which will become the input file of the
next pass.

A final issue is how BNL identifies an object o to be a skyline object, BNL must make
sure that o is dominance checked with all surviving objects in the input file. When this
can be guaranteed, o is removed from the window and returned as a result. This process
is implemented through a timestamp mechanism; details can be found in [98].

3.4.2 Sort Filter Skyline Algorithm (SFS)

The Sort Filter Skyline (SFS) [123] algorithm is similar to BNL with one significant excep-
tion: the database is first sorted by an external sort procedure according to a monotonic
scoring function. SFS can use any function defined in Section 3.3.
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Similar to BNL, the SFS algorithm employs the sequential window traversal policy
(sqT ) and the append eviction policy (apE ). There exist, however, two differences with
respect to BNL. Due to the sorting, dominance checks during window traversal are one-
way. That is an object o is only checked for dominance by a window object w. In addition,
the skyline identification in SFS is simpler than BNL. At the end of each pass, all window
objects are guaranteed to be results and are thus removed and returned.

3.4.3 Linear Elimination Sort for Skyline Algorithm (LESS)

The Linear Elimination Sort for Skyline (LESS) [188] algorithm improves on the basic
idea of SFS, by performing dominance checks during the external sort procedure. Recall
that standard external sort performs a number of passes over the input data. The so-called
zero pass (or sort pass) brings into main memory M objects, sorts them in-memory and
writes them to disk. Then, the k-th (merge) pass of external sort, reads into main memory
blocks from up to ⌊M/B⌋ − 1 files created in the previous pass, merges the objects and
writes the result to disk.

LESS changes the external sort procedure in two ways. First, during the zero pass,
LESS maintains a window of size W0 objects as an elimination filter to prune objects
during sorting. Thus the remaining memory M −W0 is used for the in-memory sorting.
The window is initially populated after reading the first M −W0 objects by selecting those
with the lowest entropy scores. Then for each object o read from the disk and before
sorting them in-memory, LESS performs a window traversal. In particular, LESS employs
the sequential traversal policy (sqT ) performing a one-way dominance check, i.e., it only
checks if o is dominated. Upon comparing all input objects with the window, the object
with the lowest entropy oh is identified. Then, another sequential window traversal (sqT )
begins, this time checking if oh dominates the objects in the window. If oh survives, it
is appended in the window, evicting the object with the highest entropy score, i.e., the
entropy-based eviction policy (enE ) is enforced.

The second change in the external sort procedure is during its last pass, where LESS
maintains a window of size W objects. In this pass, as well as any subsequent skyline
processing passes, LESS operates exactly like SFS. That is the sequential traversal policy
(sqT ) is used, one-way dominance checks are made, and window objects are removed
according to the append eviction policy (epE ).

3.4.4 Randomized Multi-pass Streaming Algorithm (RAND)

In the Randomized multi-pass streaming (RAND) algorithm [332], each pass in RAND
consists of three phases, where each scans the input file of the previous pass. Therefore,
each pass essentially corresponds to three reads of the input file. In the first phase, the
input file is read and a window of maximum size W =M −B is populated with randomly
sampled input objects (using reservoir sampling).

In the second phase, the input file is again read one block at a time, while the window
of W objects remain in memory. For each input object o, the algorithm traverses the
window in sequential order (sqT ), performing one-way dominance checks. If a window
object w is dominated by o, w is replaced by o. Note that, at the end of this phase, all
window objects are skyline objects, and can be returned. However, they are not removed
from memory.

In the third phase, for each input object o, RAND performs another sequential traversal
of the window (sqT ), this time performing an inverse one-way dominance check. If o is
dominated by a window object w, or if o and w correspond to the same object, RAND
discards o. Otherwise it is written on a file on the disk, serving as the input file for the
next pass. At the end of this phase, the memory is cleaned.
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Table 3.1: Parameters

Description Parameter Values

Number of Objects N 50k, 100K, 500K, 1M, 5M
Number of Attributes d 3, 5, 7, 9, 15
Memory Size M/N(%) 0.15%, 0.5% 1%, 5%, 10%
Block Size (Bytes) B ⋅ object size 1024, 2048, 4096
Distribution - INT, CORR, ANT

3.5 Experimental Analysis

3.5.1 Setting

3.5.1.1 Datasets

Our experimental evaluation involves both synthetic and real datasets. To construct syn-
thetic datasets, we consider the three standard distribution types broadly used in the
skyline literature. In particular, the distributions are: anti-correlated (ANT), correlated
(CORR), and independent (IND). The synthetic datasets are created using the generator
developed by the authors of [98].

We also perform experiments on three real datasets. NBA dataset consists of 17,264
objects, containing statistics of basketball players. For each player we consider 5 statistics
(i.e., points, rebound, assist, steal blocks). House is 6-dimensional dataset consists of
127,931 objects. Each object, represents the money spent in one year by an American
family for six different types of expenditures (e.g., gas, electricity, water, heating, etc.).
Finally, Colour is a 9-dimensional dataset, which contains 68,040 objects, representing
the first three moments of the RGB color distribution of an image.

3.5.1.2 Implementation

All algorithms, described in Section 3.3, were written in C++, compiled with gcc, and
experiments were performed on a 2.6GHz CPU. In order to accurately convey the ef-
fect of I/O operations, we disable the operating system caching, and perform direct and
synchronous I/O’s.

The size of each object is set equal to 100 bytes, as was the case in the experimental
evaluation of the works that introduced the algorithms under investigation. Finally, the
default size of block is set to 2048 bytes; hence, in default setting, each block contains 20
object.

3.5.1.3 Metrics

To gauge efficiency of all algorithms, we measure: (1) the number of disk I/O operations,
which are distinguished into four categories, read, write operations, performed during the
pre-processing phase (i.e., sorting) if any, and read, write operations performed during
the main computational phase; (2) the number of dominance checks; (3) the time spent
solely on CPU processing denoted as CPU Time and measured in seconds; (4) the total
execution time, denoted as Total Time and measured in seconds; In all cases the reported
time values are the averages of 5 executions.

3.5.2 Algorithms Comparison

Table 3.1 lists the parameters and the range of values examined. In each experiment, we
vary a single parameter and set the remaining to their default (bold) values. SFS and
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LESS sort according to the entropy function. During pass zero in LESS, the window is
set to one block.

3.5.2.1 Varying the number of objects

In this experiment, we vary the number of objects from 50K up to 5M and measure the
total time, number of I/O’s and dominance checks, and CPU time, in Figures 3.1∼3.4.

The important conclusions from Figure 3.1 are two. First, RAND and BNL outperform
the other methods in anti-correlated datasets. This is explained as follows. Note that the
CPU time mainly captures the time spent for the following task: dominance checks, data
sorting in case of LESS/SFS, and skyline identification, in case of BNL. From Figure 3.4 we
can conclude that BNL spends a lot of CPU time in skyline identification. BNL requires
the same or more CPU time than RAND, while BNL performs fewer dominance checks
than RAND. This is more clear in the case of independent and correlated datasets where
the cost for dominance checks is lower compared to the anti-correlated dataset. In these
datasets, the BNL CPU time increased sharply as the cardinality increases.

The second conclusion is that, in independent and correlated datasets, the performance
of BNL quickly degrades as the cardinality increases. This is due to the increase of the
window size, which in turn makes window maintenance and skyline identification more
difficult.

Figure 3.2 shows the I/O operations performed by the algorithms. We observe that
BNL outperforms the other methods in almost all settings. Particularly, in the correlated
dataset, LESS is very close to BNL. Also, we can observe that, in general, the percentage
of write operations in LESS and SFS is much higher than in BNL and RAND. We should
remark that, the write operations are generally more expensive compared to the read
operations. Finally, for LESS and SFS, we can observe that the larger amount of I/O
operations are performed during the sorting phase.

Regarding the number of dominance checks, shown in Figure 3.3, LESS and SFS
perform the fewest, while RAND the most, in all cases. Figure 3.4 shows the CPU time
spent by the methods. SFS spends more CPU time than LESS even though they perform
similar number of dominance checks; this is because SFS sorts a larger number of object
than LESS. Finally, as previously mentioned, BNL spends considerable CPU time for
skyline identification.

3.5.2.2 Varying the number of dimensions

In this experiment we investigate the performance as we vary the number of dimensions
from 3 up to 15. In Figure 3.5 where the total time is depicted, the performance of all
methods become almost the same for anti-correlated and independent datasets, as the
dimensionality increases. In the correlated dataset, the skyline can fit in main memory,
hence BNL and RAND require only a few passes, while SFS and LESS waste time sorting
the data.

Regarding I/O’s (Figure 3.6), BNL outperforms all other methods in all cases, while
LESS is the second best method. Similarly, as in Figure 3.2, LESS and SFS performs
noticeable more write operations compared to BNL and RAND. Figure 3.7 shows that
LESS and SFS outperforms the other method, performing the same number of dominance
checks. Finally, CPU time is presented in Figure 3.8, where once again the cost for skyline
identification is noticeable for BNL.
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Figure 3.1: Total Time: varying number of objects
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Figure 3.2: I/O Operations: varying number of objects
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Figure 3.3: Dominance Checks: varying number of objects
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Figure 3.4: CPU Time: varying number of objects
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Figure 3.5: Total Time: varying number of attributes
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Figure 3.6: I/O Operations: varying number of attributes
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Figure 3.7: Dominance Checks: varying number of attributes
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Figure 3.8: CPU Time: varying number of attributes
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Figure 3.9: Total Time: varying memory size

3.5.2.3 Varying the memory size

In Figure 3.9, we vary the size of the available memory. In general, the total time here,
follows the trend of I/O operations. We observe that the required time of all methods
decreased sharply for memory sizes up to 1%. However, beyond this point, the time is
almost stable as the memory size increases, with the exception of BNL, where the time
slightly increases (due to the skyline identification cost w.r.t. window size).

3.5.2.4 Varying the block size

In this experiment we vary the block size, from 1024 up to 4096 bytes. Note that, as we
previously mentioned the object size is equal to 100 bytes; as a result, a block of size 1024
bytes contains 1024/100 = 10 objects. Figure 3.10 shows the total time, which follows the
I/O trend, since other factors remain stable.

3.5.2.5 Real Datasets

In this experiment, we evaluate our methods using the real datasets described in Sec-
tion 3.5.1. Table 3.2 summarizes the results, presenting the total time required by all
methods. We observe that BNL outperforms the other methods in all datasets in terms
of total time. RAND outperforms the other methods in all cases, while SFS is the worst.
Note that, in House and Colour datasets, RAND performs more dominance checks, and
more I/O operations, than LESS. However, LESS requires more total time, due to larger
number of write operations, and the CPU time spend for sorting.

57



 0

 200

 400

 600

 800

 1000

 1200

1024 2048 4096

T
ot

al
 T

im
e 

(s
ec

)

Block Size (Bytes)

LESS
SFS

RAND
BNL

(a) Anti-correlated

 0

 200

 400

 600

 800

 1000

1024 2048 4096

T
ot

al
 T

im
e 

(s
ec

)

Block Size (Bytes)

LESS
SFS

RAND
BNL

(b) Independent

 0

 200

 400

 600

 800

 1000

1024 2048 4096

T
ot

al
 T

im
e 

(s
ec

)

Block Size (Bytes)

LESS
SFS

RAND
BNL

(c) Correlated

Figure 3.10: Total Time: varying block size

Table 3.2: Real datasets: Total Time (sec)

Dataset LESS SFS RAND BNL

House 30.11 178.21 15.25 4.98
Colour 14.43 90.73 3.70 1.28
NBA 9.45 26.68 0.71 0.41

3.5.3 Policies Evaluation

In this experiment, we study the effect of different window policies in scan-based skyline
algorithms. Particularly, we use BNL and SFS algorithms and we employ several traversal
and eviction and policies, in conjunction with different ranking schemes. The effect of
policies in LESS are similar to those in SFS and are not shown. Regarding RAND, only
the window traversal policy affects its performance; its effect is not dramatic and hence it
is also not shown.

All results are presented w.r.t. the original algorithms. That is, let m be a measurement
for the original algorithm, and m′ be the corresponding measurement for an examined
variation. In this case, the measurement presented for the variation is 1 + (m′ −m)/m.

3.5.3.1 BNL

We first study the performance of BNL under the 10 most important policy and ranking
scheme combinations. Figure 3.11 shows the I/O operations performed by the BNL flavors.
As we can see, none of the examined variations performs significant better than the original
algorithm. In almost all cases, the I/O performance of most variations is very close
to the original. The reason is that the append eviction policy (apE), adopted by the
original BNL already performs very well for two reasons. First, the apE policy always
removes objects that have not dominated any other object. This way, the policy indirectly
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Figure 3.11: BNL Policies (I/O Operations): varying number of attributes
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Figure 3.12: BNL Policies (Dominance Checks): varying number of attributes
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Figure 3.13: SFS Policies (I/O Operations): varying number of attributes
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Figure 3.14: SFS Policies (Dominance Checks): varying number of attributes
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Figure 3.15: Sorting Functions (Total Time): varying number of attributes

implements a dominance-oriented criterion. Second, the apE policy always removes the
most recently read object, which is important for BNL. A just read object, requires the
most time (compared to other objects in the window) in order to be identified as a skyline,
thus propagated to the results and freeing memory. Hence, by keeping “older” objects
we increase the probability of freeing memory in the near future. Still it is possible to
marginally decrease the number of I/Os.

Figure 3.12 shows the number of dominance checks performed. We can observe that,
in several cases, the variants that adopt rank-based traversal, perform significant fewer
dominance checks than the original. Particularly, the rkT/rkE/r1R and rkT/rkE/r2R
variants outperform the others in almost all cases, in independent and correlated datasets,
by up to 50%. Similar results also hold for low dimensionalities in the anti-correlated
dataset. However, this does not hold in more dimensions, due to the explosion of skyline
objects in anti-correlated datasets.

3.5.3.2 SFS

Here, as in the previous experiment, we examine the performance of SFS algorithm adopt-
ing several policies. Similar to BNL, none of SFS variants perform noticeable fewer I/O
operations (Figure 3.13). Regarding the dominance checks (Figure 3.14), in anti-correlated
and independent datasets, most of variants have similar performance to the original algo-
rithm. Only for correlated datasets, ranked-based policies exhibit significant performance
gains.

3.5.4 Sorting Function Evaluation

In this experiment we study the performance of SFS and LESS algorithms considering
different sorting functions. We use three sorting functions: Entr, Sum and minC, as
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described in Section 3.3. As we can see in Figure 3.15, the sorting functions Entr and
Sum have similar performance in all cases, for both SFS and LESS algorithms. Another
interesting observation is that SFS, unlike LESS, has similar performance for all sorting
functions.

3.5.5 Discussion

In an I/O-sensitive setting, i.e., when I/O operations cost significantly more than CPU
cycles, BNL seems to be the ideal choice, as it performs less I/O operations than all other
methods in almost all settings. Additionally, BNL and RAND perform less write operation
than the other methods. On the other hand, in a CPU-sensitive setting, LESS and RAND
seem to be good choices. LESS performs the fewest dominance checks, while RAND
doesn’t spend time for sorting the data, or for skyline identification. Finally, regarding
the policies tested, the rank-based ones show significant gains but only in CPU-sensitive
settings.

3.6 Summary

In this work we have studied an important class of external memory skyline algorithms.
Particularly, we have assumed a standard external memory model and have addressed
neglected details that arise in real system implementations. Moreover, we have focused on
the core issue of managing in-memory objects, comprising the so-called window. Last but
not least, we have performed an extensive experimental evaluation on real and synthetic
data using real disk-based implementations, and have drawn insightful conclusions.
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Part II

Exploratory Data Analysis
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Chapter 4

Visual Exploration and Analysis
over Large Datasets

Data exploration and visualization systems are of great importance in the Big Data era, in
which the volume and heterogeneity of available information make it difficult for humans
to manually explore and analyse data. Most traditional systems operate in an offline way,
limited to accessing preprocessed (static) sets of data. They also restrict themselves to
dealing with small dataset sizes, which can be easily handled with conventional techniques.
However, the Big Data era has realized the availability of a great amount and variety of
big datasets that are dynamic in nature; most of them offer API or query endpoints for
online access, or the data is received in a stream fashion. Therefore, modern systems must
address the challenge of on-the-fly scalable visualizations over large dynamic sets of data,
offering efficient exploration techniques, as well as mechanisms for information abstraction
and summarization. Finally, they must take into account different user-defined exploration
scenarios and user preferences.

In this chapter two problems are considered. In the first one we study the problem of
on-the-fly visual exploration over large sets of data. For this problem we present a generic
model for personalized multilevel exploration and analysis. Our model is built on top
of a lightweight tree-based structure which can be efficiently constructed on-the-fly for a
given set of data. This structure aggregates input objects into a hierarchical multiscale
model. Considering different exploration scenarios over large datasets, the proposed model
enables efficient multilevel exploration, offering incremental construction and prefetching
via user interaction, and dynamic adaptation of the hierarchies based on user preferences.
A thorough theoretical analysis is presented, illustrating the efficiency of the proposed
methods. The presented model is realized in a web-based prototype tool, called SynopsViz
that offers multilevel visual exploration and analysis over Linked Data datasets. Finally,
we provide a performance evaluation and a empirical user study employing real datasets.

The second problem considers the exploration and visualization of very large graphs.
For this problem we present a novel platform which enables the user to interact with
the visualized graph in a way that is very similar to the exploration of maps at multiple
levels. Our approach involves an offline preprocessing phase that builds the layout of
the graph by assigning coordinates to its nodes with respect to a Euclidean plane. The
respective points are indexed with a spatial data structure, i.e., an R-tree, and stored in
a database. Multiple abstraction layers of the graph based on various criteria are also
created offline, and they are indexed similarly so that the user can explore the dataset
at different levels of granularity, depending on her particular needs. Then, our system
translates user operations into simple and very efficient spatial operations (i.e., window
queries) in the backend. This technique allows for a fine-grained access to very large
graphs with extremely low latency and memory requirements and without compromising
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the functionality of the tool. Our web-based prototype supports four main operations: (1)
interactive navigation, (3) multi-level exploration, (3) keyword search and (4) subgraph
selection and manipulation.

4.1 Efficient Multilevel Exploration

Exploring, visualizing and analysing data is a core task for data scientists and analysts
in numerous applications. Data exploration and visualization enable users to identify
interesting patterns, infer correlations and causalities, and support sense-making activities
over data that are not always possible with traditional data mining techniques [214, 139].
This is of great importance in the Big Data era, where the volume and heterogeneity of
available information make it difficult for humans to manually explore and analyse large
datasets.

One of the major challenges in visual exploration is related to the large size that
characterizes many datasets nowadays. Considering the visual information seeking mantra:
“overview first, zoom and filter, then details on demand” [343], gaining overview is a crucial
task in the visual exploration scenario. However, offering an overview of a large dataset is
an extremely challenging task. Information overloading is a common issue in large dataset
visualization; a basic requirement for the proposed approaches is to offer mechanisms for
information abstraction and summarization.

The above challenges can be overcome by adopting hierarchical aggregation approaches
(for simplicity we also refer to them as hierarchical) [162]. Hierarchical approaches allow
the visual exploration of very large datasets in a multilevel fashion, offering overview
of a dataset, as well as an intuitive and usable way for finding specific parts within a
dataset. Particularly, in hierarchical approaches, the user first obtains an overview of the
dataset (both structure and a summary of its content) before proceeding to data explo-
ration operations, such as roll-up and drill-down, filtering out a specific part of it and
finally retrieving details about the data. Therefore, hierarchical approaches directly sup-
port the visual information seeking mantra. Also, hierarchical approaches can effectively
address the problem of information overloading as it provides information abstraction and
summarization.

A second challenge is related to the availability of API and query endpoints (e.g.,
SPARQL) for online data access, as well as the cases where that data is received in a
stream fashion. The latter pose the challenge of handling large sets of data in a dynamic
setting, and as a result, a preprocessing phase, such as traditional indexing, is prevented.
In this respect, modern techniques must offer scalability and efficient processing for on-
the-fly analysis and visualization of dynamic datasets.

Finally, the requirement for on-the-fly visualization must be coupled with the diversity
of preferences and requirements posed by different users and tasks. Therefore, the pro-
posed approaches should provide the user with the ability to customize the exploration
experience, allowing users to organize data into different ways according to the type of
information or the level of details she wishes to explore.

Considering the general problem of exploring big data [344, 202, 294, 395, 186], most
approaches aim at providing appropriate summaries and abstractions over the enormous
number of available data objects. In this respect, a large number of systems adopt approxi-
mation techniques (a.k.a. data reduction techniques) in which partial results are computed.
Existing approaches are mostly based on: (1) sampling and filtering [173, 302, 238, 21,
216, 56] and/or (2) aggregation (e.g., binning, clustering) [162, 224, 223, 187, 268, 393,
55, 265, 19, 221]. Similarly, some modern database-oriented systems adopt approxima-
tion techniques using query-based approaches (e.g., query translation, query rewriting)
[56, 224, 223, 385, 395]. Recently, incremental approximation techniques are adopted; in
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these approaches approximate answers are computed over progressively larger samples of
the data [173, 21, 216]. In a different context, an adaptive indexing approach is used in
[408], where the indexes are created incrementally and adaptively throughout exploration.
Further, in order to improve performance many systems exploit caching and prefetch-
ing techniques [365, 226, 220, 55, 113, 236, 151]. Finally, in other approaches, parallel
architectures are adopted [160, 228, 227, 216].

Addressing the aforementioned challenges, in this work, we introduce a generic model
that combines personalized multilevel exploration with online analysis of numeric and
temporal data. At the core lies a lightweight hierarchical aggregation model, constructed
on-the-fly for a given set of data. The proposed model is a tree-based structure that
aggregates data objects into multiple levels of hierarchically related groups based on nu-
merical or temporal values of the objects. Our model also enriches groups (i.e., aggre-
gations/summaries) with statistical information regarding their content, offering richer
overviews and insights into the detailed data. An additional feature is that it allows users
to organize data exploration in different ways, by parameterizing the number of groups,
the range and cardinality of their contents, the number of hierarchy levels, and so on. On
top of this model, we propose three user exploration scenarios and present two methods for
efficient exploration over large datasets: the first one achieves the incremental construc-
tion of the model based on user interaction, whereas the second one enables dynamic and
efficient adaptation of the model to the user’s preferences. The efficiency of the proposed
model is illustrated through a thorough theoretical analysis, as well as an experimental
evaluation. Finally, the proposed model is realized in a web-based tool, called SynopsViz
that offers a variety of visualization techniques (e.g., charts, timelines) for multilevel visual
exploration and analysis over Linked Data (LD) datasets.

Contributions. The main contributions of this work are summarized as follows.

1. We introduce a generic model for organizing, exploring, and analysing numeric and
temporal data in a multilevel fashion.

2. We implement our model as a lightweight, main memory tree-based structure, which
can be efficiently constructed on-the-fly.

3. We propose two tree structure versions, which adopt different approaches for the
data organization.

4. We describe a simple method to estimate the tree construction parameters, when no
user preferences are available.

5. We define different exploration scenarios assuming various user exploration prefer-
ences.

6. We introduce a method that incrementally constructs the hierarchy tree via user
interaction.

7. We propose an efficient method that dynamically adapts an existing hierarchy to a
new, considering user’s preferences.

8. We present a thorough theoretical analysis, illustrating the efficiency of the proposed
model.

9. We develop a prototype system which implements the presented model, offering
multilevel visual exploration and analysis over LD.

10. We conduct a thorough performance evaluation and an empirical user study, using
the DBpedia 2014 dataset.
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4.1.1 The HETree Model

In this section we present HETree (Hierarchical Exploration Tree), a generic model for
organizing, exploring, and analysing numeric and temporal data in a multilevel fashion.
Particularly, HETree is defined in the context of multilevel (visual) exploration and anal-
ysis. The proposed model hierarchically organize arbitrary numeric and temporal data,
without requiring it to be described by an hierarchical scheme. We should note that, our
model is not bound to any specific type of visualization; rather it can be adopted by sev-
eral “flat” visualization techniques (e.g., charts, timeline), offering scalable and multilevel
exploration over non-hierarchical data.

In what follows, we present some basic aspects of our working scenario (i.e., visual
exploration and analysis scenario) and highlight the main assumptions and requirements
employed in the construction of our model. First, the input data in our scenario can be
retrieved directly from a database, but also produced dynamically; i.e., either from a query
or from data filtering (e.g., faceted browsing). Thus, we consider that data visualization is
performed online; i.e., we do not assume an offline preprocessing phase in the construction
of the visualization model. Second, users can specify different requirements or preferences
with respect to the data organization. For example, a user prefers to organize the data as
a deep hierarchy for a specific task, while for another task a flat hierarchical organization
is more appropriate. Therefore, even if the data is not dynamically produced, the data
organization is dynamically adapted to the user preferences. The same also holds for any
additional information (e.g., statistical information) that is computed for each group of
objects. This information must be recomputed when the groups of objects (i.e., data
organization) are modified.

From the above, a basic requirement is that the model must be constructed on-the-
fly for any given data and users preferences. Therefore, we implement our model as a
lightweight, main memory tree structure, which can be efficiently constructed on-the-
fly. We define two versions of this tree structure, following data organization approaches
well-suited to visual exploration and analysis context: the first version considers fixed-
range groups of data objects, whereas the second considers fixed-size groups. Finally, our
structure allows efficient on-the-fly statistical computations, which are extremely valuable
for the exploration and analysis scenario.

The basic idea of our model is to hierarchically group data objects based on values of
one of their properties. Input data objects are stored at the leaves, while internal nodes
aggregate their child nodes. The root of the tree represents (i.e., aggregates) the whole
dataset. The basic concepts of our model can be considered similar to a simplified version
of a static 1D R-Tree [191].

Regarding the visual representation of the model and data exploration, we consider
that both data objects sets (leaf nodes contents) and entities representing groups of objects
(leaf or internal nodes) are visually represented enabling the user to explore the data in a
hierarchical manner. Note that our tree structure organizes data in a hierarchical model,
without setting any constraints on the way the user interacts with these hierarchies. As
such, it is possible that different strategies can be adopted, regarding the traversal policy,
as well as the nodes of the tree that are rendered in each visualization stage.

In the rest of this section, preliminaries are presented in Section 4.1.1.1. In Sec-
tion 4.1.1.2, we introduce the proposed tree structure. Sections 4.1.1.3 and 4.1.1.4 present
the two versions of the structure. Finally, Section 4.1.1.5 discusses the specification of the
parameters required for the tree construction, and Section 4.1.1.6 presents how statistics
computations can be performed over the tree.
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4.1.1.1 Preliminaries

In this work we formalize data objects as RDF triples. However, the presented methods
are generic and can be applied to any data objects with numeric or temporal attributes.
Hence, in the following, the terms triple and (data) object will be used interchangeably.

We consider an RDF dataset R consisting of a set of RDF triples. As input data,
we assume a set of RDF triples D, where D ⊆ R and triples in D have as objects either
numeric (e.g., integer, decimal) or temporal values (e.g., date, time). Let tr be an RDF
triple, tr.s, tr.p and tr.o represent, respectively, the subject, predicate and object of the
RDF triple tr.

Given input data D, S is an ordered set of RDF triples, produced from D, where triples
are sorted based on objects’ values, in ascending order. Assume that S[i] denotes the i-th
triple, with S[1] the first triple. Then, for each i < j, we have that S[i].o ≤ S[j].o. Also,
D = S, i.e., for each tr, tr ∈D iff tr ∈ S.

Figure 4.1 presents a set of 10 RDF triples, representing persons and their ages. In
Figure 4.1, we assume that the subjects p0-p9 are instances of a class Person and the
predicate age is a datatype property with integer range.

p0 age 35 p5 age 35

p1 age 100 p6 age 45

p2 age 55 p7 age 80

p3 age 37 p8 age 20

p4 age 30 p9 age 50

Figure 4.1: Running example input data (data objects)

Example 1. In Figure 4.1, given the RDF triple tr = p0 age 35, we have that tr.s = p0,
tr.p = age and tr.o = 35. Also, given that all triples comprise the input data D and
S is the ordered set of D based on the object values, in ascending order; we have
that S = {p8 age 20, p4 age 30, p0 age 35, p5 age 35, p3 age 37, p6 age 45, p9 age 50,
p2 age 55, p7 age 80, p1 age 100}. Hence, S[1] = p8 age 20 and S[10] = p1 age 100. �

Assume an interval I = [a, b], where a, b ∈ R; then, I = {k ∈ R ∣ a ≤ k ≤ b}. Similarly, for
I = [a, b), we have that I = {k ∈ R ∣ a ≤ k < b}. Let I− and I+ denote the lower and upper
bound of the interval I, respectively. That is, given I = [a, b], then I− = a and I+ = b. The
length of an interval I is defined as ∣I+ − I−∣.

In this work we assume rooted trees. The number of the children of a node is its
degree. Nodes with degree 0 are called leaf nodes. Moreover, any non-leaf node is called
internal node. Sibling nodes are the nodes that have the same parent. The level of a node
is defined by letting the root node be at level zero. Additionally, the height of a node is
the length of the longest path from the node to a leaf. A leaf node has a height of 0.

The height of a tree is the maximum level of any node in the tree. The degree of a
tree is the maximum degree of a node in the tree. An ordered tree is a tree where the
children of each node are ordered. A tree is called an m-ary tree if every internal node
has no more than m children. A full m-ary tree is a tree where every internal node has
exactly m children. A perfect m-ary tree is a full m-ary tree in which all leaves are at the
same level.
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p9 age 50
p2 age 55

p3 age 37
p6 age 45  

p7 age 80
p1 age 100 

p0 age 35
p5 age 35

p8 age 20
p4 age 30 

Figure 4.2: A Content-based HETree (HETree-C)

4.1.1.2 The HETree Structure

In this section, we present in more detail the HETree structure. HETree hierarchically
organizes numeric and temporal1 data into groups; intervals are used to represents these
groups. HETree is defined by the tree degree and the number of leaf nodes2. Essentially,
the number of leaf nodes corresponds to the number of groups where input data objects
are organized. The tree degree corresponds to the (maximum) number of groups where a
group is split in the lower level.

Given a set of data objects (RDF triples) D, a positive integer ` denoting the number
of leaf nodes; and a positive integer d denoting the tree degree; an HETree (D, `, d) is an
ordered d-ary tree, with the following basic properties.

− The tree has exactly ` number of leaf nodes.

− All leaf nodes appear in the same level.

− Each leaf node contains a set of data objects, sorted in ascending order based on
their values. Given a leaf node n, n.data denote the data objects contained in n.

− Each internal node has at most d children nodes. Let n be an internal node, n.ci
denotes the i-th child for the node n, with n.c1 be the leftmost child.

− Each node corresponds to an interval. Given a node n, n.I denotes the interval for
the node n.

− At each level, all nodes are sorted based on the lower bounds of their intervals. That
is, let n be an internal node, for any i < j, we have that n.ci.I

− ≤ n.cj .I−.

− For a leaf node, its interval is bounded by the values of the objects included in this
leaf node. Let n be the leftmost leaf node; assume that n contains x objects from D.
Then, we have that n.I− = S[1].o and n.I+ = S[x].o, where S is the ordered object
set resulted from D.

− For an internal node, its interval is bounded by the union of the intervals of its
children. That is, let n be an internal node, having k child nodes; then, we have
n.I− = n.c1.I

− and n.I+ = n.ck.I+.

Example 2. Given the set of RDF triples D from Figure 4.1. Figure 4.2 presents a
HETree with five leaf nodes (i.e., ` = 5) and degree equal to three (i.e., d = 3). Considering
the leftmost leaf node d, we can see that it contains two triples in the following order
p8 age 20, p4 age 30. As a result, the lower bound for the its interval, is equal to the

1Note that our structure handles numeric and temporal data in a similar manner. Also, other types of
one-dimensional data may be supported, with the requirement that a total order can be defined over the
data.

2Note that following a similar approach, the HETree can also be defined by specifying the tree height
instead of degree or number of leaves.
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value of the first triple object, i.e., d.I− = 20; the upper bound is equal to the value of the
last triple object, i.e., d.I+ = 30. For the internal node b, its interval is bounded by the
intervals of its children nodes (d, e, f); i.e., considering the lower bound of its leftmost
child (i.e., 20) and the upper bound of its rightmost child (i.e., 45). �

Furthermore, we present two different approaches for organizing the data in the HETree.
Assume the scenario in which a user wishes to (visually) explore and analyse the historic
events from DBpedia [45], per decade. In this case, user orders historic events by their
date and organizes them into groups of equal ranges (i.e., decade). In a second scenario,
assume that a user wishes to analyse in the Eurostat dataset the gross domestic product
(GDP) organized into fixed groups of countries. In this case, the user is interested in
finding information like: the range and the variance of the GDP values over the top-10
countries with the highest GDP factor. In this scenario, the user orders countries by their
GDP and organizes them into groups of equal sizes (i.e., 10 countries per group).

In the first approach, we organize data objects into groups, where the object values of
each group covers equal range of values. In the second approach, we organize objects into
groups, where each group contains the same number of objects. In the following sections,
we present in detail the two approaches for organizing the data in the HETree.

4.1.1.3 A Content-based HETree (HETree-C)

In this section we introduce a version of the HETree, named HETree-C (Content-based
HETree). This HETree version organizes data into equally sized groups. The basic prop-
erty of the HETree-C is that each leaf node contains approximately the same number of
objects and the content (i.e., objects) of a leaf node specifies its interval. For the tree
construction, the objects are first assigned to the leaves and then the intervals are defined.

An HETree-C (D, `, d) is an HETree, with the following extra property. Each leaf node

contains λ or λ − 1 objects, where3 λ = ⌈ ∣D∣
` ⌉. Particularly, the ` − (λ ⋅ ` − ∣D∣) leftmost

leaves contain λ objects, while the rest leaves4 contain λ − 1. We can equivalently define
the HETree-C by providing the number of objects per leaf λ, instead of the number of
leaves `.

Example 3. Figure 4.2 presents an HETree-C constructed by considering the set of
objects D from Figure 4.1, ` = 5 and d = 3. As we can observe, all the leaf nodes contain
equal number of objects. Particularly, we have that λ = ⌈10

5
⌉ = 2. Also, we have that the

5 − (2 ⋅ 5 − 10) = 5 leftmost leaves (i.e., all leaves in this case), will contain λ triples. As
we can verify from Figure 4.2, all leaves (d, e, f , g, h) contain 2 triples. Note also that
all nodes in HETree-C define closed intervals. �

4.1.1.3.1 The HETree-C Construction

We construct the HETree-C in a bottom-up way. Algorithm 6 describes the HETree-C
construction. The algorithm takes as input: (1) a set of data objects D; (2) the number
of leaf nodes `; and (3) the tree degree d. Initially, the algorithm sort the object set
D in ascending order, based on objects values (line 1 ). Then, the algorithm uses two
procedures to construct the tree nodes. The first procedure, named constrLeaves-C creates
the leaf nodes of the tree (line 2 ). The second procedure, named constrtInterNodes, creates
the internal nodes of the tree (line 3 ). Finally, the root node of the constructed tree is
returned (line 4 ).

3We assume that, the number of objects is at least as the number of leaves; i.e., ∣D∣ ≥ `.
4As an alternative we can construct the HETree-C, so each leaf contains λ objects, except the rightmost

leaf which will contain between 1 and λ objects.
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Algorithm 6. createHETree-C/R (D, `, d)

Input: D: set of objects; `: number of leaf nodes; d: tree degree
Output: r: root node of the HETree tree

1 S ← sort D based on objects values
2 L← constrLeaves-C/R(S, `)
3 r ← constrtInterlNodes(L,d)
4 return r

Procedure 1: constrLeaves-C(S, `)

Input: S: ordered set of objects; `: number of leaf nodes
Output: L: ordered set of leaf nodes

1 λ← ⌈
∣S∣

`
⌉

2 k ← ` − (λ ⋅ ` − ∣S∣)
3 beg ← 1
4 for i← 1 to ` do
5 create an empty leaf node n
6 if i ≤ k then
7 num← λ
8 else
9 num← λ − 1

10 end← beg + num
11 for t← beg to end do
12 n.data← S[t]

13 n.I− ← S[beg].o
14 n.I+ ← S[end].o
15 L[i]← n
16 beg ← end + 1

17 return L

Procedure 1 presents the pseudocode for the constrLeaves-C procedure. First, the
procedure uses an ordered set of data objects S and creates ` leaf nodes containing the
objects S. Then, the procedure computes the number of objects per leaf λ (line 1 ), as well
as the number of leaves that contain λ triples (line 2 ). Then, ` leaf nodes are constructed
(lines 4–16). For the first k leaves, λ objects are inserted, while for the rest leaves, λ − 1
objects are inserted (lines 6–9 ). The interval of each leaf is specified by the objects values
of the first and last triple inserted in this leaf (lines 13–14 ). Finally, the set of created
leaf nodes is returned (line 17 ).

The constrtInterNodes procedure (Procedure 2) builds the internal nodes in a recursive
manner. Particularly, the procedure takes as input a set of nodes H, as well as the tree
degree d. The basic idea of this procedure is the following. For the nodes H, their parents
nodes P are created (lines 4-16 ); then, the procedure calls itself using as input the parent
nodes P (line 21 ). The recursion terminates when the number of created parent nodes is
equal to one (line 17 ); i.e., the root of the tree is created.

Computational Analysis. The computational cost for the HETree-C construction (Al-
gorithm 6) is the sum of three parts. The first is sorting the input data, which can be
done in the worst case in O(∣D∣log∣D∣), employing a linearithmic sorting algorithm (e.g.,
merge-sort). The second part is the constrLeaves-C procedure, which requires O(∣D∣) for
scanning all data objects. The third part is the constrtInterNodes procedure, which re-
quires d ⋅ (⌈ `d⌉ + ⌈ `

d2
⌉ + ⌈ `

d3
⌉ + . . . + 1), with the sum being the number of internal nodes in

the tree. Note that the maximum number of internal nodes in a d-ary tree corresponds
to the number of internal nodes in a perfect d-ary tree of the same height. Also, note

the number of internal nodes of a perfect d-ary tree of height h is dh−1
d−1 . In our case,
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Procedure 2: constrtInterNodes(H, d)

Input: H: ordered set of nodes; d: tree degree
Output: r: root node for H
Variables: P : ordered set of H’s parent nodes

1 pnum ← ⌈
∣H∣

d
⌉ //number of parents nodes

2 t← d − (pn ⋅ d − ∣H ∣) //last parent’s number of children
3 cbeg ← 1 //first child node
4 for p← 1 to pnum do
5 create an empty internal node n
6 if p = pnum then
7 cnum ← t //number of children
8 else
9 cnum ← d

10 cend ← cbeg + cnum //last child node
11 for j ← cbeg to cend do
12 n.c[j]←H[j]

13 n.I− ←H[cbeg].I
−

14 n.I+ ←H[cend].I
+

15 P [p]← n
16 cbeg ← cend + 1

17 if pnum = 1 then
18 r ← P
19 return r

20 else
21 return constrtInterlNodes(P, d)

the height of our tree is h = ⌈logd`⌉. Hence, the maximum number of internal nodes

is d⌈logd`⌉−1
d−1 ≤ d⋅`−1

d−1 . Therefore, the constrtInterNodes procedure, in worst case requires

O(d2⋅`−dd−1 ). Therefore, the overall computational cost for the HETree-C construction in the

worst case is O(∣D∣log∣D∣ + ∣D∣ + d2⋅`−d
d−1 ) = O(∣D∣log∣D∣ + d2⋅`−d

d−1 ).

4.1.1.4 A Range-based HETree (HETree-R)

The second version of the HETree is called HETree-R (Range-based HETree). HETree-R
organizes data into equally ranged groups. The basic property of the HETree-R is that
each leaf node covers an equal range of values. Therefore, in HETree-R, the data space
defined by the objects values is equally divided over the leaves. As opposed to HETree-C,
in HETree-R the interval of a leaf specifies its content. Therefore, for the HETree-R
construction, the intervals of all leaves are first defined and then objects are inserted.

An HETree-R (D, `, d) is an HETree, with the following extra property. The interval
of each leaf node has the same length; i.e., covers equal range of values. Formally, let
S be the sorted RDF set resulted from D, for each leaf node its interval has length ρ,

where5 ρ = ∣S[1].o−S[∣S∣].o∣
` . Therefore, for a leaf node n, we have that ∣n.I− − n.I+∣ = ρ.

For example, for the leftmost leaf, its interval is [S[1].o, S[1].o + ρ). The HETree-R is
equivalently defined by providing the interval length ρ, instead of the number of leaves `.

Example 4. Figure 4.3 presents an HETree-R tree constructed by considering the set
of objects D (Figrue 4.1), ` = 5 and d = 3. As we can observe from Figure 4.3, each leaf
node covers equal range of values. Particularly, we have that the interval of each leaf

must have length ρ = ∣20−100∣
5 = 16. Hence, the leftmost leaf d has the interval [20,20+16).

Based on the specified intervals, the d leaf node contains four triples, the e leaf three
triples, while the rest leaves contain one triple. Note that, all nodes in HETree-R define

5We assume here that, there is at least one object in D with different value than the rest objects.
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Figure 4.3: A Range-based HETree (HETree-R)

closed-open intervals, except the rightmost node in each level, which defines a closed
interval. �

4.1.1.4.1 The HETree-R Construction

This section studies the construction of the HETree-R structure. The HETree-R is also
constructed in a bottom-up fashion.

Similarly with the HETree-C version, Algorithm 6 is used for the HETree-R construc-
tion. The only difference is the constrLeaves-R procedure (line 2 ), which creates the leaf
nodes of the HETree-R and is presented in Procedure 3.

The procedure takes as input an ordered set of data objects S, as well as the number
of leaf nodes `. First, it computes the range ρ of the leaves (line 1 ). The procedure
constructs ` leaf nodes (lines 2–9) and assigns same intervals to all of them (lines 4–8 ),
it traverses all objects in S (lines 10–12 ) and places them to the appropriate leaf node
(line 12). Finally, it removes empty leaf nodes (lines 13–15 ) and returns the set of created
leaves (line 13 ).

Procedure 3: constrLeaves-R(S, `)

Input: S: ordered set of objects; `: number of leaf nodes
Output: L: ordered set of leaf nodes

1 ρ← ∣S[1].o−S[∣S∣].o∣

`

2 for i← 1 to ` do
3 create an empty leaf node n
4 if i = 1 then
5 n.I− ← S[1].o
6 else
7 n.I− ← L[i − 1].I+

8 n.I+ ← n.I− + ρ
9 L[i]← n

10 for t← 1 to ∣S∣ do

11 j ← ⌊
S[t].o−S[1].o

ρ
⌋ + 1

12 L[j].data← S[t]

13 return L

Computational Analysis. The computational cost for the HETree-R construction (Al-
gorithm 6) for sorting the input data (line 1 ) and creating the internal nodes (line 3 )
is the same as in the HETree-C case. The constrLeaves-R procedure (line 2 ) requires
O(` + ∣D∣) = O(∣D∣) (since ∣D∣ ≥ `). Using the computational costs for the first and the
third part from Section 4.1.1.3.1, we have that in worst case, the overall computational
cost for the HETree-R construction is O(∣D∣log∣D∣ + ∣D∣ + d2⋅`−d

d−1 ) = O(∣D∣log∣D∣ + d2⋅`−d
d−1 ).
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4.1.1.5 Estimating the HETree Parameters

In our working scenario, the user specifies the parameters required for the HETree con-
struction (e.g., number of leaves `). In this section, we describe our approach for automati-
cally calculating the HETree parameters based on the input data, when no user preferences
are provided. Our goal is to derive the parameters by the input data, such that the re-
sulting HETree can address some basic guidelines set by the visualization environment.
In what follows, we discuss in detail the proposed approach.

An important parameter in hierarchical visualizations is the minimum and maximum
number of objects that can be effectively rendered in the most detailed level6. In our case,
the above numbers correspond to the number of objects contained in the leaf nodes. The
proper calculation of these numbers is crucial such that the resulting tree avoids overloaded
and scattered visualizations.

Therefore, in HETree construction, our approach considers the minimum and the max-
imum number of objects per leaf node, denoted as λmin and λmax, respectively. Besides
the number of objects rendered in the lowest level, our approach consider perfect m-ary
trees, such that a more “uniform” structure (i.e., all the groups are divided into same
number of groups) is resulted. The following example illustrates our approach to calculate
the HETree parameters.

Table 4.1: Number of leaf nodes for perfect m-ary trees

Degree

Height 2 3 4 5 6

1 2 3 4 5 6
2 4 9 16 25 36
3 8 27 64 625 216
4 16 81 256 3125 1296
5 32 243 1024 15625 7776
6 64 729 4048 78125 46656

Example 5. Assume that based on an adopted visualization technique, the ideal number
of data objects to be rendered on a specific screen is between 25 and 50. Hence, we have
that λmin = 25 and λmax = 50.

Now, let’s assume that we want to visualize the object set D1, using an HETree-C,
where ∣D1∣ = 500. Based on the number of objects and the λ bounds, we can estimate
the bounds for the number of leaves. Let `min and `max denote the lower and the upper

bound for the number of leaves. Therefore, we have that ⌈ ∣D1∣
λmax

⌉ ≤ ` ≤ ⌈ ∣D1∣
λmin

⌉ ⇔

⌈500

50
⌉ ≤ ` ≤ ⌈500

25
⌉⇔ 10 ≤ ` ≤ 20.

Hence, our HETree-C should have between `min = 10 and `max = 20 leaf nodes. Since,
we consider perfect m-ary trees, from Table 4.1 we can identify the tree characteristics
that conform to the number of leaves guideline. The candidate settings (i.e., leaf number
and degree) are indicated in Table 4.1, using dark-grey colour. The setting with d = 2 is
rejected since visualizing two groups of objects in each level, can be considered a small
number under most visualization settings. Note that, in our work, in any case we assume
settings with d ≥ 3 and height ≥ 2. Therefore, an HETree-C with ` = 16 and d = 4 is a
suitable structure for our case.

Now, let’s assume that we want to visualize the object set D2, where ∣D2∣ = 1000.
Following a similar approach, we have that 20 ≤ ` ≤ 40. The candidate settings are
indicated in Table 4.1 using light-grey colour. Also, here the setting with d = 2, is

6Similar bounds can also be defined for other tree levels.
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rejected. Hence, we have the following settings that satisfy the considered guideline: S1:
` = 27, d = 3; S2: ` = 25, d = 5; and S3: ` = 36, d = 6.

In the case, where more than one setting satisfies the considered guideline, we select
the preferable one according to following set of rules. From the candidate settings,
we prefer the setting which results in the highest tree7 (1st Criterion). In case that
the highest tree is constructed by more than one settings, we consider the distance c,
between ` and the centre of `min and `max (2nd Criterion); i.e., c = ∣` − `min+`max

2 ∣. The
setting with the lowest c value is selected. Note that, based on the visualization context,
different criteria and preferences may be followed.

In our example, from the candidate settings, the setting S1 is selected, since it will
construct the highest tree (i.e., height = 3). On the other hand, the settings S2 and S3
will construct trees with lower heights (i.e., height = 2).

Now, assume a scenario where only the settings S2 and S3 are candidates. In this
case, since both settings result to trees with equal heights, the 2nd Criterion is con-
sidered. Hence, for the S2 setting we have c2 = ∣25 − 20+40

2 ∣ = 5. Similarly, for the S3
setting c3 = ∣36− 20+40

2 ∣ = 6. Therefore, between the settings S2 and S3, the setting S2 is
preferable, since c2 < c3.

In case of HETree-R, a similar approach is followed, assuming normal distribution
over the values of the objects. �

4.1.1.6 Statistics Computations over HETree

Data statistics is a crucial aspect in the context of hierarchical visual exploration and anal-
ysis. Statistical informations over groups of objects offer rich insights into the underlying
data. In this way, useful information regarding different set of objects with common char-
acteristics is provided. Additionally, this information may also guide the users through
their navigation over the hierarchy.

In this section, we present how statistics computation is performed over the nodes of
the HETree. Statistics computations exploit two main aspects of the HETree structure:
(1) the internal nodes aggregate their child nodes; and (2) the tree is constructed in
bottom-up fashion. Statistics computation is performed during the tree construction; for
the leaf nodes, we gather statistics from the objects they contain, whereas for the internal
nodes we aggregate the statistics of their children.

For simplicity, here, we assume that each node contains the following extra fields,
used for simple statistics computations, although more complex or RDF-related (e.g.,
most common subject, subject with the minimum value, etc.) statistics can be computed.
Assume a node n, as n.N we denote the number of objects covered by n; as n.µ and n.σ2

we denote the mean and the variance of the objects’ values covered by n, respectively.
Additionally, we assume the minimum and the maximum values, denoted as n.min and
n.max, respectively.

Statistics computations can be easily performed in the construction algorithms (Algo-
rithm 6) without any modifications. The follow example illustrates these computations.

Example 6. In this example we assume the HETree-C presented in Figure 4.2. Fig-
ure 4.4 shows the HETree-C with the computed statistics in each node. When all the leaf
nodes have been constructed, the statistics for each leaf is computed. For instance, we
can see from Figure 4.4, that for the rightmost leaf h we have: h.N = 2, h.µ = 80+100

2 = 90
and h.σ2 = 1

2 ⋅((80−90)2+(100−90)2) = 100. Also, we have h.min = 80 and h.max = 100.
Following the above process, we compute the statistics for all leaf nodes.

7Depending on the scenario, the shortest tree may be preferable.
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Figure 4.4: Statistics computation over HETree

Then, for each parent node we construct, we compute its statistics using the com-
puted statistics of its child nodes. Considering the c internal node, with the child nodes
g and h, we have that c.min = 50 and c.max = 100. Also, we have that c.N = g.N +h.N =
2 + 2 = 4. Now we will compute the mean value by combining the children mean val-
ues: c.µ = g.N ⋅g.µ+h.N ⋅h.µ

g.N+h.N = 2⋅52.5+2⋅90
2+2 = 71.3. Similarly, for variance we have c.σ2 =

g.N ⋅g.σ2+h.N ⋅h.σ2+g.N ⋅(g.µ−c.µ)2+h.N ⋅(h.µ−c.µ)2
g.N+h.N = 2⋅6.25+2⋅100+2⋅(52.5−71.3)2+2⋅(90−71.3)2

2+2 = 404.7.

The similar approach is also followed for the case of HETree-R. �

Computational Analysis. Most of the well known statistics (e.g., mean, variance,
skewness, etc.) can be computed linearly w.r.t. the number of elements. Therefore, the
computation cost over a set of numeric values S is considered as O(∣S∣). Assume a leaf
node n containing k objects, then the cost for statistics computations for n is O(k). Also,
the cost for all leaf nodes is O(∣D∣). Let an internal node n, then the cost for n is O(d);
since the statistics in n are computed by aggregating the statistics of the d child nodes.
Considering that d⋅`−1

d−1 is the maximum number of internal nodes (Section 4.1.1.3.1), we

have that in the worst case the cost for the internal nodes is O(d2⋅`−dd−1 ). Therefore, the

overall cost for statistics computations over an HETree is O(∣D∣ + d2⋅`−d
d−1 ).

4.1.2 Efficient Multilevel Exploration

In this section, we exploit the HETree structure in order to efficiently handle different mul-
tilevel exploration scenarios. Essentially, we propose two methods for efficient hierarchical
exploration over large datasets. The first method incrementally constructs the hierarchy
via user interaction; the second one achieves dynamic adaptation of the data organization
based on user’s preferences.

4.1.2.1 Exploration Scenarios

In a typical multilevel exploration scenario, referred here as Basic exploration scenario
(BSC), the user explores a dataset in a top-down fashion. The user first obtains an overview
of the data through the root level, and then drills down to more fine-grained contents for
accessing the actual data objects at the leaves. In BSC, the root of the hierarchy is
the starting point of the exploration and, thus, the first element to be presented (i.e.,
rendered).

The described scenario offers basic exploration capabilities; however it does not assume
use cases with user-specified starting points, other than the root, such as starting the
exploration from a specific resource, or from a specific range of values.

Consider the following example, in which the user wishes to explore the DBpedia
infoboxes dataset to find places with very large population. Initially, she selects the
populationTotal property and starts her exploration from the root node, moves down the
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right part of the tree and ends up at the rightmost leaf that contains the highly populated
places. Then, she is interested in viewing the area size (i.e., areaTotal property) for one of
the highly populated places and, also, in exploring places with similar area size. Finally,
she decides to explore places based on the water area size (i.e., areaWater) they contain.
In this case, she prefers to start her exploration by considering places that their water
area size is within a given range of values.

In this example, besides BSC one we consider two additional exploration scenarios.
In the Resource-based exploration scenario (RES), the user specifies a resource of interest
(e.g., an IRI) and a specific property; the exploration starts from the leaf containing the
specific resource and proceeds in a bottom-up fashion. Thus, in RES the data objects
contained in the same leaf with the resource of interest are presented first. We refer to
that leaf as leaf of interest.

The third scenario, named Range-based exploration scenario (RAN) enables the user
to start her exploration from an arbitrary point in the hierarchy providing a range of
values; the user starts from a set of internal nodes and she can then move up or down the
hierarchy. The RAN scenario begins by rendering all sibling nodes that are children of the
node covering the specified range of interest; we refer to these nodes as nodes of interest.

Note that, regarding the adopted rendering policy for all scenarios, we only consider
nodes belonging to the same level. That is, sibling nodes or data objects contained in the
same leaf, are rendered.

Regarding the “navigation-related” operations, the user can move down or up the
hierarchy by performing a drill-down or a roll-up operation, respectively. A drill-down
operation over a node n enables the user to focus on n and render its child nodes. If n is a
leaf node, the set of data objects contained in n are rendered. On the other hand, the user
can perform a roll-up operation on a set of sibling nodes S. The parent node of S along
with the parent’s sibling nodes are rendered. Finally, the roll-up operation when applied
to a set of data objects O will render the leaf node that contains O along its sibling leaves,
whereas a drill-down operation is not applied to a data object.

4.1.2.2 Incremental HETree Construction

In the Web of Data, the dataset might be dynamically retrieved by a remote site (e.g.,
via an SPARQL endpoint), as a result, in all exploration scenarios, we have assumed that
the HETree is constructed on-the-fly at the time the user starts her exploration. In the
previous DBpedia example, the user explores three different properties; although only a
small part of their hierarchy is accessed, the whole hierarchies are constructed and the
statistics of all nodes are computed. Considering the recommended HETree parameters
for the employed properties, this scenario requires that 29.5K nodes will be constructed for
populationTotal property, 9.8K nodes for the areaTotal and 3.3K nodes for the areaWater,
amounting to a total number of 42.6K nodes. However, the construction of the hierarchies
for large datasets poses a time overhead (as shown in the experimental section) and,
consequently, increased response time in user exploration.

In this section, we introduce ICO (Incremental HETree Construction) method, which
incrementally constructs the HETree, based on user interaction. The proposed method
goes beyond the incremental tree construction, aiming at further reducing the response
time during the exploration process by “pre-constructing” (i.e., prefetching) the parts of
the tree that will be visited by the user in her next roll-up or drill-down operation. Hence,
a node n is not constructed when the user visits it for the first time; instead, it has been
constructed in a previous exploration step, where the user was on a node in which n can
be reached by a roll-up or a drill-down operation. This way, our method offers incremental
construction of the tree, tailored to each user’s exploration. Finally, we show that, during
an exploration scenario, ICO constructs the minimum number of HETree elements.
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Figure 4.5: Incremental HETree construction example. Ê Resource-based (RES) exploration
scenario; Ë Range-based (RAN) exploration scenario

Employing ICO method in the DBpedia example, the populationTotal hierarchy will
only construct 76 nodes (the root along its child nodes and 9 nodes in each of the lower tree
levels) and the areaTotal will construct 3 nodes corresponding to the leaf node containing
the requested resource and its siblings. Finally, the areaWater hierarchy initially will
contain either 6 or 15 nodes, depending on whether the user’s input range corresponds to
a set of sibling leaf nodes, or to a set of sibling internal nodes, respectively.

Example 7. We demonstrate the functionality of ICO through the following example.
Assume the dataset used in our running examples, describing persons and their ages.
Figure 4.5 presents the incremental construction of the HETree presented in Figure 4.3
for the RES and RAN exploration scenarios. Blue color is used to indicate the HETree
elements that are presented (rendered) to the user, in each exploration stage.

In the RES scenario (upper flow in Figure 4.5), the user specifies
“http://persons.com/p6” as her resource of interest; all data objects contained in the
same leaf (i.e., e) with the resource of interest are initially presented to the user. The
ICO initially constructs the leaf e, along with its siblings, i.e., leaves d and f . These
leaves correspond to the nodes that the user can reach in a next (roll-up) step. Next, the
user rolls up and the leaves d, e and f are presented to her. At the same time, parent
node b and its sibling c are constructed. Note that all elements which are accessible to
the user by moving either down (i.e., d, e, f data objects), or up (i.e., b, c nodes) are
already constructed. Finally, when the user rolls up b and c nodes are rendered and
parent node a, along with the children of c, i.e., g and h, are constructed.

In the RAN scenario (lower flow in Figure 4.5), the user specifies [20, 50] as her range
of interest. The nodes covering this range (i.e., d, e) are initially presented along with
their sibling f . Also, ICO constructs the parent node b and its sibling c because they are
accessible by one exploration step. Then, the user performs a roll-up and ICO constructs
the a, g, h nodes (as described in the RES scenario above). �

In the beginning of each exploration scenario, ICO constructs a set of initial nodes,
which are the nodes initially presented, as well as the nodes potentially reached by the
user’s first operation (i.e., required HETree elements). The required HETree elements of an
exploration step are nodes that can be reached by the user by performing one exploration
operation. Hence, in the RES scenario, the initial nodes are the leaf of interest and its
sibling leaves. In the RAN, the initial nodes are the nodes of interest, their children, and
their parent node along with its siblings. Finally, in the BSC scenario the initial nodes
are the root node and its children.

In what follows we describe the construction rules adopted by ICO through the user
exploration process. These rules provide the correspondences between the types of ele-
ments presented in each exploration step and the elements that ICO constructs. Note that
these rules are applied after the construction of the initial nodes, in all three exploration
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scenarios. The correctness of these rules is verified later in Proposition 5.

Rule 1: If a set of internal sibling nodes C is presented, ICO constructs: (i) the parent
node of C along with the parent’s siblings, and (ii) the children of each node in C.

Rule 2: If a set of leaf sibling nodes L is presented, ICO does not construct anything (the
required nodes have been previously constructed).

Rule 3: If a set of data objects O is presented, ICO does not construct anything (the
required nodes have been previously constructed).

Remark 1. Each time ICO constructs a node (either as part of initial nodes or due to
a construction rule), it also constructs all of its sibling nodes.

The following proposition shows that, in all case, the required HETree elements have
been constructed earlier by ICO.

Proposition 5. In any exploration scenario, the HETree elements, a user can reach by
performing one operation (i.e., required elements), have been previously constructed by
ICO.

Proof. Considering the different cases of currently presented HETree elements and the
available exploration operations, we have the following.

(1) A set of (internal or leaf) sibling nodes S are presented and the user performs
a roll-up action. Here, the roll-up action will render the parent node of S along with
parent’s sibling nodes. In the case that S are the nodes of interest (RAN scenario), the
rendered nodes have been constructed in the beginning of the exploration (as part of
RAN initial nodes). Otherwise, the presented nodes have been previously constructed
due to construction Rule 1(i).

(2) A set of internal sibling nodes C are presented and the user performs a drill-down
action over a node c ∈ C. In this case, the drill-down will render c child nodes. If C are
the nodes of interest (RAN scenario), then the child nodes of c have been constructed
at the beginning of the exploration (as part of RAN initial nodes). Else, if C is the
root node (BSC scenario), then again the child nodes of c have been constructed at the
beginning of the exploration (as part of BSC initial nodes). Otherwise, the children of
c, have been constructed before due to construction Rule 1(ii).

(3) A set of leaf sibling nodes L are presented and the user performs a drill-down
action over a leaf l ∈ L. In this case the drill-down action will render data objects
contained in l. Since a leaf is constructed together with its data objects, all data objects
here have been previously constructed along with l.

(4) A set of data objects O are presented and the user performs a roll-up action. Here,
the roll-up action will render the leaf that contains O along with the leaf’s siblings. In
RAN and BSC exploration scenarios, data objects are reachable only via a drill-down
action over the leaf over the leaf that are contained, whereas in the RES scenario, the
data objects, contained in the leaf of interest, are the first elements that are presented
to the user.

In the general case, since O are reached only via a drill-down, their parent leaf has
already been constructed. Based on Remark 1, all sibling nodes of this leaf have also
been constructed. In the case of the RES scenario, where O includes the resource of
interest, the leaf that contains O along with leaf’s siblings have been constructed at the
beginning of the exploration.

Thus, it is shown that, in all cases, the HETree elements that a user can reach by
performing one operation, have been previously constructed by ICO. This concludes the
proof of Proposition 1. ∎
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Also, the following theorem shows that over any exploration scenario ICO constructs
only the required HETree elements.

Theorem 1. ICO constructs the minimum number of HETree elements in any explo-
ration scenario.

Proof. We will show that, during an exploration scenario, in any exploration step, ICO
constructs only the required HETree elements. Considering an exploration scenario,
ICO constructs nodes only either as initial nodes, or via construction rules. The initial
nodes are constructed once, at the beginning of the exploration process; based on the
definition of the initial nodes, these nodes are the required HETree elements for the first
user operation.

During the exploration process, ICO constructs nodes only via the construction rules.
Essentially, from construction rules, only the Rule 1 construct new nodes. Considering
the part of the tree rendered when Rule 1 is applied, it is apparent that the nodes
constructed by Rule 1 are only the required HETree elements.

Therefore, it is apparent that in any exploration step, ICO constructs only the
required HETree elements. By considering all the steps comprising a user exploration
scenario, the overall number of elements constructed is the minimum. This concludes
the proof of Theorem 1. ∎

4.1.2.2.1 ICO Algorithm

In this section, we present the incremental HETree construction algorithm. Note that,
here we include the pseudocode only for the HETree-R version, since the only difference
with the HETree-C version is in the way that the nodes’ intervals are computed and that
the dataset is initially sorted. In the analysis of the algorithms, both versions are studied.

Here, we assume that each node n contains the following extra fields. Let a node n,
n.p denotes the parent node of n, and n.h denotes the height of n in the hierarchy. Addi-
tionally, given a dataset D, D.minv and D.maxv denote the minimum and the maximum
value for all objects in D, respectively. The user preferences regarding the exploration’s
starting point are represented as an interval U . In the RES scenario, given that the value
of the explored property for the resource of interest is o, we have U− = U+ = o. In the
RAN scenario, given that the range of interest is R, we have that U− = max (D.minv,R−)
and U+ = min (D.maxv,R+). In the BSC scenario, the user does not provide any prefer-
ences regarding the starting point, so we have U− = D.minv and U+ = D.maxv. Finally,
according to the definition of HETree, a node n encloses a data object (i.e., triple) tr if
n.I− ≥ tr.o and n.I+ ≤ tr.o.

The algorithm ICO-R (Algorithm 7) implements the incremental method for HETree-R.
The algorithm uses two procedures to construct all required nodes. The first procedure
constrRollUp-R (Procedure 4) constructs the nodes which can be reached by a roll-up
operation, whereas constrDrillDown-R (Procedure 5) constructs the nodes which can be
reached by a drill-down operation. Additionally, the aforementioned procedures exploit
two secondary procedures: computeSiblingInterv-R (Procedure 6) and constrSiblingNodes-R
(Procedure 7), which are used for nodes’ intervals computations and nodes construction.

The ICO-R algorithm is invoked at the beginning of the exploration scenario, in order
to construct the initial nodes, as well as every time the user performs an operation. The
algorithm takes as input the dataset D, the tree parameters d and `, the starting point
U , the currently presented (i.e., rendered) elements cur, and the constructed HETree H.
ICO-R begins with the currently presented elements cur equal to null (lines 1-5 ). Based on
the starting point U , the algorithm computes the interval I0 corresponding to the sibling
nodes that are first presented to the user, as well as its hierarchy height h0 (line 3 ).
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Algorithm 7. ICO-R(D, `, d, U , cur, H)

Input: D: set of objects; `: number of leaf nodes; d: tree degree;
U : interval representing user’s starting point; cur: currently presented elements; H:
currently created HETree-R

Output: H: updated HETree-R
Variables: len: the length of the leaf’s interval

1 if cur = null then //first ICO call
2 len← D.maxv−D.minv

`

3 from U compute I0, h0 //used for constructing initial nodes
4 cur ,H ← constrSiblingNodes-R(I0,null,D,h0)

5 if RES then return H

6 if cur[1].p = null and D ≠ ∅ then
7 H ← constrRollUp-R(D,d, cur,H)

8 if cur[1].h > 0 then //cur are not leaves
9 H ← constrDrillDown-R(D,d, cur,H)

10 return H

Procedure 4: constrRollUp-R(D, d, cur, H)

Input: D: set of objects; d: tree degree; cur: currently presented elements; H: currently created
HETree-R

Output: H: updated HETree-R

//Computed in ICO-R: len: the length of the leaf’s interval

1 create an empty node par //cur parent node
2 par.h← cur[1].h + 1
3 par.I− ← cur[1].I−

4 par.I+ ← cur[∣cur∣].I+

5 for i← 1 to ∣cur∣ do //create parent-child relations
6 par.c[i]← cur[i]
7 cur[i].p← par

8 insert par into H
9 lp ← par.I+ − par.I− //par interval length

10 I−ppar ←D.minv + d ⋅ lp ⋅ ⌊
par.I−−D.minv

d⋅lp
⌋

11 I+ppar ←min(D.maxv, I−ppar + d ⋅ lp) //compute interval for par parent, Ippar
12 lsp ← (len ⋅ dcur[1].h) //interval length for a par sibling node
13 Ispar ← computeSiblingInterv-R(I−ppar, I

+

ppar, lsp, d) //compute intervals for all par sibling nodes
14 remove par.I from Ispar //remove par interval, par already constructed
15 S ← constrSiblingNodes-R(Ispar,null,D, cur[1].h + 1)
16 insert S into H
17 return H

For sake of simplicity, the details for computing I0 and h0 are omitted. For example,
the interval I for the leaf that contains the resource of interest with object value o, is
computed as I− =D.minv + len ⋅ ⌊o−D.minvlen

⌋ and I+ = min(D.maxv, I− + len). Following a
similar approach, we can easily compute I0 and h0.

Based on I0, the algorithm constructs the sibling nodes that are first presented to the
user (line 4 ). Then, the algorithm constructs the rest initial nodes (lines 6-9 ). In the
RES case, as I0 we consider the interval that includes the leaf that contains the resource of
interest along with its sibling leaves. Hence, all the initial nodes are constructed in line 4
and the algorithm terminates (line 5 ) until the next user’s operation.

After the first call, in each ICO execution, the algorithm initially checks if the parent
node of the currently presented elements is already constructed, or if all the nodes that
enclose data objects8 have been constructed (line 6 ). Then, procedure constrRollUp-R
(line 7 ) is used to construct the cur parent node, as well as the parent’s siblings. In the

8Note that in the HETree-R version, we may have nodes that do not enclose any data objects.
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Procedure 5: constrDrillDown-R(D, d, cur, H)

Input: D: set of objects; d: tree degree; cur: currently presented elements; H: currently created
HETree-R

Output: H: updated HETree-R

//Computed in ICO-R: len: the length of the leaf’s interval

1 lc = len ⋅ d
cur[1].h−1 //length of the children’s intervals

2 for i← 1 to ∣cur∣ do
3 if cur[i].c[0] = null then continue //nodes previously constructed
4 Ich ← computeSiblingInterv-R(cur[i].I−, cur[i].I+, lc, d) //compute intervals for cur[i] children
5 S ← constrSiblingNodes-R(Ich, cur[i], cur[i].data, cur[1].h − 1)
6 for k ← 1 to ∣S∣ do
7 cur[i].c[k]← S[k]

8 insert S into H

9 return H

Procedure 6: computeSiblingInterv-R(low, up, len, n)

Input: low: intervals’ lower bound; up: intervals’ upper bound;
len: intervals’ length; n: number of siblings

Output: I: an ordered set with at most n equal length intervals

1 I−t , I
+

t ← low
2 for i← 1 to n do
3 I−t ← I+t
4 I+t ←min(up , len + I−t )
5 append It to I
6 if I+t = up then break

7 return I

case that cur are not leaf nodes or data objects (line 8 ), procedure constrDrillDown-R
(line 9 ) is used to construct all cur children. Finally, the algorithm returns the updated
HETree (line 10 ).

The constrRollUp-R (Procedure 4) initially constructs the cur parent node par (lines 1-
7 ). Next, it computes the interval Ippar corresponding to par parent node interval
(lines 10-11 ). Using Ippar, it computes the intervals for each of par sibling nodes (line 13 ).
Finally, the computed sibling nodes’ intervals Ispar are used for the nodes construction
(line 15 ).

In the constrDrillDown-R (Procedure 5), for each node in cur, its children are con-
structed as follows (line 2 ). First, the procedure computes the intervals Ich of each child
and then it constructs all children (line 5 ). Finally, the child relations for the parent node
cur[i] are constructed (line 6-7 ).

4.1.2.2.2 Computational Analysis

Here we analyse the incremental construction for both HETree versions.

Number of Constructed Nodes. Regarding the number of initial nodes constructed
in each scenario: in RES scenario, at most d leaf nodes are constructed; in RAN scenario,
at most 2d + d2 nodes are constructed; finally in BSC scenario, d + 1 are constructed.

Regarding the maximum number of nodes constructed in each operation in RES and
RAN scenarios: (1) A roll-up operation constructs at most d + d ⋅ (d − 1) = d2 nodes. The
d nodes are constructed in constrRollUp, whereas the d ⋅ (d − 1) in constrDrillDown. (2)
A drill-down operation constructs at most d2 nodes in constrDrillDown. As for the BSC
scenario: (1) A roll-up operation does not construct any nodes. (2) A drill-down operation
constructs at most d2 nodes in constrDrillDown.
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Procedure 7: constrSiblingNodes-R(I, p, A, h)

Input: I: an ordered set with equal length intervals p: nodes’ parent node; A: available data
objects; h: nodes’ height

Output: S: a set of HETree-R sibling nodes

1 l = I[1]+ − I[1]− //intervals’ length
2 T [ ]← ∅

3 foreach tr ∈ A do //indicate enclosed data for each node

4 j ← ⌊
tr.o−I[1]−

l
⌋ + 1

5 if j ≥ 0 and j ≤ ∣I ∣ then
6 insert object tr into T [j]
7 remove object tr from A

8 for i← 1 to ∣I ∣ do //construct nodes
9 if T [i] = ∅ then continue

10 create a new node n
11 n.I− ← I[i]−

12 n.I+ ← I[i]+

13 n.p← p
14 n.c← null
15 n.data← T [i]
16 n.h← h
17 if h = 0 then //node is a leaf
18 sort n.data based on objects values

19 append n to S

20 return S

Next, we analyse in details the worst case of ICO algorithm, i.e., when the construction
cost is maximized.

The HETree-R Version. The worst case in HETree-R occurs when the whole dataset
D is contained in a set of sibling leaf nodes L, where ∣L∣ ≤ d.

Considering the above setting, in the RES scenario, the cost is maximized when ICO-R
constructs L (as initial nodes). In this case, the cost is O(∣D∣ + ∣D∣log∣D∣) = O(∣D∣log∣D∣).

In a RAN scenario, the cost is maximized when the parent node p of L along with p’s
sibling nodes are considered as nodes of interest. First, let’s note that in this case p has no
sibling nodes, since all the sibling nodes are empty (i.e., they do not enclose data). Hence,
the p has to be constructed in ICO-R as initial nodes, as well as the L in constrDrillDown-R,
and the parent of p in constrRollUp-R. The p construction in ICO-R requires O(∣D∣). Also,
the L construction in constrDrillDown-R requires O(d + ∣D∣ + ∣D∣log∣D∣ + d). Finally, the
construction of the parent of p in constrRollUp-R requires O(1). Therefore, in RAN the
overall cost in the worst case is O(∣D∣ + d + ∣D∣ + ∣D∣log∣D∣ + d) = O(∣D∣log∣D∣).

Finally, in BSC scenario, the cost is maximized when the L have to be constructed by
constrDrillDown-R, which requires O(d + ∣D∣ + ∣D∣log∣D∣ + d) = O(∣D∣log∣D∣).

The HETree-C Version. First let’s note that in HETree-C version, the dataset is sorted
at the beginning of the exploration and the leaves contain equal number of data objects.
As a result, during a node construction, the data objects, enclosed by it, can be directly
identified by computing its position over the dataset and without the need of scanning the
dataset or the enclosed data values. However, in ICO we assume that the node’s statistics
are computed each time the node is constructed. Hence, in each node construction, we
scan the data objects that are enclosed by this node. In RES scenario, the worst case
occurs, when the user rolls up for the first time to the nodes at level 2 (i.e., two levels
below the root). In this case, ICO has to construct the d nodes at level 1, as well the
children for the d − 1 nodes in level 2. Note that the construction of the parent of the
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nodes in level 2 does not require to process any data objects or construct children, since
these nodes are already constructed. Now regarding the construction of the rest d − 1
nodes at level 1, ICO will process at most the d−1

d of all data objects9. Thus, the cost

for constrRollUp-C is O(d + d−1
d ∣D∣ + d − 1). Finally, for constructing the child nodes for

the d − 1 nodes in level 2, we are required to process at most the d−1
d2

of all data objects.

Hence, the cost for constrDrillDown-C is O(d2 + d−1
d2

∣D∣ + d2). Therefore, in RES the cost

in worst case is O(d + d−1
d ∣D∣ + d − 1 + d2 + d−1

d2
∣D∣ + d2) = O(d2 + d−1

d ∣D∣).
In RAN scenario, the worst case occurs, when the user starts from any set of sibling

nodes at level 2. Hence, the cost is maximized at the beginning of the exploration. In this
case, ICO has to construct the d initial nodes at level 2, the d nodes at level 1, and the
children for all the d nodes in level 2. First the d initial nodes at level 2 are constructed by
ICO-R, which can be done in O(d + ∣D∣ + d). Then, the d nodes at level 1 are constructed
by constrRollUp-C. Similarly as in RES scenario, this can be done in O(d+ d−1

d ∣D∣+d− 1).
Finally, the construction of the child nodes for all the d nodes in level 2 requires to process
∣D∣
d data objects. Hence, the cost for constrDrillDown-C is O(d2 + ∣D∣

d + d2). Therefore, in

RAN the cost, in the worst case, is O(∣D∣+d+d+ d−1
d ∣D∣+d−1+d2+ ∣D∣

d +d
2) = O(d2+ d−1

d ∣D∣).
Finally, in BSC scenario, the worst case occurs, when the user visits for the first time

any of the node at level 1. In this case, ICO has to construct the children for the d nodes in
level 1. Hence, constrDrillDown-C has to process ∣D∣ data objects in order to construct the
d2 child nodes. Therefore, in BSC the cost in worst case is O(d2 + ∣D∣ + d2) = O(d2 + ∣D∣).

Discussion. The worst case for the computational cost is higher in HETree-R than in
HETree-C, for all exploration scenarios. Particularly, in HETree-R worst case, ICO must
build leaves that contain the whole dataset and the computational cost is O(∣D∣log∣D∣) for
all scenarios. In HETree-C, for the RES and RAN scenarios, the cost is O(d2 + d−1

d ∣D∣),
and for the BSC scenario the cost is O(d2 + ∣D∣).

4.1.2.3 Adaptive HETree Construction

In a (visual) exploration scenario, users wish to modify the organization of the data by
providing user-specific preferences for the whole hierarchy or part of it. The user can
select a specific subtree and alter the number of groups presented in each level (i.e., the
tree degree) or the size of the groups (i.e., number of leaves). In this case, a new tree (or
a part of it) pertaining to the new parameters provided by the user should be constructed
on-the-fly.

For example, consider the HETree-C of Figure 4.6 representing ages of persons10. A
user may navigate to node b, where she prefers to increase the number of groups presented
in each level. Thus, she modifies the degree of b from 2 to 4 and the subtree is adapted
to the new parameter as depicted on the bottom tree of Figure 4.6. On the other hand,
the user prefers exploring the right subtree (starting from node c) with less details. She
chooses to increase the size of the groups by reducing (from 4 to 2) the number of leaves
for the subtree of c. In both cases, constructing the subtree from scratch based on the
user-provided parameters and recomputing statistics entails a significant time overhead,
especially, when user preferences are applied to a large part of or the whole hierarchy.

In this section, we introduce ADA (Adaptive HETree Construction) method, which
dynamically adapts an existing HETree to a new set of user-defined parameters. Instead of
both constructing the tree and computing the nodes’ statistics from scratch, our method
reconstructs the new part(s) of the hierarchy by exploiting the existing elements (i.e.,
nodes, statistics) of the tree. In this way, ADA achieves to reduce the overall construction

9This number can be easily computed by considering the number of leafs enclosed by these nodes.
10For simplicity, Figure 4.6 presents only the values of the objects.
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Figure 4.6: Adaptive HETree example

cost and enables the on-the-fly reorganization of the visualized data. In the example of
Figure 4.6, the new subtree of b can be derived from the old one, just by removing the
internal nodes d and e, while the new subtree of c results from merging leaves together
and aggregating their statistics.

Let T (D, `, d) denote the existing HETree and T ′(D, `′, d′) is the new HETree corre-
sponding to the new user preferences for the tree degree d′ and the number of leaves `′.
Note that T could also denote a subtree of an existing HETree (in the scenario where the
user modifies only a part of it). In this case, the user indicates the reconstruction root of
T .

Then, ADA identifies the following elements of T : (1) The elements of T that also
exist in T ′. For example, consider the following two cases: the leaf nodes of T ′ are internal
nodes of T in level x; the statistics of T ′ nodes in level x are equal to the statistics of
T nodes in level y. (2) The elements of T that can be reused (as “building blocks”) for
constructing elements in T ′. For example, consider the following two cases: each leaf node
of T ′ is constructed by merging x leaf nodes of T ; the statistics for the node n of T ′ can
be computed by aggregating the statistics from the nodes q and w of T .

Consequently, we consider that an element (i.e., node or node’s statistics) in T ′ can
be: (1) constructed/computed from scratch11, (2) reused as is from T or (3) derived by
aggregating elements from T .

Table 4.2 summarizes the ADA reconstruction process. Particularly, the table in-
cludes: (1) the computational complexity for constructing T ′, denoted as Complexity;
(2) the number of leaves and internal nodes of T ′ constructed from scratch, denoted as
#leaves0 and #internals0, respectively; and (3) the number of leaves and internal nodes
of T ′ derived from nodes of T , denoted as #leaves+ and #internals+, respectively. The
lower part of the table presents the results for the computation of node statistics in T ′.
Finally, the second table column, denoted as Full Construction, presents the results of
constructing T ′ from scratch.

The following example demonstrates the ADA results, considering a DBpedia explo-
ration scenario.

Example 8. The user explores the populationTotal property of the DBpedia dataset.
The default system organization for this property is a hierarchy with degree 3. The user
modifies the tree parameters in order to fit better visualization results as following. First,
she decides to render more groups in each hierarchy level and increases the degree from
3 to 9 (1st Modification). Then, she observes that the results overflow the visualization
area and that a smaller degree fits better; thus she re-adjusts the tree degree to a value
of 6 (2nd Modification). Finally, she navigates through the data values and decides to
increase the groups’ size by a factor of three (i.e., dividing by three the number of leaves)
(3rd Modification). Again, she corrects her decision and readjusts the final group size to
twice the default size (4th Modification).

Table 4.3 summarizes the number of nodes, constructed by a Full Construction and

11Note that it is possible for a from scratch constructed node in T ′ to aggregate statistics from nodes in T .
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ADA in each modification, along with the required statistics computations. Considering
the whole set of modifications, ADA constructs only the 22% (15.4K vs. 70.2K) of the
nodes that are created in the case of the full construction. Also, ADA computes the
statistics for only 8% (5.6K vs. 70.2K) of the nodes. �

Table 4.3: Full Construction vs. ADA over DBpedia exploration scenario
(cells values: Full / ADA)

Modify Degree Modify Num. of Leaves
1st Modification 2nd Modification 3rd Modification 4th Modification

Tree Construction

#nodes 22.1K / 0 23.6K / 3.9K 9.8K / 6.6K 14.7K / 4.9K

Statistics Computations

#nodes 22.1K / 0 23.6K / 659 9.8K / 0 14.7K / 4.9K

In the next sections, we present in detail the reconstruction process through the exam-
ple trees of Figure 4.7. Figure 4.7a presents the initial tree T that is an HETree-C, with
` = 8 and d = 2. Figures 4.7b ∼ 4.7e present several reconstructed trees T ′. Blue colour is
used to indicate the elements (i.e., nodes, edges, statistics) of T ′ which do not exist in T .
Regarding statistics, we assume that in each node we compute the mean value. In each
T ′, we present only the mean values that are not known from T . Also, in mean values
computations with red colour, we highlight the values that are reused from T .

4.1.2.3.1 Preliminaries

In order to perform traversal over the levels of the HETree (i.e., level-order traversal), we
use an array H of pointers to the ordered set of nodes at each level, with H[0] referring
to the set of leaf nodes and H[k] referring to the set of nodes at height k. Moreover, we
consider the following simple procedures that are used for the ADA implementation:

− mergeLeaves(L,m), where L is an ordered set of leaf nodes and m ∈ N+, with m > 1.
This procedure returns an ordered set of ⌈ L

m
⌉ new leaf nodes, i.e., each new leaf

merges m leaf nodes from L. The procedure traverses L, constructs a new leaf for
every m nodes in L and appends the data items from the m nodes to the new leaf.
This procedure requires O(∣L∣).

− replaceNode(n1, n2), replaces the node n1 with the node n2; it removes n1, and
updates the parent of n1 to refer to n2. This procedure requires constant time,
hence O(1).

− createEdges(P,C, d), where P , C are ordered sets of nodes and d is the tree degree.
It creates the edges (i.e., parent-child relations) from the parent nodes P to the child
nodes C, with degree d. The procedure traverses over P and connects each node
P [i] with the nodes from C[(i − 1)d + 1] to C[(i − 1)d + d]. This procedure requires
O(∣C ∣).

4.1.2.3.2 The User Modifies the Tree Degree

Regarding the modification of the degree parameter, we distinguish the following cases:

The user increases the tree degree. We have that d′ > d; based on the d′ value we
have the following cases:
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Figure 4.7: Adaptive HETree construction examples

(1) d′ = dk, with k ∈ N+ and k > 1

Figure 4.7a presents T with d = 2 and Figure 4.7d presents the reconstructed T ′ with d′ = 4
(i.e., k = 2). T ′ results by simply removing the nodes with height 1 (i.e., d, e, f , g) and
connecting the nodes with height 2 (i.e., b, c) with the leaves. In general, T ′ results from
T by simply removing tree levels from T . Additionally, there is no need for computing
any new statistics, since the statistics for all nodes of T ′ remain the same as in T .

Tree Construction. For the T ′ construction, we perform a reverse level-order traversal
over T , using the H vector. Starting from the leaves (H[0]), we skip (i.e., remove) k − 1
levels of nodes. Then, for the nodes of the above level (H[k]), we create child relations
with the (non-skipped) nodes in the level below. The above process continues until we
reach the root node of T .

Hence, in this case all nodes in T ′ are obtained “directly” from T . Particularly, T ′ is
constructed using the root node of T , as well the T nodes from H[j ⋅ k], j ∈ N0.

The T ′ construction requires the execution of createEdges procedure, j times. For
computing j, we have that j ⋅ k ≤ ∣H∣ ⇔ j ⋅ k ≤ logd`. Considering that d′ = dk, we
have that k = logdd′. Hence, j ⋅ logdd′ ≤ logd` ⇔ j ≤ logd(` − d′). So, considering that
worst case complexity for createEdges is O(`), we have that the overall complexity is
O(` ⋅ logd(`−d′)). Since we have that ` ≤ ∣D∣, then in worst case the T ′ can be constructed
in O(∣D∣logd(∣D∣)) = O(∣D∣log k√

d′
(∣D∣)).

Statistics Computations. In this case there is no need for computing any new statistics.

(2) d′ = k ⋅ d, with k ∈ N+, k > 1 and k ≠ dν where ν ∈ N+

An example with k = 3 is presented in Figure 4.7c, where we have d′ = 6. In this case, the
leaves of T (Figure 4.7a) remain leaves in T ′ and all internal nodes up to the reconstruction
root of T are constructed from scratch. As for the node statistics, we can compute the
mean values for T ′ nodes with height 1 (i.e., µb, µc) by aggregating already computed
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mean values (e.g., µd, µe, etc.) from T .

In general, except for the leaves, we construct all internal nodes from scratch. For the
internal nodes of height 1, we compute their statistics by aggregating the statistics of T
leaves, whereas for internal nodes of height greater than 1, we compute from scratch their
statistics.

Tree Construction. As in T ′ the leaves remain the same as in T , we only use the
constrInterNodes (Procedure 2) to build the rest of the tree. Therefore, in the worst

case, the complexity for constructing the T ′ is O(d′2⋅`−d′d′−1 ).
Statistics Computations. The statistics for T ′ nodes of height 1 can be computed by
aggregating statistics from T . Particularity, in T ′ the statistics computations for each
internal node of height 1, require O(k) instead of O(d′), where k = d′

d . Hence, considering

that there are ⌈ `
d′
⌉ internal nodes of height 1 in T ′, the cost for their statistics is O(k⋅⌈ `d′ ⌉) =

O(k⋅`d′ + k).
Regarding the cost of recomputing them from scratch, consider that there are `−1

d′−1 inter-
nal nodes12 with heights greater than 1; the statistics computations for these nodes require
O(d′⋅`−d′d′−1 ). Therefore, the overall cost for statistics computations is

O(k⋅`d′ + k +
d′⋅`−d′
d′−1 ).

(3) elsewhere
In any other case where the user increases the tree degree, all internal nodes in T ′ except
for the leaves are constructed from scratch. In contrast with the previous case, the leaves’
statistics from T can not be reused and, thus, for all internal nodes in T ′ the statistics
are recomputed.

Tree Construction. Similar to the previous case, the T ′ construction requires O(d′2⋅`−d′d′−1 ).
Statistics Computations. In this case, the statistics should be computed from scratch for
all internal nodes in T ′. Therefore, the complexity is O(d′2⋅`−d′d′−1 ).

The user decreases the tree degree. Here we have that d′ < d; based on the d′ value
we have the following two cases:

(1) d′ = k
√
d, with k ∈ N+ and k > 1

Assume that now Figure 4.7d depicts T , with d = 4, while Figure 4.7a presents T ′ with
d′ = 2. We can observe that T ′ contains all nodes of T , as well as a set of extra internal
nodes (i.e., d, e, f , g). Hence, T ′ results from T by constructing some new internal nodes.

Tree Construction. For the T ′ construction we perform a reverse level-order traversal over
T using the H vector and starting from the nodes having height of 1. In each level, for
each node n we call the constrInterNodes (Procedure 2) using as input the d child nodes of
n and the new degree d′. Note that, in this reconstruction case, the constrInterNodes does
require to construct the root node; the root node here is always corresponding to the node
n. Hence, the complexity of constrInterNodes for one call is O(d). Considering that, we
perform a procedure call for all the internal nodes, as well as that the maximum number
of internal nodes is d⋅`−1

d−1 , we have that, in the worst case the T ′ can be constructed in

O(d2⋅`−dd−1 ) = O(d′2k ⋅`−d′k
d′k−1

).
Regarding the number of internal nodes that we have to construct from scratch. Since

T ′ has all the nodes of T , for T ′ we have to construct from scratch d′⋅`−1
d′−1 −

d⋅`−1
d−1 new internal

12Take into account that the maximum number of internal nodes (considering all levels) is d⌈logd`⌉
−1

d−1
.
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nodes, where the first part corresponds to the number of internal nodes of T ′, and the

second part corresponds to T . Considering that, d′ = k
√
d, we have to build d′⋅`−1

d′−1 − d′k ⋅`−1
d′k−1

internal nodes.

Statistics Computations. Statistics should be computed only for the new internal nodes

of T ′. Hence, the cost here is O(d′ ⋅ (d′⋅`−1
d′−1 − d′k ⋅`−1

d′k−1
))

(2) elsewhere

This case is similar to the previous case (3) where the user increases the tree degree.

4.1.2.3.3 The User Modifies the Number of Leaves

Regarding the modification of the number of leaves parameter, we distinguish the following
cases:

The user increases the number of leaves. In this case we have that `′ > `; hence, each
leaf of T is split into several leaves in T ′ and the data objects contained in a T leaf must
be reallocated to the new leaves in T ′. As a result, all nodes (both leaves and internal
nodes) in T ′ have different contents compared to nodes in T and must be constructed
from scratch along with their statistics.

In this case, constructing T ′ requires O(∣D∣ + d2⋅`′−d
d−1 ) (by avoiding the sorting phase).

The user decreases the number of leaves. In this case we have that `′ < `; based on
the `′ value we have the following three cases:

(1) `′ = `

dk
, with k ∈ N+

Considering that Figure 4.7a presents T with ` = 8 and d = 2. A reconstruction example
of this case with k = 1, is presented in Figure 4.7b, where we have T ′ with `′ = 4. In
Figure 4.7b, we observe that the leaves in T ′ result from merging dk leaves of T . For
example, the leaf d of T ′ results from merging the leaves h and i of T . Then, T ′ results
from T , by replacing the T nodes with height k (i.e., b, e, f , g), with the T ′ leaves. Finally,
the nodes of T with height less than k are not included in T ′.

Therefore, in this case, T ′ is constructed by merging the leaves of T ′ and removing
the internal nodes of T ′ having height less or equal to k. Also, we do not recompute the
statistics of the new leaves of T ′ as these are derived from the statistics of the removed
nodes with height k.

Tree Construction. In this case, each leaf in T ′ is resulted by merging dk leaves from
T . Hence, T ′ leaves are constructed by calling mergeLeaves(`, dk). So, considering the
mergeLeaves complexity, in worst case the new leaves construction requires O(∣D∣). Then,
each leaf of T ′ replace an internal nodes of T having height of k. Therefore, in worst case
(k = 1), we call ⌈ `

d
⌉ times the replaceNode procedure, which requires O(⌈ `d⌉). Therefore,

the overall cost for constructing T ′ in worst case is O(∣D∣ + ⌈ `
d
⌉) = O(∣D∣). Note that in

this, as well as in the following case, we assume that T is a perfect tree. In case where T
is not perfect, we can use as T the perfect tree that initially proposed by our system.

Statistics Computations. In this case there is no need for computing any new statistics.
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(2) `′ = `

k
, with k ∈ N+, k > 1 and k ≠ dν , where ν ∈ N+

As in the previous case, the leaves in T ′ are constructed by merging leaves from T and
their statistics are computed based on the statistics of the merged leaves. In this case,
however, all internal nodes in T ′ have to be constructed from scratch.

Tree Construction. In this case, each leaf in T ′ is resulted by merging k leaves from
T . Hence, the T ′ leaves are constructed by calling the mergeLeaves(`, k), which in worst
case requires O(∣D∣). Then, the rest of the tree is constructed from scratch using the

constrInterNodes. Therefore, the overall cost for T ′ construction is O(∣D∣ + d2⋅`′−d
d−1 ).

Statistics Computations. The statistics for all internal nodes have to be computed from
scratch. Regarding the leaves, the statistics for each leaf in T ′ are computed by aggregating
the statistics of the T leaves it includes. Essentially, for computing the statistics in each

leaf in an HETree-C, we have to process k values instead of
∣D∣
`′ . However, in the worst

case (i.e., ` = ∣D∣), we have that k = ∣D∣
`′ . Therefore, in the worst case (for both HETree

versions) the complexity is the same as computing statistics from scratch.

(3) `′ = ` − k, with k ∈ N+, k > 1 and `′ ≠ `

ν
, where ν ∈ N+

The two previous cases describe that each leaf in T ′ fully contains k leaves from T . In
this case, a leaf in T ′ may partially contains leaves from T . A leaf in T ′ fully contains a
leaf from T when the T ′ leaf contains all data objects belonging to the T leaf. Otherwise,
a leaf in T ′ partially contain a leaf from T when the T ′ leaf contains a subset of the data
objects from the T leaf.

An example of this case is shown in Figure 4.7e that depicts a reconstructed T ′ resulted
from the T presented in Figure 4.7a. The d leaf of T ′ fully contains leaves h, i of T and
partially leaf k for which value 35 belongs to a different leaf (i.e., e).

Due to this partial containment, we have to construct all leaves and internal nodes from
scratch and recalculate their statistics. Still, the statistics of the fully contained leaves
of T can be reused, by aggregating them with the individual values of the data objects
included in the leaves. For example, as we can see in Figure 4.7e, the mean value µd of the
leaf d is computed by aggregating the mean values µh and µi corresponding to the fully
contained leaves h and i, with the individual values 30, 32 of the partially contained leaf
k.

Tree Construction. In order to construct T ′ we have to construct all nodes from scratch,
which in the worst case requires O(∣D∣log∣D∣ + d2⋅`′−d

d−1 ).

Statistics Computations. The statistics of the T leaves that are fully contained in T ′ can
be used for calculating the statistics of the new leaves. The worst case is when the number
of leaves that are fully contained in T ′ is minimized. For HETree-C (resp. HETree-R),
this occurs when the size of leaves in T ′ is λ′ = λ + 1 (resp. of length ρ′ = ρ + ρ

` ). In this
case, for every λ (resp. ρ) leaves from T that are used to construct the T ′ leaves, at least

1 leaf is fully contained. Hence, when we process all ` leaves, at least `2

∣D∣ leaves are fully

contained in T ′.
Hence in HETree-C, in statistics computations over the leaves, instead of processing

∣D∣ values, we process at most ∣D∣ − `2

∣D∣ ⋅ λ = ∣D∣ − `. The same also holds in HETree-R, if
we assume normal distribution over the values in D. Therefore, the cost for computing
the leaves statistics is O(∣D∣ − `) = O(∣D∣ − `′ − k).
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Figure 4.8: System architecture

4.1.3 The SynopsViz Tool

Based on the proposed hierarchical model, we have developed a Web-based prototype
called SynopsViz 13. The key features of SynopsViz are summarized as follows: (1) It
supports the aforementioned hierarchical model for RDF data visualization, browsing and
analysis. (2) It offers automatic on-the-fly hierarchy construction, as well as user-defined
hierarchy construction based on users’ preferences. (3) Provides faceted browsing and
filtering over classes and properties. (4) Integrates statistics with visualization; visualiza-
tions have been enriched with useful statistics and data information. (5) Offers several
visualization techniques (e.g., timeline, chart, treemap). (6) Provides a large number of
dataset’s statistics regarding the: data-level (e.g., number of sameAs triples), schema-level
(e.g., most common classes/properties), and structure level (e.g., entities with the larger
in-degree). (7) Provides numerous metadata related to the dataset: licensing, provenance,
linking, availability, undesirability, etc. The latter can be considered useful for assessing
data quality [402].

In the rest of this section, Section 4.1.3.1 describes the system architecture, Sec-
tion 4.1.3.2 demonstrates the basic functionality of the SynopsViz. Finally, Section 4.1.3.3
provides technical information about the implementation.

4.1.3.1 System Architecture

The architecture of SynopsViz is presented in Figure 4.13. Our scenario involves three
main parts: the Client UI, the SynopsViz, and the Input data. The Client part, cor-
responds to the system’s front-end offering several functionalities to the end-users. For
example, hierarchical visual exploration, facet search, etc. (see Section 4.1.3.2 for more
details). SynopsViz consumes RDF data as Input data; optionally, OWL-RDF/S vocab-
ularies/ontologies describing the input data can be loaded. Next, we describe the basic
components of the SynopsViz.

In the preprocessing phase, the Data and Schema Handler parses the input data and
inferes schema information (e.g., properties domain(s)/range(s), class/ property hierarchy,
type of instances, type of properties, etc.). Facet Generator generates class and property
facets over input data. Statistics Generator computes several statistics regarding the
schema, instances and graph structure of the input dataset. Metadata Extractor collects
dataset metadata. Note that the model construction does not require any preprocessing,
it is performed online, according to user interaction.

During runtime the following components are involved. Hierarchy Specifier is responsi-
ble for managing the configuration parameters of our hierarchy model, e.g., the number of
hierarchy levels, the number of nodes per level, and providing this information to the Hi-
erarchy Constructor. Hierarchy Constructor implements our tree structure. Based on the
selected facets, and the hierarchy configuration, it determines the hierarchy of groups and
the contained triples. Statistics Processor computes statistics about the groups included
in the hierarchy. Visualization Module allows the interaction between the user and the

13synopsviz.imis.athena-innovation.gr
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Figure 4.9: Web user interface

back-end, allowing several operations (e.g., navigation, filtering, hierarchy specification)
over the visualized data. Finally, the Hierarchical Model Module maintains the in-memory
tree structure for our model and communicates with the Hierarchy Constructor for the
model construction, the Hierarchy Specifier for the model customization, the Statistics
Processor for the statistics computations, and the Visualization Module for the visual
representation of the model.

4.1.3.2 SynopsViz In-Use

In this section we outline the basic functionality of SynopsViz prototype. Figure 4.9
presents the Web user interface of the main window. SynopsViz UI consists of the following
main panels: Facets panel : presents and manages facets on classes and properties; Input
data control panel : enables the user to import and manage input datasets; Visualization
panel : is the main area where interactive charts and statistics are presented; Configuration
panel : handles visualization settings.

Initially, users are able to select a dataset from a number of offered real-word LD
datasets (e.g., DBpedia, Eurostat) or upload their own. Then, for the selected dataset, the
users are able to examine several of the dataset’s metadata, and explore several datasets’s
statistics.

Using the facets panel, users are able to navigate and filter data based on classes,
numeric and date properties. In addition, through facets panel several information about
the classes and properties (e.g., number of instances, domain(s), range(s), IRI, etc.) are
provided to the users through the UI.

Users are able to visually explore data by considering properties’ values. Particularly,
area charts and timeline-based area charts are used to visualize the resources considering
the user’s selected properties. Classes’ facets can also be used to filter the visualized
data. Initially, the top level of the hierarchy is presented providing an overview of the
data, organized into top-level groups; the user can interactively drill-down (i.e., zoom-
in) and roll-up (i.e., zoom-out) over the group of interest, up to the actual values of
the input data (i.e., LD resources). At the same time, statistical information concerning
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(a) Groups of numeric RDF data (Area chart) (b) Numeric RDF data (Column chart)

(c) Class hierarchy (Treemap chart) (d) Class hierarchy (Pie chart)

Figure 4.10: Numeric data & class hierarchy visualization examples

the hierarchy groups as well as their contents (e.g., mean value, variance, sample data,
range) is presented through the UI (Figure 4.10a). Regarding the most detailed level (i.e.,
LD resources), several visualization types are offered; i.e., area, column, line, spline and
areaspline (Figure 4.10b).

In addition, users are able to visually explore data, through class hierarchy. Selecting
one or more classes, users can interactively navigate over the class hierarchy using treemaps
(Figure 4.10c) or pie charts (Figure 4.10d). Properties’ facets can also be used to filter the
visualized data. In SynopsViz the treemap visualization has been enriched with schema
and statistical information. For each class, schema metadata (e.g., number of instances,
subclasses, datatype/object properties) and statistical information (e.g., the cardinality of
each property, min, max value for datatype properties) are provided.

Finally, users can interactively modify the hierarchy specifications. Particularly, they
are able to increase or decrease the level of abstraction/detail presented, by modifying
both the number of hierarchy levels, and number of nodes per level.

A video presenting the basic functionality of our prototype is available at
youtu.be/n2ctdH5PKA0.

4.1.3.3 Implementation

SynopsViz is implemented on top of several open source tools and libraries. The back-end
of our system is developed in Java, Jena framework is used for RDF data handing and
Jena TDB is used for disk-based RDF storing. The front-end prototype, is developed using
HTML and Javascript. Regarding visualization libraries, we use Highcharts, for the area,
column, line, spline, areaspline and timeline-based charts and Google Charts for treemap
and pie charts.

4.1.4 Experimental Analysis

In this section we present the evaluation of our approach. In Section 4.1.4.1, we present the
dataset and the experimental setting. Then, in Section 4.1.4.2 we present the performance
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results and in Section 4.1.4.3 the user evaluation we performed.

4.1.4.1 Experimental Setting

In our evaluation, we use the well known DBpedia 2014 LD dataset. Particularly, we
use the Mapping-based Properties (cleaned) dataset14 which contains high-quality data,
extracted from Wikipedia Infoboxes. This dataset contains 33.1M triples and includes a
large number of numeric and temporal properties of varying sizes. The largest numeric
property in this dataset has 534K triples, whereas the largest temporal property has 762K.

Regarding the methods used in our evaluation, we consider our HETree hierarchical
approaches, as well as a simple non-hierarchical visualization approach, referred as FLAT.
FLAT is considered as a competitive method against our hierarchical approaches. It
provides one level visualizations, rendering only the actual data objects; i.e., it is the
same as the visualization provided by SynopsViz at the most detailed level. In more
detail, FLAT approach corresponds to a column chart in which the resources are sorted in
ascending order based on their object values, the horizontal axis contains the resources’
names (i.e., triples’ subjects), and the vertical axis corresponds to objects’ values. By
hovering over a resource, a tooltip appears including the resource’s name and object value.

Regarding the HETree approaches, the tree parameters (i.e., number of leaves, de-
gree and height) are automatically computed following the approach described in Sec-
tion 4.1.1.5. In our experiments, the lower and the upper bound for the objects rendered
at the most detailed level have been set to λmin = 10 and λmax = 50, respectively. Con-
sidering the visualizations provided by the default Highcharts settings, these numbers are
reasonable for our screen size and resolution.

Finally, our backend system is hosted on a server with a quad-core CPU at 2GHz and
8GB of RAM running Windows Server 2008. As client, we used a laptop with i5 CPU at
2.5GHz with 4G RAM, running Windows 7, Firefox 38.0.1 and ADSL2+ internet connec-
tion. Additionally, in the user evaluation, the client is employed with a 24” (1920×1200)
screen.

4.1.4.2 Performance Evaluation

In this section, we study the performance of the proposed model, as well as the behaviour
of our tool, in terms of construction and response time, respectively. Section 4.1.4.2.1
describes the setting of our performance evaluation, and Section 4.1.4.2.2 presents the
evaluation results.

4.1.4.2.1 Setup

In order to study the performance, a number of numeric and temporal properties from
the employed dataset are visualized using the two hierarchical (i.e., HETree-C/R) and the
FLAT approach. We select one set from each type of properties; each set contains 15
properties with varying sizes, starting from small properties having 50-100 triples up to
the largest properties.

In our experiment, for each of the three approaches, we measure the tool response
time. Additionally, for the two hierarchical approaches we also measure the time required
for the HETree construction.

Note that in hierarchical approaches through user interaction, the server sends to the
browser only the data required for rendering the current visualization level (although the
whole tree is constructed at the backend). Hence, when a user requests to generate a
visualization we have the following workflow. Initially, our system constructs the tree;

14downloads.dbpedia.org/2014/en/mappingbased properties cleaned en.nt.bz2
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then, the data regarding the top-level groups (i.e., root node children) are sent to the
browser which renders the result. Afterwards, based on user interactions (i.e., drill-down,
roll-up), the server retrieves the required data from the tree and sends it to the browser.
Thus, the tree is constructed the first time a visualization is requested for the given input
dataset; for any further user navigation over the hierarchy, the response time does not
include the construction time. Therefore, in our experiments, in hierarchical approaches
as response time we measure the time required by our tool to provide the first response
(i.e., render the top-level groups), which corresponds to the slower response in our visual
exploration scenario. Thus, we consider the following measures in our experiments:

Construction T ime: the time required to build the HETree structure. This time
includes (1) the time for sorting the triples; (2) the time for building the tree; and (3) the
time for the statistics computations.

Response T ime: the time required to render the charts, starting from the time the
client sends the request. This time includes (1) the time required by the server to com-
pute and build the response. In hierarchical approaches, this time corresponds to the
Construction Time, plus the time required by the server to build the JSON object sent to
the client. In FLAT approach, it corresponds to the time spent in sorting the triples plus
the time for the JSON construction; (2) the time spent in the client-sever communication;
and (3) the time required by the visualization library to render the charts on the browser.

4.1.4.2.2 Results

Table 4.4 presents the evaluation results regarding the numeric (upper half) and the tem-
poral properties (lower half). The properties are sorted in ascending order of the number
of triples. For each property, the table contains the number of triples, the characteristics
of the constructed HETree structures (i.e., number of leaves, degree, height, and num-
ber of nodes), as well as the construction and the response time for each approach. The
presented time measurements are the average values from 50 executions.

Regarding the comparison between the HETree and the FLAT, the FLAT approach
can not provide results for properties having more than 305K triples, indicated in the
last rows for both numeric and temporal properties with “–” in the FLAT response time.
For the rest properties, we can observe that the HETree approaches clearly outperform
the FLAT in all cases, even in the smallest property (i.e., rankingWin, 50 triples). As
the size of properties increases, the difference between the HETree approaches and the
FLAT increases, too. In more detail, for properties having more than 1.400 triples (i.e.,
the numeric properties larger than the hsvCoordinateValue -5th row-, and the temporal
properties larger than the lastAirDate -4th row-), the HETree approaches outperform the
FLAT by about one order of magnitude. Finally, for the largest property that FLAT can
handle (i.e., populationTotal, 305K triples), the difference between the HETree and the
FLAT is about two order of magnitude.

Regarding the time required for the construction of the HETree structure, from Ta-
ble 4.4 we can observe the following. The performance of both HETtree structures is very
close for most of the examined properties, with the HETree-R performing slightly better
than the HETree-C (especially in the relatively small numeric properties). Furthermore,
we can observe that the response time follows a similar trend as the construction time.
This is expected since the communication cost, as well as the times required for construct-
ing and rendering the JSON object are almost the same for all cases. Particularly, in our
HETree setting, the Highchart requires approximately 90 msec for rendering the charts in
the browser.

Regarding the comparison between the construction and the response time in the
HETree approaches, from Table 4.4 we can observe the following. For properties having
up to 5.5K triples (i.e., the numeric properties smaller than the width -8th row-, and the
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Figure 4.11: Response Time w.r.t. the number of triples

temporal properties smaller than the decommissioningDate -7th row-), the response time is
dominated by the communication cost, and the time required for the JSON construction
and rendering. For properties with only a small number of triples (i.e., waistSize, 241
triples), only the 1.5% of the response time is spent on constructing the HETree. Moreover,
for a property with a larger number of triples (i.e., buildingStartData, 1.415 triples), 18%
of the time is spent on constructing the HETree. Finally, for the largest property for which
the construction time is dominated by the other costs (i.e., powerOutput, 5.453 triples),
42% of the time is spent on constructing the HETree.

Figure 4.11 summarizes the results from Table 4.4, presenting the response time for all
approaches w.r.t. the number of triples. Particularly, Figure 4.11a includes all properties
sizes, whereas Figure 4.11b focus on the properties having up to 20K triples. We observe
also here that the HETree-R performs slightly better than the HETree-C. Additionally,
from Figure 4.11b we can indicate that for up to 10K triples the performance of the HETree
approaches is almost the same. We can also observe the significant difference between the
FLAT and the HETree approaches. Finally, an important observation is that, in practice
both the construction and the response time, and thus the overall performance of our tool,
grow sub-linearly to the number of triples.

Overall, our hierarchical approaches exhibit linear time performance w.r.t. number of
input objects. In addition, it is shown that the hierarchical approaches clearly outperform
the employed non-hierarchical approach.

Although our method clearly outperforms the non-hierarchical method, as we can
observe from the above results, the construction of the whole hierarchy can not pro-
vide an efficient solution for datasets containing more than 10K objects. As discussed
in Section 4.1.2.2, for efficient exploration over large datasets an incremental hierarchy
construction is required. In incremental exploration scenario, the number of hierarchy
nodes that have to be processed and constructed is significant fewer compared to the non-
incremental. For example, adopting an non-incremental construction in populationTotal
(305K triples), 29.6K nodes are to be initially constructed (along with their statistics),
while the incremental approach constructions in the worst case, 15 nodes.

4.1.4.3 User Study

In this section we present the user evaluation of our tool, where we have employed three
approaches: the two hierarchical and the FLAT. Section 4.1.4.3.1 describes the user tasks,
Section 4.1.4.3.2 outlines the evaluation procedure and setup, Section 4.1.4.3.3 summarizes
the evaluation results, and Section 4.1.4.3.4 discusses issues related to the evaluation
process.
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4.1.4.3.1 Tasks

In this section we describe the different types of tasks that are used in the user evaluation
process.

Type 1 [Find resources with specific value]: This type of tasks requests the resources
having value v (as object). For this task type, we define task T1 by selecting a value v
that corresponds to 5 resources. Given this task, the participants are asked to provide the
number of resources that pertain to this value. In order to solve this task, the participants
first have to find a resource with value v and then check which of the nearby resources
also have the same value.

Type 2 [Find resources in a range of values]: This type of tasks requests the resources
having value greater than vmin and less than vmax. We define two tasks of this type, by
selecting different combinations of vmin and vmax values, such that tasks which consider
different number of resources are defined. Particularly, in the first task, named T2.1, we
specify the values vmin and vmax such that a small set of (approximately 10) resources
are included, whereas the second task, T2.2, considers a larger set of (approximately 50)
resources. Given these tasks, the participants are asked to provide the number of resources
included in the given range. This task can be solved by first finding a resource with a value
included in the given range, and then explore the nearby resources in order to identify the
resources in the given range.

Type 3 [Compare distributions]: This type of tasks requests from the participant to
identify whether more resources appear above or below a given value v. For this type, we
define task T3, by selecting the value v near to median. Given this task, the participants
are asked to provide the number of resources appearing either above or below the value
v. The answer for this tasks requires from the participants to indicate the value v and
determine the number or resources appearing either before or after this value.

4.1.4.3.2 Setup

In order to study the effect of the property size in the selected tasks, we have selected
two properties of different sizes from the employed dataset (Section 4.1.4.1). The hsv-
CoordinateHue numeric property containing 970 triples, is referred as Small, and the
maximumElevation numeric property, containing 37.936 triples, is referred as Large. The
first one corresponds to a hierarchy of height 4 and degree 3, and the latter corresponds
to a hierarchy of height 7 and degree 3. We should note here, that through the user evalu-
ation, the hierarchy parameters were fixed for all the tasks, and the participants were not
allowed to modify them, such that the setting has been the same for everyone.

In our evaluation, 10 participants took part. The participants were computer science
graduate students and researchers. At the beginning of the evaluation, each participant has
introduced to the system by an instructor who provided a brief tutorial over the features
required for the tasks. After the instructions, the participants familiarized themselves
with the system. Note that we have integrated in the SynopsViz the FLAT approach
along with the HETree approaches.

During the evaluation, each participant performed the previously described four tasks,
using all approaches (i.e., HETree-C/R and FLAT), over both the small and large prop-
erties. In order to reduce the learning effects and fatigue we defined three groups. In the
first group, the participants start their tasks with the HETree-C approach, in the second
with HETree-R, and in the third with FLAT. Finally, the property (i.e., small, large) first
used in each task was counterbalanced among the participants and the tasks. The entire
evaluation did not exceed 75 minutes.
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Furthermore, for each task (e.g., T2.1, T.3), three task instances were specified by
slightly modifying the task parameters. As a result, given a task, a participant has to
solve a different instance of this task, in each approach.

For example, in task T2.1, for the HETree-R, the selected v corresponds to a solution of
11 resources, in HETree-C, to 9 resources, whereas for FLAT v corresponded to a solution
of 8 resources. The task instance assigned to each approach varied among the participants.

During the evaluation the instructor measured the time required for each participant
to complete a task, as well as the number of incorrect answers. Table 4.5 presents the
average time required for the participants to complete each task. The table contains the
measurements for all approaches, and for both properties. Although we acknowledge that
the number of participants in our evaluation is small, we have computed the statistical sig-
nificance of the results. Essentially, for each property, the p-value of each task is presented
in the last column. The p-value is computed using one-way repeated measures ANOVA.

In addition, the results regarding the number of tasks that were not correctly answered
are presented in Table 4.6. Particularly, the table presents the percentage of incorrect
answers for each task and property, referred as error rate. Additionally, for each task
and property, the table includes the p-value. Here, the p-value has been computed using
Fisher’s exact test.

4.1.4.3.3 Results

Task T1. Regarding the first task, as we can observe from Table 4.5, HETree approaches
outperform the FLAT, in both property sizes. Note that the time results on T1 are
statistical significant (p < 0.01).

As expected, all approaches require more time for the Large property compared to
the Small one. This overhead in FLAT is caused by from the larger number of resources
that the participants have to scroll over and examine, until they indicate the requested
resource’s value. On the other hand, in HETree, the overhead is caused by the larger
number of levels that the Large property hierarchy has. Hence, the participants have to
perform more drill-down operations and examine more groups of objects, until they reach
the LD resources.

We can also observe that in this task, the HETree-R outperforms the HETree-C in
both property sizes. This is due to the fact that, in HETree-R structure, resources having
the same value are always contained in the same leaf. As a result, the participants had to
inspect only one leaf. On the other hand, in HETree-C this does not always hold, hence
the participants could have explored more than one leaf.

Finally, as we can observe from Table 4.6, in all cases only correct answers have been
provided. However, none of those results are statistically significant (p > 0.05).

Task T2.1. In the next task, where the participants had to indicate a small set of resources
in a range of values, the FLAT performance is very close to the HETree, especially in the
Small property (Table 4.5). In addition, we can observe that the HETree-C approach
performs slightly better than the HETree-R. Finally, regarding the statistical significance
of the results, in Small property we have p > 0.05, while in Large we have p < 0.005.

The poor performance of the HETree approaches in this task can be explained by
the small set of resources requested and the HETree parameters adopted in the user
evaluation. In this setting, the resources contained in the task solution are distributed
over more than one leaves. Hence, the participants had to perform several roll-up and
drill-down operations in order to find all the resources. On the other hand, in FLAT,
once the participants had indicated one of the requested resources, it was very easy for
them to find out the rest of the solution’s resources. To sum up, in FLAT, most of the
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Table 4.5: Average task completion time (sec)

Small Property Large Property

FLAT HETree-C HETree-R p FLAT HETree-C HETree-R p

T1 54 29 28 ☀☀ 85 52 47 ☀☀

T2.1 63 57 64 u 74 60 69 ☀

T2.2 120 69 74 ☀☀ 128 72 77 ☀☀

T3 262 41 40 ☀☀ — 64 62 —

☀☀ (p < 0.01) ☀ (p < 0.05) u (p > 0.05)

Table 4.6: Error rate (%)

Small Property Large Property

FLAT HETree-C HETree-R p FLAT HETree-C HETree-R p

T1 0 0 0 u 0 0 0 u

T2.1 0 0 0 u 0 0 0 u

T2.2 20 0 0 u 20 0 10 u

T3 70 0 0 ☀☀ — 0 0 —

☀☀ (p < 0.01) ☀ (p < 0.05) u (p > 0.05)

time is spent on identifying the first of the resources, while in HETree the first resource
is identified very quickly. Regarding the difference in performance between the HETree
approaches we have the following. In HETree-C due to the fixed number of objects in each
leaf, the participants had to visit at most one or two leaves in order to solve this task. On
the other hand, in HETree-R, the number of objects in each leaf is varied, so in most times
the participants had to inspect more than two leaves in order to solve the task. Finally,
again, for this task, only correct answers were given (Table 4.6).

Task T2.2. In this task the participants had to indicate a larger set (compared to
the previous task) of resources given a range of values. HETree approaches noticeable
outperform the FLAT approach with statistical significance (p < 0.01), while similar results
are observed in both properties.

In FLAT approach a considerable time was spent to identify and navigate over a large
number of resources. On the other hand, due to the large number of resources involved
in the task’s solution, there are groups in the hierarchy that explicitly contain solution’s
resources (i.e., they do not contain resources not included in the solution). As a result, the
participants in HETree could easily indicate and compute the whole solution by combining
the information related to the groups (i.e., number of enclosed resources) and individual
resources. Due to the same reasons stated in the previous task (i.e., T2.1), similarly in T2.2
the HETree-C performs slightly better than the HETree-R. Finally, we can observe from
Table 4.6 (but without statistical significance), that it was more difficult for participants
to solve correctly this task with FLAT than with HETree.

Task T3. In the last task, participants were requested to find which of the two ranges
contained more resources. As expected, from Table 4.5 shows that the HETree approaches
clearly outperform the FLAT approach with statistical significance in the Small property.
This is due to the fact that the participants in FLAT approach had to overview and
navigate over almost half of the dataset. As a result, apart from the long time required
for this process, it was also very difficult to find the correct solution. This is also verified
by Table 4.6 on a statistically significant level. On the other hand, in HETree approaches,
the participants could easily find out the answer by considering the resources enclosed by
several groups.

Regarding the Large property, as it is expected, it was impossible for participants to
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solve this task with FLAT, since this required to parse over and count about 19K resources.
As a result, none of the participants completed this task using FLAT (indicated with “–”
in Table 4.5), considering the 5 minute time limit used in this task.

4.1.4.3.4 Discussion

The user evaluation showed that the hierarchical approaches can be efficient (i.e., require
short time in solving tasks) and effective (i.e., have lower error rate) in several cases. In
more detail, the HETree approaches performed very well on indicating specific values over
a dataset, and given the appropriate parameter setting are marginally affected by the
dataset size. Also note that, due to the “vertical-based” exploration, the position (e.g.,
towards the end) of the requested value in the dataset does not affect the efficiency of the
approach. Furthermore, it is shown that the hierarchical approaches can efficiently and
effectively handle visual exploration tasks that involve large numbers of objects.

At the end of the evaluation, the participants gave us valuable feedbacks on possible
improvements of our tool. Most of the participants criticized several aspects in the inter-
face; since our tool is an early prototype. Also, several participants mentioned difficulties
in obtaining their “position” (e.g., which is the currently visualized range of values, or the
previously visualized range of values) during the exploration. Finally, some participants
mentioned that some hierarchies contained more levels than needed. As previously men-
tioned, the adopted parameters are not well suited for the evaluation, since hierarchies
with larger than 3 degree (and as result less levels) are required.

Finally, additional tasks for demonstrating the capabilities of our model can be consid-
ered. However, most of these tasks were not selected in this evaluation, because it was not
possible for the participants to perform them with the FLAT approach. An indicative set
includes: (1) Find the number of resources (and/or statistics) in the 1st and 3rd quartile;
(2) Find statistics (e.g., mean value, variance) for the top-10 or 50 resources; (3) Find the
decade (i.e., temporal data) in which most events take place; etc.

4.1.5 Related Work

This section reviews works related to our approach on visualization and exploration in the
Web of Data (WoD). Section 4.1.5.1 presents systems and techniques for visualization and
exploration WoD, Section 4.1.5.2 discusses techniques on WoD statistical analysis, Sec-
tion 4.1.5.3 present hierarchical data visualization techniques, and finally, Section 4.1.5.4
discusses works on data structures & processing related to our HETree data structure.

In Table 4.7 we provide an overview and compare several visualization systems that
offer similar features to our SynopsViz system. The WoD column indicates systems that
target the Semantic Web and Linked Data area (i.e., RDF, RDF/S, OWL). The Hierar-
chical column indicates systems that provide hierarchical visualization of non-hierarchical
data. The Statistics column captures the provision of statistics about the visualized data.
The Recomm. column indicates systems, which offer recommendation mechanisms for vi-
sualization settings (e.g., appropriate visualization type, visualization parameters, etc.).
The Incr. column indicate systems that provide incremental visualizations. Finally, the
Preferences column captures the ability of the users to apply data (e.g., aggregate) or
visual (e.g., increase abstraction) operations.

4.1.5.1 Exploration & Visualization Systems

A large number of works studying issues related to WoD visual exploration and analysis
have been proposed in the literature [140, 282, 29]. In what follows, we classify these
works into the following categories: (1) Browsers and exploratory systems, (2) Generic
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visualization systems, (3) Domain, vocabulary & device-specific visualization systems, (4)
Graph-based visualization systems, (5) Ontology visualization systems, and (6) Visualiza-
tion libraries.

4.1.5.1.1 Browsers & Exploratory Systems

WoD browsers have been the first systems developed for WoD utilization and analysis
[140, 29]. Similarly to the traditional ones, WoD browsers provide the functionality for
link navigation and usable representation of WoD resources and their properties; thus
enabling browsing and exploration of WoD in a most intuitive way. WoD browsers mainly
use tabular views and links to provide navigation over the WoD resources.

Haystack [315] is one of the first WoD browsers, it exploits stylesheets in order to
customize the data presentation. Similarly, Disco15 renders all information related to
a particular RDF resource as HTML table with property-value pairs. Noadster [327]
performs property-based data clustering in order to structure the results. Piggy Bank
[213] is a Web browser plug-in, that allows users to convert HTML content into RDF.
LESS [47] allows users to create their own Web-based templates in order to aggregate
and display WoD. Tabulator [68] is another WoD browser, additionally provides maps and
timeline visualizations. Explorator [35] is an WoD exploratory system that allows users
to browse a dataset by combining search and facets. VisiNav [199] is a system that allows
users to pose expressive exploratory-based queries. The system is built on top of following
concepts: keyword search, object focus, path traversal, and facet selection. Information
Workbench (IWB) [193] is a generic platform for semantic data management offering
several back-end (e.g., triple store) and front-end systems. Regarding the front-end, IWB
offers a flexible user interface for data exploration and visualization. Marbles16 formats
RDF triples using the Fresnel vocabulary (a vocabulary for rendering RDF resources
as HTML). Also, it retrieves information about a resource by accessing Semantic Web
indexes and search engines. Finally, URI Burner17 is a service which retrieves data about
resources. For the requested resources, it generates an RDF graph by exploiting existing
ontologies and other knowledge from the Web.

4.1.5.1.2 Generic Visualization Systems

In the context of WoD visual exploration, there is a large number of generic visualization
frameworks, that offer a wide range of visualization types and operations. Next, we outline
the best known systems in this category.

Rhizomer [103] provides WoD exploration based on a overview, zoom and filter work-
flow. Rhizomer offers various types of visualizations such as maps, timelines, treemaps
and charts. VizBoard [387, 388] is an information visualization workbench for WoD build
on top of a mashup platform. VizBoard presents datasets in a dashboard-like, composite,
and interactive visualization. Additionally, the system provides visualization recommen-
dations. Payola [242] is a generic framework for WoD visualization and analysis. The
framework offers a variety of domain-specific (e.g., public procurement) analysis plugins
(i.e., analyzers), as well as several visualization techniques (e.g., graphs, tables, etc.). In
addition, Payola offers collaborative features for users to create and share analyzers. In
Payola the visualizations can be customized according to ontologies used in the resulting
data.

The Linked Data Visualization Model (LDVM) [102] provides an abstract visualization
process for WoD datasets. LDVM enables the connection of different datasets with various

15www4.wiwiss.fu-berlin.de/bizer/ng4j/disco
16mes.github.io/marbles
17linkeddata.uriburner.com
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kinds of visualizations in a dynamic way. The visualization process follows a four stage
workflow: Source data, Analytical abstraction, Visualization abstraction, and View. A
prototype based on LDVM considers several visualization techniques, e.g., circle, sunburst,
treemap, etc. Finally, the LDVM has been adopted in several use cases [243]. Vis Wizard
[374] is a Web-based visualization system, which exploits data semantics to simplify the
process of setting up visualizations. Vis Wizard is able to analyse multiple datasets using
brushing and linking methods. Similarly, Linked Data Visualization Wizard (LDVizWiz)
[43] provides a semi-automatic way for the production of possible visualization for WoD
datasets. In a same context, LinkDaViz [368] finds the suitable visualizations for a give
part of a dataset. The framework uses heuristic data analysis and a visualization model
in order to facilitate automatic binding between data and visualization options.

Balloon Synopsis [335] provides a WoD visualizer based on HTML and JavaScript. It
adopts a node-centric visualization approach in a tile design. Additionally, it supports
automatic information enhancement of the local RDF data by accessing either remote
SPARQL endpoints or performing federated queries over endpoints using the Balloon Fu-
sion service. Balloon Synopsis offers customizable filters, namely ontology templates, for
the users to handle and transform (e.g., filter, merge) input data. SemLens [204] is a
visual system that combines scatter plots and semantic lenses, offering visual discovery of
correlations and patterns in data. Objects are arranged in a scatter plot and are analysed
using user-defined semantic lenses. LODeX [62] is a system that generates a representative
summary of a WoD source. The system takes as input a SPARQL endpoint and generates
a visual (graph-based) summary of the WoD source, accompanied by statistical and struc-
tural information of the source. LODWheel [358] is a Web-based visualizing system which
combines JavaScript libraries (e.g., MooWheel, JQPlot) in order to visualize RDF data
in charts and graphs. Hide the stack [141] proposes an approach for visualizing WoD for
mainstream end-users. Underlying Semantic Web technologies (e.g., RDF, SPARQL) are
utilized, but are “hidden” from the end-users. Particularly, a template-based visualization
approach is adopted, where the information for each resource is presented based on its
rdf:type.

4.1.5.1.3 Domain, Vocabulary & Device-specific Visualization Systems

In this section, we present systems that target visualization needs for specific types of data
and domains, RDF vocabularies or devices.

Several systems focus on visualizing and exploring geo-spatial data. Map4rdf [260]
is a faceted browsing tool that enables RDF datasets to be visualized on an OSM or
Google Map. Facete [352] is an exploration and visualization tool for SPARQL accessible
data, offering faceted filtering functionalities. SexTant [65] and Spacetime [382] focus on
visualizing and exploring time-evolving geo-spatial data. The LinkedGeoData Browser
[351] is a faceted browser and editor which is developed in the context of LinkedGeoData
project. Finally, in the same context DBpedia Atlas [381] offers exploration over the
DBpedia dataset by exploiting the dataset’s spatial data. Furthermore, in the context
of linked university data, VISUalization Playground (VISU) [32] is an interactive tool for
specifying and creating visualizations using the contents of linked university data cloud.
Particularly, VISU offers a novel SPARQL interface for creating data visualizations. Query
results from selected SPARQL endpoints are visualized with Google Charts.

A variety of tools target multidimensional WoD modelled with the Data Cube vocab-
ulary. CubeViz [164, 331] is a faceted browser for exploring statistical data. The tool
provides data visualizations using different types of charts (i.e., line, bar, column, area
and pie). The Payola Data Cube Vocabulary [205] adopts the LDVM stages [102] in order
to visualize RDF data described by the Data Cube vocabulary. The same types of charts
as in CubeViz are provided in this tool. The OpenCube Toolkit [225] offers several tools
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related to statistical WoD. For example, OpenCube Browser explores RDF data cubes by
presenting a two-dimensional table. Additionally, the OpenCube Map View offers inter-
active map-based visualizations of RDF data cubes based on their geo-spatial dimension.
The Linked Data Cubes Explorer (LDCE) [229] allows users to explore and analyse statis-
tical datasets. Finally, [305] offers several map and chart visualizations of demographic,
social and statistical linked cube data.

Regarding device-specific systems, DBpedia Mobile [57] is a location-aware mobile ap-
plication for exploring and visualizing DBpedia resources. Who’s Who [107] is an appli-
cation for exploring and visualizing information focusing on several issues that appear in
the mobile environment. For example, the application considers the usability and data
processing challenges related to the small display size and limited resources of the mobile
devices.

4.1.5.1.4 Graph-based Visualization Systems

A large number of systems visualize WoD datasets adopting a graph-based (a.k.a., node-
link) approach. RelFinder [203] is a Web-based tool that offers interactive discovery and
visualization of relationships (i.e., connections) between selected WoD resources. Fen-
fire [201] and Lodlive [106] are exploratory tools that allow users to browse WoD using
interactive graphs. Starting from a given URI, the user can explore WoD by following
the links. IsaViz [308] allows users to zoom and navigate over the RDF graph, and
also it offers several “edit” operations (e.g., delete/add/rename nodes and edges). In the
same context, graphVizdb [76] is built on top of spatial and database techniques offering
interactive visualization over very large (RDF) graphs. ZoomRDF [403] employs a space-
optimized visualization algorithm in order to increase the number of resources which are
can displayed. Trisolda [150] proposes a hierarchical RDF graph visualization. It adopts
clustering techniques in order to merge graph nodes. More details regarding hierarchical
graph visualization can be found in Section 4.1.5.3. Paged Graph Visualization (PGV)
[146] utilizes a Ferris-Wheel approach to display nodes with high degree. RDF graph
visualizer [333] adopts a node-centric approach to visualize RDF graphs. Rather than
trying to visualize the whole graph, nodes of interest (i.e., staring nodes) are discovered
by searching over nodes labels; then the user can interactively navigate over the graph.
Finally, RDF-Gravity18 visualizes RDF and OWL data. It offers filtering, keyword search
and editing the the graph layout. Also, the nodes can be displayed in different colors and
shapes based on their RDF types.

4.1.5.1.5 Ontology Visualization Systems

The problems of ontology visualization and exploration have been extensively studied in
several research areas (e.g., biology, chemistry). In what follows we focus on graph-based
ontology visualization systems that have been developed in the WoD context [175, 156,
192, 255, 234]. In most systems, ontologies are visualized following the node-link paradigm
[271, 270, 210, 295, 95, 169, 212, 262, 30, 250, 357] 19,20. On the other hand, CropCircles
[391] uses a geometric containment approach, representing the class hierarchy as a set of
concentric circles. Furthermore, hybrids approaches are adopted in other works. Knoocks
[247] combines containment-based and node-link approaches. In this work, ontologies are
visualized as nested blocks where each block is depicted as a rectangle containing a sub-
branch shown as tree map. Finally, OntoTrix [49] and NodeTrix [206] use node-link and
adjacency matrix representations.

18semweb.salzburgresearch.at/apps/rdf-gravity
19protegewiki.stanford.edu/wiki/OntoGraf
20protegewiki.stanford.edu/wiki/OWLViz
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4.1.5.1.6 Visualization Libraries

Finally, there is a variety of Javascript libraries which allow WoD visualizations to be
embedded in Web pages. Sgvizler [347] is a JavaScript wrapper for visualizing SPARQL
results. Sgvizler allows users to specify SPARQL Select queries directly into HTML ele-
ments. Sgvizler uses Google Charts to generate the output, offering numerous visualiza-
tions types such as charts, treemaps, graphs, timelines, etc. Visualbox [189] provides an
environment where users can build and debug SPARQL queries in order to retrieve WoD;
then, a set of visualization templates is provided to visualize results. Visualbox uses several
visualization libraries like Google Charts and D3 [99], offering 14 visualization types.

4.1.5.1.7 Discussion

In contrast to the aforementioned approaches, our work does not focus solely on proposing
techniques for WoD visualization. Instead, we introduce a generic model for organizing,
exploring and analysing numeric and temporal data in a multilevel fashion. The un-
derlying model is not bound to any specific type of visualization (e.g., chart); rather
it can be adopted by several “flat” techniques and offer multilevel visualizations over
non-hierarchical data. Also, we present a prototype system that employs the introduced
hierarchical model and offers efficient multilevel visual exploration over WoD datasets,
using charts and timelines.

4.1.5.2 Statistical Analysis in the Web of Data

A second area related to the analysis features of the proposed model deals with WoD sta-
tistical analysis. RDFStats [254] calculates statistical information about RDF datasets.
LODstats [46] is an extensible framework, offering scalable statistical analysis of WoD
datasets. RapidMiner LOD Extension [320, 303] is an extension of the data mining plat-
form RapidMiner21, offering sophisticated data analysis operations over WoD. SparqlR22

is a package of the R23 statistical analysis platform. SparqlR executes SPARQL queries
over SPARQL endpoints and provides statistical analysis and visualization over SPARQL
results. Finally, ViCoMap [321] combines WoD statistical analysis and visualization, in a
Web-based tool, which offers correlation analysis and data visualization on maps.

4.1.5.2.1 Discussion

In comparison with these systems, our work does not focus on new techniques for WoD
statistics computation and analysis. We are primarily interested on enhancing the vi-
sualization and user exploration functionality by providing statistical properties of the
visualized datasets and objects, making use of existing computation techniques. Also, we
demonstrate how in the proposed structure, computations can be efficiently performed on-
the-fly and enrich our hierarchical model. The presence of statistics provides quantifiable
overviews of the underlying WoD resources at each exploration step. This is particularly
important in several tasks when you have to explore a large number of either numeric or
temporal data objects. Users can examine next levels’ characteristics at a glance, this way
are not enforced to drill down in lower hierarchy levels. Finally, the statistics over the
different hierarchy levels enables analysis over different granularity levels.

21rapidminer.com
22cran.r-project.org/web/packages/SPARQL/index.html
23www.r-project.org
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4.1.5.3 Hierarchical Visual Exploration

The wider area of data and information visualization has provided a variety of approaches
for hierarchical analysis and presentation.

Treemaps [342] visualize tree structures using a space-filling layout algorithm based
on recursive subdivision of space. Rectangles are used to represent tree nodes, the size of
each node is proportional to the cumulative size of its descendant nodes. Finally, a large
number of treemaps variations have been proposed. For example, Cushion Treemaps [383]
and Squarified Treemaps [101] use shade in order to provide insight into the hierarchical
structure. Ordered Treemaps [345] ensures that items near each other in the given (i.e.,
input) order, will be near each other in the treemap layout. Finally, Quantum Treemaps
[59] have been proposed for laying out images within the generated rectangles.

Moreover, hierarchical visualization techniques have been extensively employed to vi-
sualize very large graphs using the node-link paradigm. In these techniques the graph is
recursively decomposed into smaller sub-graphs that form a hierarchy of abstraction lay-
ers. In most cases, the hierarchy is constructed by exploiting clustering and partitioning
methods [261, 38, 36, 19, 44, 54, 221, 373]. In other works, the hierarchy is defined with
hub-based [264] and density-based [407] techniques. GrouseFlocks [37] supports ad-hoc
hierarchies which are manually defined by the users. Finally, there also some edge bundling
techniques which join graph edges to bundles. The edges are often aggregated based on
clustering techniques [177, 165, 306], a mesh [253, 134] or explicitly by a hierarchy [209].

In the context of data warehousing and online analytical processing (OLAP), several
approaches provide hierarchical visual exploration, by exploiting the predefined hierarchies
in the dimension space. [280] proposes a class of OLAP-aware hierarchical visual layouts;
similarly, [367] uses OLAP-based hierarchical stacked bars. Polaris [356] offers visual
exploratory analysis of data warehouses with rich hierarchical structure.

Further, several hierarchical techniques have been proposed in the context of ontology
visualization and exploration; e.g., [391, 247] (see Section 4.1.5.1.5)

Finally, in the context of hierarchical navigation, [233] organizes query results using the
MeSH concept hierarchy. In [109] a hierarchical structure is dynamically constructed to
categorize numeric and categorical query results. Similarly, [120] constructs personalized
hierarchies by considering diverse users preferences.

4.1.5.3.1 Discussion

In contrast to above approaches that target graph-based or hierarchically-organized data,
our work focuses on handling arbitrary numeric and temporal data, with out requiring
it to be described by an hierarchical schema. As an example of hierarchically-organized
data, consider class hierarchies or multidimensional data organized in multilevel hierar-
chical dimensions (e.g., in OLAP context, temporal data is hierarchically organized based
on years, months, etc.). In contrast to aforementioned approaches, our work dynamically
constructs the hierarchies from raw numeric and temporal data. Thus the proposed model
can be combined with “flat” visualization techniques (e.g., chart, timeline), in order to
provide multilevel visualizations over non-hierarchical data. In that sense, our approach
can be considered more flexible compared to the techniques that rely on predefined hi-
erarchies, as it can enable exploratory functionality on dynamically retrieved datasets,
by (incrementally) constructing hierarchies on-the-fly, and allowing users to modify these
hierarchies.

4.1.5.4 Data Structures & Data Processing

In this section we present the data structures and the data (pre-)processing techniques
which are the most relevant to our approach.
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Figure 4.12: Hierarchies generated from different approaches. a) based on [126] b) based on [196]

R-Tree [191] is disk-based multi-dimensional indexing structure, which has been widely
used in order to efficiently handle spatial queries. R-Tree adopts the notion of minimum
bounding rectangles (MBRs) in order to hierarchical organize multi-dimensional objects.

Data discretization [181, 152] is a process where continuous attributes are transformed
into discrete. A large number of methods (e.g., supervised, unsupervised, univariate,
multivariate) for data discretization have been proposed. Binning is a simple unsupervised
discretization method in which a predefined number of bins is created. Widely known
binning methods are the equal-width and equal-frequency. In equal-width approach, the
range of an attribute is divided into intervals that have equal width and each interval
represents a bin. In equal-frequency approach, an equal number of values are placed in
each bin.

By recursively applying discretization techniques, a hierarchical discretization of at-
tribute’s values can be produced (a.k.a. concept/generalization hierarchies). [339] proposes
a dynamic programming algorithm for generating numeric concept hierarchies. The algo-
rithm attempts to maximize both the similarity between the objects stored in the same
hierarchy’s node, as well as the dissimilarity between the objects stored in different nodes.
The generated hierarchy is a balanced tree where different nodes may have different num-
ber of children. [196] constructs hierarchies based on data distribution. Essentially, both
the leaf and the interval nodes are created in such a way that an even distribution is
achieved. The hierarchy construction considers also a threshold specifying the maximum
number of distinct values enclosed by nodes in each hierarchy level. Finally, binary con-
cept hierarchies (with degree equal to two) are generated in [126]. Starting from the whole
dataset, it performs a recursive binary partitioning over the dataset’s values; the recursion
is terminated when the number of distinct values in the resultant partitions is less than a
pre-specified threshold.

Using the data objects from our running example (Figure 4.1), Figure 4.12 shows the
hierarchies generated from the aforementioned approaches. Figure 4.12(a) presents the
hierarchy resulted from [126] and Figure 4.12(b) depicts the result using the method from
[196]. The parameters in each method are set, so that the resulting hierarchies are as
much as possible similar to our hierarchies (Figures 4.2 & 4.3) . Hence, the threshold in
(a) is set to 3, and in (b) is set to 2.

4.1.5.4.1 Discussion

The basic concepts of HETree structure can be considered similar to a simplified version of
a static 1D R-Tree. However, in order to provide efficient query processing in disk-based
environment, R-Tree considers a large number of I/O-related issues (e.g., space coverage,
nodes overlaps, fill guarantees, etc.). On the other hand, we introduce a lightweight, main
memory structure that efficiently constructed on-the-fly. Also, the proposed structure
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aims at organizing the data in a practical manner for a (visual) exploration scenario,
rather than for disk-based indexing and querying efficiency.

Compared to discretization techniques, our tree model exhibits several similarities,
namely, the HETree-C version can be considered as a hierarchical version of the equal-
frequency binning, and the HETree-R of the equal-width binning. However, the goal of
data organization in HETree is to enable visualization and hierarchical exploration capa-
bilities over dynamically retrieved non-hierarchical data. Hence, compared to the binning
methods we can consider the following basic differences. First, in contrast with binning
methods that require from the user to specify some parameters (e.g., the number/size of
the bins, the number of distinct values in each bin, etc); our approach is able to automati-
cally estimate the hierarchy parameters and adjust the visualization results by considering
the visualization environment characteristics. Second, in hierarchical approaches the user
is not always allowed to specify the hierarchy characteristics (e.g., degree). For example,
the hierarchies in [126] have always degree equal to two (Figure 4.12(a)), while in [196]
the nodes have varying degrees (Figure 4.12(b)). On the other hand, in our approach the
hierarchy characteristics can be specified precisely. In addition, when not specific hierar-
chy characteristics are requested, our approach generates perfect trees (Section 4.1.1.5),
offering a “uniform” hierarchy structure. Third, the computational complexity in some of
the hierarchical approaches (e.g., [339]) is prohibitive (i.e., at least cubic) for using them
in practise; especially in settings where the hierarchies have to constructed on-the-fly.
Fourth, the proposed tree structure is exploited in order to allow efficient statistics com-
putations over different groups of data; then, the statistics are used in order to enhance
the overall exploration functionality. Finally, the construction of the model is tailored to
the user interaction and preferences; our model offers incremental construction considering
the user interaction, as well as efficiently adaptation to the users preferences.

4.1.6 Summary

In this section we have presented HETree, a generic model that combines personalized
multilevel exploration with online analysis of numeric and temporal data. Our model is
built on top of a lightweight tree-based structure, which can be efficiently constructed
on-the-fly for a given set of data. We have presented two variations for constructing our
model: the HETree-C structure organizes input data into fixed-size groups, whereas the
HETree-R structure organizes input data into fixed-range groups. In that way the users
can customize the exploration experience, allowing them to organize data into different
ways, by parametrizing the number of groups, the range and cardinality of their contents,
the number of hierarchy levels, etc. We have also provided a way for efficiently computing
statistics over the tree, as well as a method for automatically deriving from the input
dataset the best-fit parameters for the construction of the model. Regarding the perfor-
mance of multilevel exploration over large datasets, our model offers incremental HETree
construction and efficient HETree adaptation based on user’s preferences. Based on the
introduced model, a Web-based prototype system, called SynopsViz, has been developed.
Finally, the efficiency and the effectiveness of the presented approach are demonstrated
via a thorough performance evaluation and an empirical user study.

111



4.2 Scalable Graph Exploration

Graph visualization is a core task in various applications such as scientific data manage-
ment, social network analysis, and decision support systems. With the wide adoption of
the RDF data model and the recent Linked Open Data initiative, graph data are almost
everywhere. Visualizing these data as graphs provides the non-experts with an intuitive
means to explore the content of the data, identify interesting patterns, etc. Such oper-
ations require interactive visualizations (as opposed to a static image) in which graph
elements are rendered as distinct visual objects; e.g., DOM objects in a web browser.
This way, the user can manipulate the graph directly from the UI, e.g., click on a node
or an edge to get additional information (metadata), highlight parts of the graph, rear-
range some nodes on the plane, etc. Given that graphs in many real-world scenarios are
huge, the aforementioned visualizations pose significant technical challenges from a data
management perspective.

First of all, the visualization must be feasible without the need to load the whole graph
in main memory. These “holistic” approaches [54, 201] result in prohibitive memory re-
quirements, and usually rely on dedicated client-server architectures which are not always
affordable by enterprises, especially start-ups. Then, the visualization tool must ensure
extremely low response time, even in multi-user environments built upon commodity ma-
chines with limited computational resources. Finally, the visualization must be flexible
and meaningful to the user, allowing her to explore the graph in different ways and at
multiple levels of detail.

State-of-the-art works in the field [19, 37, 44, 222, 264, 373, 407] tackle with the
previous problems through a hierarchical visualization approach. In a nutshell, hierarchical
visualizations merge parts of the graph into abstract nodes (recursively) in order to create
a tree-like structure of abstraction layers. This results in a decomposition of the graph
into much smaller (nested) sub-graphs which can be separately visualized and explored in
a “vertical” fashion, i.e., by clicking on an abstract node to retrieve the enclosed sub-graph
of the lower layer. In most cases, the hierarchy is constructed by exploiting clustering and
partitioning methods [19, 44, 54, 222, 373]. In other works, the hierarchy is defined with
hub-based [264] and density-based [407] techniques. [37] supports ad-hoc hierarchies which
are manually defined by the users. A different approach has been adopted in [359] where
sampling techniques are exploited. Finally, in the context of the Web of Data, there is a
large number of tools that visualize RDF graphs [80]; however, all these tools require the
whole graph to be loaded on the UI. Although the hierarchical approaches provide fancy
visualizations with low memory requirements, they do not support intuitive “horizontal”
exploration (e.g., for following paths in the graph). Further, with hierarchical approaches
it is not easy to explore dense parts of the graph in full detail (i.e., without using an
abstract representation). Finally, the applicability of hierarchical approaches is heavily
based on the particular characteristics of the dataset; for example, the existence of small
and coherent clusters [19, 37, 44, 222, 373] or the distribution of node degrees [264, 407].
An extended review of relate works is presented in Section 4.1.5.

In this work we introduce a generic platform for scalable multi-level visualizations
that do not necessarily depend on the specific graph characteristics considered in previous
works. The proposed platform can easily support various visualizations, including all ad-
hoc approaches in the literature, and bases its efficiency on a novel technique for indexing
and storing the graph at multiple levels of abstraction. In particular, our approach involves
an offline preprocessing phase that builds the layout of the input graph by assigning
coordinates to its nodes with respect to a Euclidean plane. The same offline procedure
is followed for all levels of abstraction each one of which corresponds to a graph that
is produced by (recursively) applying an abstraction method to the input graph. The
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respective points are then indexed with a spatial data structure (i.e., R-tree) and stored
in a database. This way, our system maps user operations into efficient spatial operations
(i.e., window queries) in the backend. The prototype we demonstrate here is a proof
of concept that interactive visualizations can be effective on commodity hardware, still,
allowing the user to perform intuitive navigations on the plane (e.g., follow interesting
paths in the graph) at any level of abstraction and regardless the size of the graph.

Contributions. The main contributions of this work are summarized as follows.

1. We propose a new paradigm for efficient exploration over large visualized graphs,
similar to this used in maps exploration.

2. We introduce a partition-based method for visualizing very large graph.

3. We present a greedy algorithm for organizing the visualized partitions on a “global”
plane.

4. We present a scheme for disk-based indexing and storing the graph at multiple levels
of abstraction.

5. We outline the translation of user interactions to spatial operations.

6. We develop a web-based prototype system which support four main operations:
(1) interactive navigation, (2) multilevel exploration, (3) subgraph selection and
manipulation, and (4) keyword search.

4.2.1 System Architecture

The architecture of our platform, graphVizdb, is depicted in Figure 4.13. It consists of
three main parts: (a) the Client, (b) the graphVizdb Core module, and (c) the Database.
The Client is the frontend UI that offers several functionalities to the users, e.g., an inter-
active canvas, search features, multi-level exploration, etc. The Core module contains the
Preprocessing module and the Query Manager that is responsible for the communication
between the Client and the Database. The Database contains all data needed for the
visualization along with the necessary indexes. Details for each part are provided in the
following sections.
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Figure 4.13: System architecture

4.2.2 Preprocessing Phase

In our approach, the layout of the input graph is built on the server side once, during
the preprocessing phase, and this can be done with any of the existing layout algorithms.
The result of this process is the assignment of coordinates to the nodes of the graph
with respect to a Euclidean plane. The state-of-art layout algorithms provide layouts of
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high quality, however, they require large amounts of memory in practice, even for graphs
with few thousands of nodes and edges. In order to overcome this problem, we adopt a
partition-based approach as shown in Figure 4.14.

Step 1. The graph is divided by the Partitioning module into a set of k distinct sub-graphs,
where k is proportional to the total graph size and the available memory of the machine.
This is a k-way partitioning that aims at minimizing the number of edges between the
different sub-graphs [232].

Step 2. The Layout module applies the layout algorithm to each partition independently,
and assigns coordinates to the nodes of each sub-graph without considering the edges that
cross different partitions. Note that any layout algorithm can be used in this step, e.g.,
circle, star, hierarchical, etc.

Step 3. The Partition Organizer arrange and combine the visualized partitions into a
“global” plane taking into account the edges connecting different partitions.

Step 4. Multiple abstraction layers of the input graph are constructed by the Abstraction
module.

Step 5. At final step, the input graph along with the abstract graphs are indexed and
stored in the Database.

In the following sections, we provide more details on Step 3, 4, and 5.

4.2.2.1 Organizing Partitions

Partitions are organized on the “global” plane using a greedy algorithm whose goal is
twofold. First, it ensures that the distinct sub-graphs do not overlap on the plane, and at
the same time it tries to minimize the total length of the edges between different partitions
(crossing edges).

Initially, the algorithm counts the number of crossing edges for each partition. Then, it
selects the partition with the largest number of crossing edges (to all other partitions), and
places it at the center of the plane, i.e., it updates the coordinates of its nodes with respect
to the “global” plane. This is the m-th partition in Figure 4.14 which has 9 such edges
(denoted with red color). The remaining partitions are kept in a priority queue, sorted
on the number of the common crossing edges they have with the partitions that exist on
the plane (in descending order). At each subsequent step, the algorithm assigns the first
partition from the queue to an empty area on the plane so that the total length of the
crossing edges between this partition and all other partitions on the plane is minimized.
Then, the partition is removed from the queue and the coordinates of its nodes are updated
with respect to the assigned area. The order of the partitions in the queue is also updated
accordingly, and the algorithm proceeds to the next step. The above process terminates
when the priority queue is empty. Intuitively, the efficiency of the algorithm is guaranteed
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by the small number of partitions (k), and also by the small size of the area we have to
check for the best assignment at each step; this area lies around the non-empty areas from
the previous steps.

4.2.2.2 Building Abstraction Layers

After arranging the partitions, a number of abstraction layers is constructed for the initial
graph, as shown in Figure 4.14. A layer i (i > 0) corresponds to a new graph that is
produced by applying an abstraction method to the graph at layer i−1. Hence, the overall
hierarchy of layers is constructed in a bottom-up fashion, starting from the initial graph at
layer 0. Each time we create a new graph at layer i, its layout is based on the layout of the
graph at layer i − 1. The abstraction method can be any algorithm that produces a more
condense form of the input graph, either by merging parts of the graph into single nodes
(like the graph summarization methods we mentioned in the introduction) or by filtering
parts of the graph according to a metric, e.g., a node ranking criterion like PageRank.
We emphasize that our approach does not pose any restrictions to the number of layers
or the size of the graph at each layer. Finally, all layers are kept as separate graphs in the
database as we explain below.
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Figure 4.15: Storage scheme

4.2.2.3 Storage Scheme

Our database includes a single relational table per abstraction layer that stores all infor-
mation about the graph of this layer. All these tables have the same schema as depicted
in Figure 4.15. Intuitively, each graph is stored as a set of triples of the form (node1,
edge, node2). A row in the table of Figure 4.15 contains the following attributes: (1)
the unique ID of the first node (Node1 ID), (2) the label of the first node (Node1 Label),
(3) the geometry of the connecting edge (Edge Geometry) which is an binary object that
represents the line between node1 and node2 on the plane, (4) the label of the edge (Edge
Label), (5) the unique ID of the second node (Node2 ID), and (6) the label of the second
node (Node2 Label). When the edge is directed, node1 is always the source node whereas
node2 is the target node. This information is encoded in the binary object that represents
the geometry of the edge.

B+-trees are built on attributes (1) and (5) to retrieve all information about a node
efficiently. The full text indexes shown in Figure 4.15 correspond to tries, and they are
used to support fast keyword search on the graph metadata. Finally, an R-tree is used to
index the geometries of the edges on the plane. Note that each such geometry is internally
defined by the coordinates of the first and the second node whose IDs and labels are stored
in the same row of the table.

4.2.3 Exploration Operations

On the client side, our platform provides three main visual exploration operations:
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4.2.3.1 Interactive Navigation

The user navigates on the graph by moving the viewing window (“horizontal” navigation).
When the window is moved, its new coordinates with respect to the whole canvas are
tracked on the client side, and a spatial range query (i.e., a window query) is sent to the
server. This query retrieves all elements of the graph (nodes and edges) that overlap with
the current window. The query is evaluated with a lookup in the R-tree of Figure 4.15,
and the respective part of the graph is fetched from the database and sent to the client.

After the part of the graph is rendered on the canvas, the user can start the exploration.
By clicking on a node, an Information Panel shows the complete label of the selected
node along with the labels of its neighbours (adjacent nodes) and also the labels of the
connecting edges. This information is retrieved through asynchronous requests to the
server using the unique ID assigned to each node. The user can also highlight a node’s
neighbourhood by hiding all other nodes except the selected one and its adjacent nodes.

4.2.3.2 Multilevel Exploration

The user moves up or down at different abstraction layers of the graph through a Layer
Panel (“vertical” navigation). When changing a level of abstraction, the graph elements
are fetched through spatial range queries on the appropriate table that corresponds to the
selected layer. Vertical navigation can be combined with traditional zoom in/out opera-
tions in order to give the impression of a lower/higher perspective. In this case, the size
of the window (rectangle) that is sent to the server is decreased/increased proportionally
according to the zoom level.

4.2.3.3 Keyword-based Exploration

Finally, the user searches the graph using keywords through a Search Panel. In this case,
a keyword query is sent to the server and it is evaluated on the whole set of node labels
which are indexed with tries. The result of this query is a list of nodes whose labels contain
the given keyword. By clicking on a node from the list, the user’s window focuses on the
position of this node. In this case, the spatial query sent to the server uses as window the
rectangle whose size is equal to the size of the client’s window and whose center has the
same coordinates with the selected node from the list.

4.2.4 The graphVizdb Platform

4.2.4.1 Implementation

graphVizdb24 is implemented on top of several open-source tools and libraries. The Core
module of our system is developed in Java 1.7, and the database we use is MySQL 5.6.12.
The partitioning of the graph, during the preprocessing phase, is done with Metis 5.1.025

whereas the layout of each partition is built with Graphviz 2.38.026. The web-based
frontend is entirely based on HTML and JavaScript. For the interactive visualization of
the graph on the client side, we use mxGraph 3.1.2.127.

4.2.4.2 Web User Interface

The UI shown in Fig. 4.16a consists of the following panels: (1) Visualization, i.e., the
interactive canvas, (2) Information that provides information about a selected node (meta-

24graphvizdb.imis.athena-innovation.gr
25glaros.dtc.umn.edu/gkhome/views/metis
26www.graphviz.org
27www.jgraph.com
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(a) Main window

(b) Control panel (c) Birdview

Figure 4.16: Web user interface

data), (3) Control (Fig. 4.16b), (4) Birdview (Fig. 4.16c), i.e., a large-scale image of the
whole graph on the plane, (5) Search that offers keyword search functionalities, (6) Statis-
tics that provides basic statistics for the graph (e.g., average node degree, density, etc.)
and the current window, (7) Filter that offers filtering operations on the canvas (i.e.,
hide edges/nodes), and (8) Edit that allows the user to store in the database the graph
modifications made through the canvas.

4.2.4.3 graphVizdb In-Use

In this section we outline the basic functionality of graphvVizdb prototype. The graphVizdb
allow users to efficiently and effectively interact, navigate and explore large graphs through
a web browser.

Initially, the users are able to select a dataset from a number of real-word datasets (e.g.,
DBpedia, DBLP, ACM, Notre Dame web graph). Then, users are able to have a quick
glance on the graph using various navigation methods such as panning, selecting a specific
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Table 4.8: Time for each preprocessing step (min)

Dataset #Edges #Nodes Step 1 Step 2 Step 3 Step 4 Step 5

Wikidata 151M 146M 1.8 4.5 25.5 16.5 670.1

Patent 16.5M 3.8M 5.1 2.8 9.7 8.2 41.2

part of the graph in the birdview panel, etc. Through the navigation, the information
panel can provide useful informations regarding the concepts (i.e., nodes) and relations
(i.e., edges) appear in the dataset. Further, the users are able to filter (i.e., hide) edges
and/or nodes of specific types (e.g., leaf nodes), as well as to zoom in/out over the graph.
For example, in the ACM dataset, a user interested in exploring the citations between
articles, will be able to filter out irrelevant edges (e.g., has-author, has-title) and visualize
only the cite edges.

Additionally, the users are able to explore the “Focus on node” mode, which is suitable
for pathway navigation, as well as for helping users to further understand the relations
amongst the nodes of interest. In this mode, only the selected node and its neighbours
are visible. The user interested in exploring the scientific collaborations of an author will
be able to use keywords in order to search for this person, e.g., Christos Faloutsos. Then,
using the “Focus on node”, the user can quickly explore all Faloutsos’ collaborations by
following the “Christos Faloutsos ⋅ has-author ⋅ article ⋅ has-author” paths.

Beyond simple navigation, users are able to perform a multi-level graph exploration.
In particular, they are be able to modify the abstraction level as well as the abstraction
criteria (e.g., Node degree, PageRank, HITS). For example, by selecting either PageRank
or HITS as the abstraction criterion in a web graph, the users will be able to view different
layers of the graph that contain only the “important” nodes (e.g., sites whose PageRank
score is above a certain threshold).

A video presenting the basic functionality of our prototype is available at:
vimeo.com/117547871.

4.2.5 Experimental Analysis

In this section, we study the performance of the proposed platform and we present the
results of our experimental evaluation using two real graph datasets.

4.2.5.1 Setting

The experiments we present here were conducted on the Okeanos cloud28 using a VM with
a quad-core CPU at 2GHz and 8GB of RAM running Linux. For the client application,
we used Google Chrome on a laptop with an i7 CPU at 1.8GHz and 4GB of RAM. The
cache size of MySQL on the server side was set to 6GB.

4.2.5.2 Datasets

To evaluate the response time of our system, we used several real graph datasets with
rather different characteristics. Here we present only the results for two datasets: the
Wikidata29 RDF dataset, and the Patent30 citation graph. The first one is an RDF
export of Wikidata having 151M edges and 146M nodes. Its average node degree is 2.1
whereas its density is 1.4E-8. The second dataset is taken from the SNAP repository31 of

28okeanos.grnet.gr
29tools.wmflabs.org/wikidata-exports/rdf/exports/20150223
30snap.stanford.edu/data/cit-Patents.html
31snap.stanford.edu
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Figure 4.17: Time vs. Window size

large network datasets. It contains 16.5M edges and 3.8M nodes with average degree 8.8.
Its density is 2.3E-6.

4.2.5.3 Preprocessing Phase

Table 4.8 presents the preprocessing time for each step of Fig. 4.14. These times are
higher for Wikidata since it is much bigger than the Patent dataset. The only exception
is the time spent in Step 1 for applying the k-way partitioning; this process takes longer
for Patent due to the higher average node degree. Note that the most expensive part of
the preprocessing is the indexing step; however, the presented times correspond to the
total time spent in indexing 5 layers of each dataset, one after the other. In practice,
we can speed up this step by distributing the layers to different nodes of the cluster and
perform the indexing in parallel. In this case, the time spent in Step 5 equals the time
for indexing the input graph (layer 0), that is, 274.5 and 17.4 minutes for Wikidata and
Patent respectively.

4.2.5.4 Exploration

Our experimental scenario includes the evaluation of window queries with different sizes.
These queries are evaluated by the server and sent to the client for visualization. In
particular, we used window queries whose size varies from 2002 to 30002 pixels, and we
evaluated them on the initial graph of each dataset, i.e., on the bottom layer of abstraction
(i.e., most-detailed level).

For each window size, we generated 100 random queries. The results we present in
Fig. 4.17 correspond to the following average times per query (msecs): (1) DB Query
Execution: the time spent to evaluate the query in the database, (2) Build JSON Objects:
the time required for the server to process the query result and build the JSON objects
that are sent to the client, (3) Communication + Rendering : the time spent in the client-
sever communication plus the time needed to render the graph on the browser, and (4)
Total Time: the sum of the above times. The Nodes + Edges in Fig. 4.17 refer to the
average number of nodes and edges included in the 100 random windows of each size.

The first observation is that the performance of our approach scales linearly with the
window size and the total number of objects in it. This behaviour is similar for both
datasets. As we can see in Fig. 4.17, the overall response time of the system is dominated
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by the time spent in Communication + Rendering. We do not present these two operations
separately because the part of the graph included in the window of the user is sent from the
server to the client in small pieces, i.e., in a streaming fashion; hence, the respective times
cannot be easily distinguished. As a final comment, the time spent to evaluate the query
in the database is negligible and increases slightly as the size of the window increases.

4.2.6 Summary

In this section we have presented graphVizdb, a generic and scalable platform for the in-
teractive visual exploration of very large graphs at multiple levels. The presented platform
introduce a new paradigm to explore visualized graphs, similar to this followed in map
exploration. A scheme for graph disk-based indexing and storing have been presented.
Further, for enabling very large graph visualization, a partition-based visualization tech-
nique is proposed. Finally, the platform has been developed as a web-based prototype
system which support four main operations: (1) interactive navigation, (2) multilevel
exploration, (3) subgraph selection and manipulation, and (4) keyword search.
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Part III

Semantic Data Analysis
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Chapter 5

Interoperability between the XML
and Semantic Web Worlds

The Web of Data is an open environment consisting of a great number of large inter-linked
RDF datasets from various domains. In this environment, organizations and companies
adopt the Linked Data practices utilizing Semantic Web (SW) technologies, in order to
publish their data and offer SPARQL endpoints (i.e., SPARQL-based search services).
On the other hand, the dominant standard for information exchange in the Web today is
XML. Additionally, many international standards (e.g., Dublin Core, MPEG-7, METS )
in several domains (e.g., Digital Libraries, GIS, Multimedia) have been expressed in XML
Schema. The aforementioned have led to an increasing emphasis on XML data, accessed
using the XQuery query language. The SW and XML worlds and their developed infras-
tructures are based on different data models, semantics and query languages. Thus, it is
crucial to develop interoperability mechanisms that allow the Web of Data users to access
XML datasets, using SPARQL, from their own working environments. It is unrealistic
to expect that all the existing legacy data (e.g., Relational, XML) will be transformed
into SW data. Therefore, publishing legacy data as Linked Data and providing SPARQL
endpoints over them has become a major research challenge. In this direction, we in-
troduce the SPARQL2XQuery Framework which creates an interoperable environment,
where SPARQL queries are automatically translated to XQuery queries, in order to ac-
cess XML data across the Web. The SPARQL2XQuery Framework provides a mapping
model for the expression of OWL–RDF/S to XML Schema mappings as well as a method
for SPARQL to XQuery translation. To this end, our Framework supports both man-
ual and automatic mapping specification between ontologies and XML Schemas. In the
automatic mapping specification scenario, the SPARQL2XQuery exploits the XS2OWL
component which transforms XML Schemas into OWL ontologies. Finally, extensive ex-
periments have been conducted in order to evaluate the schema transformation, mapping
generation, query translation and query evaluation efficiency, using both real and synthetic
datasets.

5.1 Introduction

The Linked-Open Data1, Open-Government2 and Linked Life Data3 initiatives have played
a major role in the development of the so called Web of Data (WoD). In the WoD, a large
number of organizations, institutes and companies (e.g., DBpedia, GeoNames, PubMed,
Data.gov) adopt the Linked Data practices. Utilizing the Semantic Web (SW) technologies

1linkeddata.org
2www.whitehouse.gov/open
3linkedlifedata.com
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[82], they publish their data and offer SPARQL endpoints (i.e., SPARQL-based search
services). Nowadays, there are hundreds of large inter-linked RDF datasets from various
domains which comprise the WoD. It is challenging though, to make information that is
stored in non-RDF data sources (e.g., Relational databases, XML repositories) available
in the WoD.

The SW infrastructure supports the management of RDF datasets [100, 279, 289],
accessed by the SPARQL query language [314]. Since the WoD applications and services
have to coexist and interoperate with the existing applications that access legacy systems,
it is essential for the WoD infrastructure to provide transparent access to information
stored in heterogeneous legacy data sources. Publishing legacy data that adopt the Linked
Data practices and offer SPARQL endpoints over it, has become a major research and
development objective for many organizations.

In the current Web infrastructure the XML/XML Schema [138, 178, 360] are the
dominant standards for information exchange as well as for the representation of semi-
structured information. As a consequence, many international standards in several do-
mains (e.g., Digital Libraries, GIS, Multimedia, e-Learning, Government, Commercial)
have been expressed in XML Schema syntax. For example, the Dublin Core [1] and METS
[6] standards are used by digital libraries, the MPEG-7 [9] and MPEG-21 [8] standards
are utilized for multimedia content and service description, the MARC 21 [4], MODS [7],
TEI [15], EAD [2] and VRA Core [16] standards are used by cultural heritage institutions
(e.g., libraries, archives, museums) and the IEEE LOM [3] and SCORM [12] standards
are exploited in e-learning environments. The universal adoption of XML for web data
exchange and the expression of several standards using XML Schema, have resulted in
a large number of XML datasets accessed using the XQuery query language [346]. For
example, Oracle has at least 7000 customers using the XQuery feature in its products [51].

Since the SW and XML worlds have different data models, different semantics and
use different query languages to access data [82], it is crucial to develop frameworks,
including models and adaptable software based on them, as well as methodologies that will
provide interoperability between the SW and the XML infrastructures, thus facilitating
transparent XML querying in the WoD using SW technologies.

The scenario of transforming all the legacy data into SW data is clearly unrealistic due
to: (a) The different data models adopted and enforced by different standardization bodies
(e.g., consortiums, organizations, institutions); (b) Ownership issues; (c) The existence of
systems that access the legacy data; (d) Scalability requirements (large volumes of data
involved); and (e) Management requirements, e.g., support of updates. Thus, a realistic
integration of the two worlds has to be established.

The W3C community has realized the need to bridge different worlds (e.g., Relational,
XML, SW) under several scenarios. Tim Berners Lee introduced the Double Bus Archi-
tecture4, a W3C Design Issue. The Double Bus Architecture assumes that the WoD users
and applications use the SPARQL query language to ask for content from the underlying
XML and Relational data sources. In the context of the relational and SW worlds, the
W3C RDB2RDF working group [11] has been established, which is attempting to bridge
the relational and SW worlds [330, 143]. In addition, a large number of approaches has
been proposed for bridging the relational databases with the SW through SPARQL to
SQL translation [248, 337, 89, 379, 325, 105, 118, 275, 116, 161, 166, 316]. In the con-
text of the SW and XML worlds, two W3C working groups (GRDDL [137] and SAWSDL
[171]) focus on transforming XML data to RDF data (and vice versa). Moreover, W3C
investigates the XSPARQL approach for merging XQuery and SPARQL for transforming
XML to RDF data (and vice versa).

The recent efforts in bridging the SW and XML worlds focus on data transformation

4www.w3.org/DesignIssues/diagrams/sw-double-bus.png
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(i.e., XML data to RDF data and vice versa). However, despite the significant body of
related work on SPARQL to SQL translation, to the best of our knowledge, there is no
work addressing the SPARQL to XQuery translation problem. Given the high importance
of XML and the related standards in the Web, this is a major shortcoming in the state of
the art. Finally, as far as the Linked Data context is concerned, publishing legacy data and
offering SPARQL endpoints over them, has recently become a major research challenge.
In spite of the fact that several systems (e.g., D2R Server [89], SparqlMap [379], Quest
[325], Virtuoso [105], TopBraid Composer5) offer SPARQL endpoints over relational data,
to the best of our knowledge, there is no system supporting XML data.

This work presents SPARQL2XQuery, a framework that provides transparent access
over XML in the WoD. Using the SPARQL2XQuery Framework, XML datasets can be
turned into SPARQL endpoints. The SPARQL2XQuery Framework provides a method
for SPARQL to XQuery translation, with respect to a set of predefined mappings between
ontologies and XML Schemas. To this end, our Framework supports both manual and
automatic mapping specifications between ontologies and XML Schemas, as well as a
schema transformation mechanism.

5.1.1 Motivating Example

Here, we outline two scenarios in order to illustrate the need for bridging the SW and XML
worlds in several circumstances. In our examples, three hypothetically autonomous part-
ners are involved: (a) Digital Library X (which belongs to an institution or a company),
(b) Organization A and (c) Organization Z. Each has adopted different technologies to rep-
resent and manage their data. Assume that, Digital Library X has adopted XML-related
technologies (i.e., XML, XML Schema, and XQuery) and its contents are described in
XML syntax, while both organizations have chosen SW technologies (i.e., RDF/S, OWL,
and SPARQL).

1st Scenario. Consider that Digital Library X wants to publish their data in the WoD
using SW technologies, a common scenario in the Linked Data era. In this case, a schema
transformation and a query translation mechanism are required. Using the schema trans-
formation mechanism, the XML Schema of Digital Library X will be transformed to an
ontology. Then, the query translation mechanism will be used to translate the SPARQL
queries posed over the generated ontology, to XQuery queries over the XML data.

2nd Scenario. Consider WoD users and/or applications that express their queries or
have implemented their query APIs using the ontologies of Organization A and/or Orga-
nization Z. These users and applications should be able to have direct access to Digital
Library X from the SW environment, without changing their working environment (e.g.,
query language, schema, API). In this scenario, a mapping model and a query translation
mechanism are required. In such a case, an expert specifies the mappings between the
Organization ontologies and the XML Schema of Digital Library X. These mappings are
then exploited by the query translation mechanism, in order to translate the SPARQL
queries posed over the Organization ontologies, to XQuery queries to be evaluated over
the XML data of Digital Library X. It should be noted that in most real-world situations,
an XML Schema may be mapped to more than two ontologies.

Note that in the first scenario, Digital Library X may want to publish its data in the
WoD, using existing, well accepted vocabularies (e.g., FOAF, SIOC, SKOS). The same
may hold for the second scenario, where the queries or the APIs may be expressed over
well-known vocabularies (which are manually mapped to the XML Schema of Digital
Library X).

5www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition
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Figure 5.1: SPARQL2XQuery architectural overview. In the first scenario, the XS2OWL compo-
nent is used to create an OWL ontology from the XML Schema. The mappings are automatically
generated and stored. In the second scenario, a domain expert specifies the mapping between
existing ontologies and the XML Schema. In both scenarios, SPARQL queries are processed and
translated into XQuery queries for accessing the XML data. The results are transformed in the
preferred format and returned to the user.

5.1.2 Framework Overview

In this chapter, we present the SPARQL2XQuery Framework, which bridges the hetero-
geneity gap and creates an interoperable environment between the SW
(OWL/RDF/SPARQL) and XML (XML Schema/XML/XQuery) worlds. An overview
of the system architecture of the SPARQL2XQuery Framework is presented in Figure 6.1.
As shown in Figure 6.1, our working scenarios involve existing XML data that follow one or
more XML Schemas. Moreover, the SPARQL2XQuery Framework supports two different
scenarios:

1st Scenario: Querying XML data based on automatically generated ontolo-
gies. This is achieved through the XS2OWL component [375] that we have developed
and integrated in the SPARQL2XQuery Framework. In particular, the XS2OWL compo-
nent automatically generates OWL ontologies that capture the XML Schema semantics.
Then, the SPARQL2XQuery Framework automatically detects, generates and maintains
mappings between the XML Schemas and the OWL ontologies generated by XS2OWL. In
this case, the following steps take place:

(a) Using the XS2OWL component, the XML Schema is expressed as an OWL ontol-
ogy.

(b) The Mapping Generator component takes as input the XML Schema and the gen-
erated ontology, and automatically generates, maintains and stores the mappings
between them in XML format.

(c) The SPARQL queries posed over the generated ontology are translated by the
Query Translator component to XQuery expressions.

(d) The query results are transformed by the Query Result Transformer component into
the desired format (SPARQL Query Result XML Format [136] or RDF format).

In this context, our approach can be viewed as a fundamental component of hybrid
ontology-based integration [390] frameworks (e.g., [276, 277]), where the schemas of the
XML data sources are represented as OWL ontologies and these ontologies, possibly along
with other ontologies, are further mapped to a global ontology.
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2nd Scenario: Querying XML data based on existing ontologies. In this scenario,
XML Schema(s) are manually mapped by an expert to existing ontologies, resulting in the
mappings that are used in the SPARQL to XQuery translation. In this case the following
steps take place:

(a) An XML Schema is manually mapped to an existing RDF/S–OWL ontology.

(b) The SPARQL queries posed over the ontology are translated to XQuery expressions.

(c) The query results are transformed in the desired format.

In both scenarios, the systems and the users that pose SPARQL queries over the ontology
are not expected to know the underlying XML Schemas or even the existence of XML
data. They express their queries only in standard SPARQL, in terms of the ontology
that they are aware of, and they are able to retrieve XML data. Our Framework is an
essential component in the WoD environment that allows setting SPARQL endpoints over
the existing XML data.

The SPARQL2XQuery Framework supports the following operations:

(a) Schema Transformation. Every XML Schema can be automatically transformed in
an OWL ontology, using the XS2OWL component.

(b) Mapping Generation. The mappings between the XML Schemas and their OWL
representations can be automatically detected and stored as XML documents.

(c) Query Translation. Every SPARQL query that is posed over the OWL represen-
tation of the XML Schemas (first scenario), or over the existing ontologies (second
scenario), is translated in an XQuery query.

(d) Query Result Transformation. The query results are transformed in the preferred
format.

5.1.3 Contributions

The main contributions of this work are summarized as follows:

1. We introduce the XS2OWL Transformation Model, which facilitates the transfor-
mation of XML Schema into OWL ontologies. As far as we know, this is the first
work that fully captures the XML Schema semantics.

2. We introduce a mapping model for the expression of mappings from RDF/S–OWL
ontologies to XML Schemas, in the context of SPARQL to XQuery translation.

3. We propose a method and a set of algorithms that provide a comprehensive SPARQL
to XQuery translation. To the best of our knowledge, this is the first work addressing
this issue.

4. We integrate the SPARQL2XQuery Framework with the XS2OWL component, thus
facilitating the automatic generation and maintenance of the mappings exploited in
the SPARQL to XQuery translation.

5. We propose a small number of XQuery rewriting/optimization rules which are ap-
plied on the XQuery expressions produced by the translation, aiming at the genera-
tion of more efficient XQuery expressions. In addition, we experimentally study the
effect of these rewriting rules on the XQuery performance.

6. We describe an extension of the SPARQL2XQuery Framework in the context of
supporting the SPARQL 1.1 update operations.

7. We conduct a thorough experimental evaluation, in terms of: (a) schema transfor-
mation time; (b) mapping generation time; (c) query translation time; and (d) query
evaluation time, using both real and synthetic datasets.
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5.2 Related Work

A large number of data integration [274] and data exchange (also known as data transfor-
mation/translation) [167] systems have been proposed in the existing literature. In the con-
text of XML, the first research efforts have attempted to provide interoperability and inte-
gration between the relational and XML worlds [290, 312, 399, 145, 369, 231, 267, 249, 244].
In addition, several approaches have focused on data integration and exchange over het-
erogeneous XML data sources [148, 93, 194, 195, 364, 217, 40, 27, 96].

In the context of interoperability support between the SW and XML worlds [82],
numerous approaches for transforming XML Schemas to ontologies, and/or XML data to
RDF data and vice versa have been proposed. The most recent ones combine SW and
XML technologies in order to transform XML data to RDF and vice versa. Among the
published results, the most relevant to our approach are those that utilize the SPARQL
query language.

In the rest of this section, we present an overview of the published research that is
concerned with the interoperability and integration between the SW and XML worlds
(Section 5.2.1). The latest approaches are described in Section 5.2.2. Finally, a discus-
sion about the drawbacks and the limitations of the current approaches is presented in
Section 5.2.3.

5.2.1 Bridging the Semantic Web and XML worlds — An Overview

In this section, we summarize the literature related to interoperability and integration
issues between the SW and XML worlds. We categorize these systems into data integration
systems (Table 6.2) and data exchange systems (Table 6.3).

Table 6.2 provides an overview of the data integration systems in terms of the Envi-
ronment Characteristics and the supported Operations. The environment characteristics
include the Data Models of the underlying data sources, the involved Schema Defini-
tion Languages and the supported Query Languages. The operations include the Query
Translation and the Schema Transformation. Regarding the schema transformation, if
the method support schema transformation, the value is “3”. Notice that the last row of
each table describes our SPARQL2XQuery Framework. Note that the SPARQL2XQuery
Framework does not deal with the problem of integrating data form different XML data
sources; thus, it should be considered as an interoperability system or a core component
of integration systems. Hence, it fits better in Table 6.2 than Table 6.3.

Table 6.3 provides an overview of the data exchange systems and is structured in a
similar way with Table 6.2. If the value of the fifth column (Use of an Existing Ontology)
is “3”, the method supports mappings between XML Schemas and existing ontologies
and, as a consequence the XML data are transformed according to the mapped ontologies.

The data integration systems (Table 6.2) are generally older and they do not support
the current standard technologies (e.g., XML Schema, OWL, RDF, SPARQL). Notice
also, that, although the data exchange systems shown in Table 6.3 are more recent, they
do not support an integration scenario neither they provide query translation methods.
Instead, they focus on data and schema transformation, exploring how the RDF data
can be transformed in XML syntax and/or how the XML Schemas can be expressed as
ontologies and vice versa.

5.2.2 Recent Approaches

In this section, we present the latest approaches related to the support of interoperability
and integration between the SW and XML worlds. These approaches utilize the current
W3C standard technologies (e.g., XML Schema, RDF/S, OWL, XQuery, SPARQL). Most
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of the latest efforts (Table 6.3) focus on combining the XML and the SW technologies
in order to provide an interoperable environment. In particular, they merge SPARQL,
XQuery, XPath and XSLT features to transform XML data to RDF and vice versa.

The W3C Semantic Annotations for WSDL (SAWSDL) Working Group [171] uses
XSLT to convert XML data into RDF, and uses a combination of SPARQL and XSLT for
the inverse transformation. In addition, the W3C Gleaning Resource Descriptions from
Dialects of Languages (GRDDL) Working Group [137] uses XSLT to extract RDF data
from XML.

XSPARQL [28, 87, 86] combines SPARQL and XQuery in order to achieve the trans-
formation of XML into RDF and back. In the XML to RDF scenario, XSPARQL uses
a combination of XQuery expressions and SPARQL Construct queries. The XQuery ex-
pressions are used to access XML data, and the SPARQL Construct queries are used to
convert the accessed XML data into RDF. In the RDF to XML scenario, XSPARQL uses
a combination of SPARQL and XQuery clauses. The SPARQL clauses are used to ac-
cess RDF data, and the XQuery clauses are used to format the results in XML syntax.
Similarly, in [128] XPath, XSLT and SQL are embedded into SPARQL queries in order
to transform XML and relational data to RDF. In XSLT+SPARQL [69] the XSLT lan-
guage is extended in order to embed SPARQL SELECT and ASK queries. The SPARQL
queries are evaluated over RDF data and the results are transformed to XML using XSLT
expressions.

In some other approaches, SPARQL queries are embedded into XQuery and XSLT
queries [190]. In [155, 154, 153], XPath expressions are embedded in SPARQL queries.
These approaches attempt to process XML and RDF data in parallel, and benefit from
the combination of the SPARQL, XQuery, XPath and XSLT language characteristics.
Finally, a method that transforms XML data into RDF and translates XPath queries into
SPARQL, has been proposed in [155, 154, 153].

5.2.3 Discussion

In this section we discuss the existing approaches, and we highlight their main drawbacks
and limitations. The existing data integration systems (Table 6.2) do not support the
current standard technologies (e.g., XML Schema, OWL, RDF, SPARQL). On the other
hand, the data exchange systems (Table 6.3) are more recent and support the current
standard technologies, but do not support integration scenarios and query translation
mechanisms. Instead, they focus on data transformation and do not provide mechanisms
to express XML retrieval queries using the SPARQL query language.

The recent approaches [137, 171, 28, 190, 155, 154, 153, 69, 128] however present severe
usability problems for the end users. In particular, the users of these systems are forced
to: (a) be familiar with both the SW and XML models and languages; (b) be aware of
both ontologies and XML Schemas in order to express their queries; and (c) be aware of
the syntax and the semantics of each of the above approaches in order to express their
queries. In addition, each of these approaches has adopted its own syntax and semantics
by modifying and/or merging the standard technologies. These modifications may also
result in compatibility, usability, and expandability problems. It is worth noting that, as a
consequence of the scenarios adopted by these approaches, they have only been evaluated
over very small data sets.

Compared to the recent approaches, in the SPARQL2XQuery Framework introduced
in this work the users (a) work only on SW technologies; (b) are not expected to know
the underlying XML Schema or even the existence of XML data; and (c) they express
their queries only in standard (i.e., without modifications) SPARQL syntax. Finally, the
SPARQL2XQuery Framework has been evaluated over large datasets.

Moreover, with the high emphasis in the Linked Data infrastructures, publishing legacy
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data and offering SPARQL endpoints has become a major research challenge. Although
several systems (e.g., D2R Server [89], SparqlMap [379], Quest [325], Virtuoso [105], Top-
Braid Composer5) offer virtual SPARQL endpoints over relational data, to the best of our
knowledge there is no system offering SPARQL endpoints over XML data. Finally, in con-
trast with the SPARQL to XQuery translation, the SPARQL to SQL translation has been
extensively studied [330, 349, 143, 248, 337, 89, 379, 325, 105, 118, 275, 116, 161, 166, 316].
The SPARQL2XQuery Framework introduced here can offer SPARQL endpoints over
XML data and it also proposes a method for SPARQL to XQuery translation.

The interoperability Framework presented in this work includes the XS2OWL compo-
nent which offers the functionality needed for automatically transforming XML Schemas
and data to SW schemas and data. As such, the XS2OWL component is related to
the data exchange systems (Table 6.2). The major difference between our work and
existing approaches in data exchange systems that provide schema transformation mech-
anisms is that the latter do not support: (a) the XML Schema identity constraints (i.e.,
key, keyref, unique); (b) the XML Schema user-defined simple datatypes; and (c) the
new constructs introduced by XML Schema 1.1 [178]. These limitations have been over-
come by the XS2OWL component, which is integrated with the other components of the
SPARQL2XQuery Framework to offer comprehensive interoperability functionality. To
the best of our knowledge, this is the first work that fully captures the XML Schema
semantics and supports the XML Schema 1.1 constructs. Finally, this Framework is now
completely integrated with the other components of the SPARQL2XQuery Framework.
Some preliminary ideas regarding the SPARQL2XQuery Framework have been presented
in [74].

5.3 Schema Transformation

In this section, we describe the schema transformation process (Figure 5.2) which is ex-
ploited in the first usage scenario, in order to automatically transform XML Schemas into
OWL ontologies. Following the automatic schema transformation, mappings between the
XML Schemas and the OWL ontologies are also automatically generated and maintained
by the SPARQL2XQuery Framework. These mappings are later exploited by other compo-
nents of the SPARQL2XQuery Framework, for automatic SPARQL to XQuery translation.

XML 
Schema 

XS

XS2OWL Schema
Ontology 

OS OBC

Backwards 
Compatibility 

Ontology

Figure 5.2: The XS2OWL schema transformation process

The schema transformation is accomplished using the XS2OWL component [375, 354],
which implements the XS2OWL Transformation Model. The XS2OWL transformation
model allows the automatic expression of the XML Schema in OWL syntax. Moreover,
it allows the transformation of XML data in RDF format and vice versa. The new ver-
sion of the XS2OWL Transformation Model which is presented here, exploits the OWL 2
semantics in order to achieve a more accurate representation of the XML Schema con-
structs in OWL syntax. In addition, it supports the latest versions of the standards (i.e.,
XML Schema 1.1 and OWL 2). In particular, the XML Schema identity constraints (i.e.,
key, keyref, unique), can now be accurately represented in OWL 2 syntax (which was not
feasible with OWL 1.0). This overcomes the most important limitation of the previous
versions of the XS2OWL Transformation Model.

An overview of the XS2OWL transformation process is provided in Figure 5.2. As is
shown in Figure 5.2, the XS2OWL component takes as input an XML Schema XS and
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Table 5.3: Correspondences between the XML Schema and OWL constructs, according to the
XS2OWL Transformation Model

XML Schema Construct OWL Construct

Complex Type Class

Simple Datatype Datatype Definition

Element (Datatype or Object) Property

Attribute Datatype Property

Sequence Unnamed Class – Intersection

Choice Unnamed Class – Union

Annotation Comment

Extension, Restriction subClassOf axiom

Unique (Identity Constraint) HasKey axiom ⋆

Key (Identity Constraint) HasKey axiom – ExactCardinality axiom ⋆

Keyref (Identity Constraint) In the Backwards Compatibility Ontology

Substitution Group SubPropertyOf axioms

Alternative + In the Backwards Compatibility Ontology

Assert + In the Backwards Compatibility Ontology

Override, Redefine + In the Backwards Compatibility Ontology

Error + Datatype

Note. The + indicates the new XML Schema constructs introduced by the

XML Schema 1.1 specification. The ⋆indicates the OWL 2 constructs.

generates: (a) An OWL Schema ontology OS that captures the XML Schema semantics;
and (b) A Backwards Compatibility ontology OBC which keeps the correspondences be-
tween the OS constructs and the XS constructs. OBC also captures systematically the
semantics of the XML Schema constructs that cannot be directly captured in OS (since
they cannot be represented by OWL semantics).

The OWL Schema Ontology OS , which directly captures the XML Schema seman-
tics, is exploited in the first scenario supported by the SPARQL2XQuery Framework. In
particular, OS is utilized by the users while forming the SPARQL queries. In addition,
the SPARQL2XQuery Framework processes OS and XS and generates a list of mappings
between the constructs of OS and XS.

The ontological infrastructure generated by the XS2OWL component, additionally
supports the transformation of XML data into RDF format and vice versa [376]. For
transforming XML data to RDF, OS can be exploited to transform XML documents
structured according to XS into RDF descriptions structured according to OS . How-
ever, for the inverse process (i.e., transforming RDF documents to XML) both OS . and
OBC should be used, since the XML Schema semantics that cannot be captured in OS .
are required. For example, the accurate order of the XML sequence elements should be
preserved; but this information cannot be captured in OS .

In the rest of this section, we outline the XS2OWL Transformation Model (Sec-
tion 5.3.1) and we present an example that illustrates the transformation of XML Schema
into OWL ontology (Section 5.3.2).

5.3.1 The XS2OWL Transformation Model

In this section, we outline the XS2OWL Transformation Model. A formal description
of the XS2OWL Transformation Model and implementation details can be found in [84].
A listing of the correspondences between the XML Schema constructs and the OWL
constructs, as they are specified in the XS2OWL Transformation Model, is presented in
Table 6.4.

The major difficulties that we have encountered throughout the development of the
XS2OWL Transformation Model have arisen from the fact that that the XML Schema and
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the OWL have adopted different data models and semantics. In order to resolve some of
these heterogeneity issues, we have employed the Backwards Compatibility ontology OBC
which encodes XML Schema information that cannot be captured by OWL semantics.
This information includes: (a) Identification information; (b) Structural information; and
(c) “Orphan” construct information.

Identification Information. The OWL semantics do not allow different resources to
have the same identifier (rdf:ID), while the XML Schema allows instances of different XML
Schema constructs to have the same name (for example, an XML Schema element may
have the same name with an XML Schema attribute, two elements of different type may
also have the same name, etc.). In order to resolve this issue, the XS2OWL component
generates automatically unique identifiers for the OWL constructs in the Schema ontology
OS

6. The correspondence between the names of the XML Schema constructs and the
Schema ontology constructs is encoded in the Backwards Compatibility ontology.

Structural Information. The XML Schema data model describes ordered hierarchical
structures, while the OWL data model allows the specification of directed unordered graph
structures. As a consequence, the ordering information which is essential for some XML
Schema constructs like the sequences, cannot be captured in the Schema ontology. This
information is encoded in the Backwards Compatibility ontology (see [84] for details).

“Orphan” Construct Information. Since the XML/XML Schema and the OWL/RDF
have adopted different data models and semantics, there exist “orphan” XML Schema con-
structs that can not be accurately represented by OWL constructs. Examples of “orphan”
XML Schema constructs are the abstract and final attributes of the XML Schema type.
In the context of the XS2OWL, information about the “orphan” XML Schema constructs
is encoded in the Backwards Compatibility ontology.

5.3.2 XML Schema Transformation Example

We present here a concrete example that demonstrates the expression of an XML Schema
in OWL using the XS2OWL component.

We introduce here an XML Schema (referred in the rest of this chapter as the Persons
XML Schema), which will be used in the rest of this chapter. The Persons XML Schema
is presented in Figure 6.2 and describes the personal information of a sequence of persons
(which may be students). The root element Persons may contain any number of Person
elements of type Person Type, and any number of Student elements of type Student Type.
The complex type Person Type represents persons and contains the SSN attribute and
several simple elements (i.e., LastName, FirstName, validAgeType and Email). The com-
plex type Student Type extends the complex type Person Type and represents students.
In addition to the elements and attributes defined in the context of Person Type, the
complex type Student Type has the Dept element. The simple type validAgeType is a
restriction of the float type. Finally, the top-level element Nachname is an element that
may substitute the LastName element, as is specified in its substitutionGroup attribute.

The constructs of the Schema ontology OS that is automatically generated by the
XS2OWL for the Persons XML Schema (referred in the rest of this chapter as the Persons
Ontology) are presented in Table 6.5 and Table 6.6. In particular:

6 This is achieved by the identity generation rules implemented in the XS2OWL transformation model.
The identity generation rules verify the generation of unique identifiers for all the OS OWL constructs.
These rules exploit the hierarchical structure of the XML Schema, as well as the types of the XML Schema
constructs to generate unique identifiers. More details can be found in [84].
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<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 
 <xs:complexType name="Person_Type"> 

<xs:sequence> 
  <xs:element ref="LastName" minOccurs="1" maxOccurs="unbounded"/> 

 <xs:element name="FirstName" type="xs:string" minOccurs="1" maxOccurs="unbounded"/> 
  <xs:element name="Age" type="validAgeType" minOccurs="1" maxOccurs="1" /> 
  <xs:element name="Email" type="xs:string" minOccurs="0" maxOccurs="unbounded"/> 
 </xs:sequence> 

<xs:attribute name="SSN" type="xs:integer"/>    
 </xs:complexType> 
 
 <xs:complexType name="Student_Type"> 
 <xs:complexContent> 
 <xs:extension base="Person_Type"> 
 <xs:sequence> 
 <xs:element name="Dept" type="xs:string"/> 
 </xs:sequence> 
 </xs:extension> 
 </xs:complexContent> 
 </xs:complexType> 
  
 <xs:element name="Persons"> 
 <xs:complexType> 
 <xs:sequence> 
 <xs:element name="Person" type="Person_Type" minOccurs="0" maxOccurs="unbounded"/> 
 <xs:element name="Student" type="Student_Type" minOccurs="0" maxOccurs="unbounded"/> 
 </xs:sequence> 
 </xs:complexType> 
 </xs:element> 
 
 <xs:element name="LastName" type="xs:string"/> 
 
 <xs:element name="Nachname" substitutionGroup="LastName" type="xs:string"/> 
 
 <xs:simpleType name="validAgeType" > 

<xs:restriction base="xs:float"> 
 <xs:minInclusive value="0.0"/> 
 <xs:maxInclusive value="150.0"/> 

</xs:restriction> 
 </xs:simpleType> 
  
</xs:schema> 

 

 Figure 5.3: An XML Schema describing Persons (Persons XML Schema)

− Information about the classes is provided in Table 6.5. The table includes: (a)
the name of the corresponding XML Schema complex type (XML Schema Com-
plex Types column); (b) the class rdf:ID (rdf:ID); and (c) the superclass rdf:IDs
(rdfs:subClassOf ).

− Information about the datatype properties (DTP ) and the object properties (OP )
is provided in Table 6.6. The table includes (a) the name of the corresponding XML
Schema element or attribute (XML Schema Elements & Attributes column); (b)
the property type, i.e., DTP or OP (Type); (c) the property rdf:ID (rdf:ID); (d)
the rdf:IDs of the superproperties (rdfs:subPropertyOf ); (e) the property domains
(rdfs:domain); and (f) the property ranges (rdfs:range).

The constructs of the Backwards Compatibility ontology generated by the XS2OWL
are available in [84]. The XML Schema of Figure 6.2 and the Schema ontology OS gener-
ated by XS2OWL are depicted in Figure 6.3.

5.4 Mapping Model

In the SW, the OWL–RDF/S have been adopted as schema definition languages; in the
XML world, the XML Schema language is used. The proposed mapping model is defined
in the context of the SPARQL to XQuery translation, for the definition of mappings
between ontologies and XML Schemas. In particular, the SPARQL2XQuery mapping
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Table 5.4: Representation of the Persons XML Schema complex types in the Schema Ontology
(OS)
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i
                               if Type 1 

  

𝐗s
i ⋂̅ 𝐗pD

i ⋖ 𝐗o
i
       if Type 2  

  

   = 𝐗S1   if 𝐗s
i = ⊝ and 𝐗pD

i = ⊝   {1}
  if Type 3 

 𝐗s
i ⋂̅ 𝐗pD

i  else   

         

 𝐗S1     if 𝐗s
i = ⊝ and 𝐗pD

i = ⊝ and 𝐗o
i = ⊝     {2} if Type 4 

 𝐗pD
i ⋂̅ 𝐗s

i ⋖ 𝐗o
i                        else    

  

(3) 

XML Schema Complex Types 
Ontology Classes 

rdf:ID rdfs:subClassOf 

Person_Type Person_Type owl:Thing 

Student_Type Student_Type Person_Type 

Persons (unnamed complex type) NS_Persons_UNType owl:Thing 

Algorithm 1: Variable Binding Algorithm   

Input: Basic Graph Pattern BGP, Initial Bindings 𝐗Sch,  

 Variable Types varTypes, Mappings 𝐌 

Output: Variable Bindings 𝐗v 

1. for each variable v in BGP //initialize the bindings  

2. if v ∈ var(schemaTr(BGP))     //if the variable v are included at schema triples  

3.   𝐗v
0 = 𝐗v

Sch  

//initialize the bindings from the bindings determined the from schema triple processing 

4. else 

5.  𝐗v
0 = {⊝}    //initialize with the “special” value "⊝" 

6. end if 

7. end for 

8. it = 0  //iteration counter initialization  

9. repeat  

11. for each triple t in BGP   //loop over all the BGP triples  

12.  if s ∈ 𝐕 //if the subject is a variable 

13.   𝐗s
i+1 = Bs( t, 𝐗s

i, 𝐗pD
i, 𝐗o

i, 𝐌 )  
//determine the subject bindings of the current iteration (i.e., t+1)  

14.  end if  

15.  if p ∈ 𝐕 //if the predicate is a variable 

16.   𝐗p
i+1 = Bp( t, 𝐗s

i, 𝐗p
i, 𝐌, varTypes )   

//determine the predicate bindings of the current iteration (i.e., i+1)  

17.  end if 

18.  if o ∈ 𝐕 //if the object is a variable 

19.   𝐗o
i+1 = Bo( t, 𝐗s

i, 𝐗p
i, 𝐗o

i, 𝐌, varTypes )  
//determine the object bindings of the current iteration (i.e., i+1)  

20.  end if  

21. end for 

22. i = i + 1   //increase the counter  

23   until (∀ v ∈ var(BGP)⇒ 𝐗v
i = 𝐗v

i-1 ) 
//loop until the bindings of the previous iteration are equal with the bindings of this iteration 

24. 24.  return 𝐗v ∀ v ∈ var(BGP) //return all the variable bindings for this basic graph pattern 

Algorithm 2: For or Let XQuery Clause Selection (QF, 𝐑�𝐕�, v ) 

Input: SPARQL query form QF, Return Variables 𝐑�𝐕�, SPARQL variable v 

Output: XQuery Clause Type 

1.    if QF ≠ Ask  

2. if (v ∈ 𝐑�𝐕�) or ( K ∈ 𝐑�𝐕� | K is extension of v )  

3. return Create a For XQuery Clause  

4. else 

5. return Create a Let XQuery Clause  

6. end if 

7. else 

8. return Create a Let XQuery Clause  

9. end if 

Table 5.5: Representation of the Persons XML Schema elements and attributes in the Schema
Ontology (OS)

2 

 

 

 

  

Algorithm 1: Predicate Translation ( BGP, QF, 𝐑�𝐕�, bindings ) 

Input: Basic Graph Pattern BGP, SPARQL query form QF,  

  SPARQL Return Variables 𝐑�𝐕�, Variable Bindings bindings 

Output: For or Let XQuery Clause xC 

1. for each triple in BGP 

2. if p ∈ 𝐕�   // If predicate is a variable  

3.  xC.type ← For or Let XQuery Clause Selection ( QF, RV, p )  
 //Create a For or Let XQuery Clause   

4. xC.var ← Np            // Define an XQuery Variable with the same name with the SPARQL Variable p 

5. xC.expr ← $ Ns /x1 union $ Ns /x2 union … union $ Ns /xn , ∀ xi ∈ 𝐗�s≫𝐗�p  
// Set expr equal to the variable corresponding to the triple subject variable suffixed with XPaths that have 

resulted from the 𝐗�s≫𝐗�p operation. The XPath Set. 𝐗�p is the binding XPath Set for the variable p and 𝐗�S 

is the binding XPath Set for the subject s 

6. end if 

7. end for 

8.  return xC 

Algorithm 3: Subject Translation ( BGP, QF, 𝐑�𝐕�, bindings ) 

Input: Basic Graph Pattern BGP, SPARQL query form QF,  

 SPARQL Return Variables 𝐑�𝐕�, Variable Bindings bindings 

Output: For or Let XQuery Clause xC 

1.  for each triple in BGP 

2. if s ∈𝐕�  // If subject is a variable  

3. xC.type ← For or Let XQuery Clause Selection ( QF, 𝐑�𝐕�, s ) 
 //Create a For or Let XQuery Clause   

4. xC.var ← Ns                // Define an XQuery Variable with the name of SPARQL Variable s 

5. xC.expr ← $doc/x1 union $doc/x2 union … union $doc/xn , ∀ xi ∈ 𝐗�s   
  // Set expr equal to the XPath Set of the Subject prefixed with the $doc variable  

 //𝐗�s is the binding XPath Set for the variable s 

6. end if 

7. end for 

10. 8.  return xC 

XML Schema 

Elements & 

Attributes  

Ontology Properties 

Type rdf:ID rdfs:subPropertyOf rdfs:domain rdfs:range 

LastName DTP LastName__xs_string — Person_Type xs:string 

FirstName DTP FirstName__xs_string — Person_Type xs:string 

Age DTP Age__validAgeType — Person_Type validAgeType 

Nachname DTP Nachname__xs_string LastName__xs_string Person_Type xs:string 

Email DTP Email__xs_string — Person_Type xs:string 

SSN DTP SSN__xs_integer — Person_Type xs:integer 

Dept DTP Dept__xs_string — Student_Type xs:string 

Person OP Person__Person_Type — NS_Persons_UNType Person_Type 

Student OP Student__Student_Type — NS_Persons_UNType Student_Type 

Persons  OP Persons__NS_Persons_UNType — owl:Thing NS_Persons_UNType 

Generate (XS2OWL)

XML Schema Complex Type

OWL Class

OWL Property

XML Schema Complex Type 

Extension

XML Schema Substitution

Persons 

Student

FirstName LastNameAge

string :FirstName__xs_string

rdfs:subClassOf 

validAgeType :Age__validAgeType

string :LastName__xs_string

string :Email__xs_string

string :Nachname__xs_string

integer :SSN__xs_integer

string :Dept__xs_string

Person_Person_Type

Student_Student_Type

Persons_NS_Persons_UNType
unamed

Person Person_Type Student_TypeSSN

Nachname Email FirstName LastNameAgeNachname Email Dept

SSN

Generated OntologyInitial XML Schema

@ @

XML User Defined Simple Type

validYearType validYearType

Person_Type

NS_Persons_UNType

Student_Type

Figure 5.4: The Persons XML Schema of Figure 6.2 and the Persons Schema Ontology generated
by XS2OWL with their correspondences drawn in dashed grey lines

model specifies: (a) the supported mappings; (b) the mapping representation; and (c) the
necessary operators for formal mapping manipulation.

Mapping conceptualization, definition and representation have been extensively studied
under several scenarios (e.g., schema integration, schema matching, data integration, data
exchange). In each scenario, these concepts (i.e., conceptualization, definition, etc.) differ
based on the scenario settings. For example, in the classical data integration scenario [274],
the local sources are defined as views over a global schema (i.e., local-as-view – LAV), or
the global schema is defined as a collection of views over the local schemas (i.e., global-as-
view – GAV). In addition, several similar approaches (e.g., global-local-as-view – GLAV)
have been extensively studied and used in data integration systems. Furthermore, in a
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Figure 5.5: Associations between the SW and XML worlds. At the Schema level, associations
between ontology constructs and XML Schema constructs are obtained. At the Data level, the
XML data follows the XML Schema and every XML node can be addressed using XPath ex-
pressions. Based on the associations between the ontology and the XML Schema, the ontology
constructs are associated with the corresponding XPath expressions. In the figure, µSi represents a
schema mapping, cXPSi a correspondence between an XML Schema and XPath Sets, µi a mapping
representation and e1 a mapping condition.

typical data exchange setting [167], mappings that specify the relations between a source
and a target schema are defined as sets of source-to-target tuple-generating-dependencies
(st-tgds). The mappings are used in order to generate instances of the target schema, based
on the source data. Nevertheless, our work is not concerned neither with defining views
over heterogeneous XML sources nor with defining dependencies for data transformations
as is the case in XML data integration and exchange systems (e.g., [148, 93, 194, 195, 364,
217, 40, 27, 96]). Our mappings can be considered as an interoperability layer between the
SW and XML worlds, aiming to provide formal, flexible and precise mapping definitions,
as well as generation of efficient XQuery queries. Note that in this work we do not consider
the problem of integrating data from different XML data sources.

We define our mapping model in the context of providing transparent XML querying
in the SW world. In the proposed model, the mappings can be simply considered as
pairs of ontology constructs (i.e., classes, properties) and path expressions over the XML
data (i.e., XPath). The defined mappings are used for translating the SPARQL queries
to XQuery expressions. The adoption of the XPath [17] notion in our mapping model,
besides the wide acceptability of XPath, aims to benefit from several XPath properties
(e.g., flexibility, expressivity), which are outlined below.

Using XPath expressions we can precisely indicate the involved XML nodes. For
instance, consider a mapping that aims to indicate the persons whose age is between 20
and 30 (the person definitions follow the Persons schema of Figure 6.2). Using XPath,
this mapping can be expressed as /Persons/Person[./age > 20 and ./age < 30]. Moreover,
the XPath expressivity enhanced with the large XPath library of built-in functions and
operators [18], allows our mapping model to support flexible and expressive mapping
expressions.

The expression of mappings as XPath expressions allows us to include both schema
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and data information. As schema information, we consider the hierarchical structure of
data imposed by the XPath expressions. As data information, we consider conditions over
data values (e.g., age > 20). The exploitation of the data structuring allows minimizing
the number of the considered mappings, resulting in the creation of non redundant or
irrelevant queries.

For example, consider a mapping that maps an ontology property name to the Persons
XML schema of Figure 6.2. Assume that the ontology property name is mapped to
the XPaths: /Persons/Person/name and /Persons/Student/name. Consider now an
ontology query aiming to return the names (i.e., the values of the name ontology property)
of the persons indicated by the mapping of the previous example (i.e., persons with age
between 20 and 30). By examining the property mappings, we can easily notice that the
second XPath expression is not relevant to our query. Thus, in this case, the only relevant
mapping is the path /Persons/Person/name.

Finally, the adoption of XPath expressions allows the definition of mappings using
other mappings (as “building blocks”). This feature can be exploited in the XQuery
expressions for (a) associating different variables and/or (b) for using already evaluated
results. The aforementioned can lead to the generation of efficient XQuery queries. For
instance, consider an XQuery variable $v, that contains the results of the evaluation
of the persons mappings over an XML dataset. Using the $v variable, we can easily
“construct” the mappings for the name property as $v/name. In this way, each person
can be associated with his name(s) using For XQuery clauses.

Figure 6.4 outlines the associations between the SW (left side) and XML (right side)
worlds. In particular, it presents an ontology, an XML Schema and the associations among
them, in both the schema and data levels. At the schema level (Ontology/XML Schema),
associations between the ontology constructs (i.e., classes, properties, etc.) and the XML
Schema constructs (i.e., elements, complex types) are obtained. Moreover, at the data
level, the XML data follow the XML Schema. As a result, we can identify the occurrences
of the XML Schema constructs in the XML data, and address them using a set of XPath
expressions. Finally, the mappings in the context of SPARQL to XQuery translation can
be simply considered as associations between ontology constructs and XPath expressions
(in the bottom layer of Figure 6.4).

In the rest of this section, we introduce the XPath Set notion (Section 5.4.1), we define
the schema mappings (Section 5.4.2), we present the association between the schema and
data levels (Section 5.4.3), we define the mapping representation (Section 5.4.4), and
finally we outline the automatic mapping generation process (Section 5.4.5).

5.4.1 Preliminaries

In our mapping model, XPath expressions are exploited in order to address XML nodes at
the data level. In this section, we provide the basic notions regarding the XPath expres-
sions (Section 5.4.1.1) and we introduce operators for handling sets of XPath expressions
(Section 5.4.1.2). Finally, Section 5.4.1.3 specifies the basic XML Schema and Ontology
constructs involved in mapping model.

5.4.1.1 Basic XPath Notions

Let xp ∈ XP be an XPath expression, where XP is the set of the XPath expressions. xp
is expressed using a fragment of the XPath language, which involves: (a) a set of node
names N= {n1, . . . ni}; (b) the child operator (/); (c) the predicate operator ([ ]); (d) the
wildcard operator (*); (e) the attribute access operator (@); (f) the XPath comparison
and set operators XPO = {! =,<,<=,>,>=, ∣,=, union, intersect}; (g) the XPath built-in
functions XPF = {empty, exists, length, . . .}; and (h) a set of constants C.
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The root node is the first node of an XPath expression. A node a is a leaf node if it
has no successors (i.e., it is the last XPath node). For example, in the XPath expression
xp = /n1/n2/.../nv, the nodes n1 and nv correspond to the root and leaf nodes respectively.
Moreover, n1 is parent of n2 and n2 is child of n1. The length of an XPath is the number
of the successive nodes when traversing the path from the beginning (the length of an
XPath including only the root node is one). The function length: XPÐ→N* assigns a
length z ∈ N* to an XPath xp ∈ XP. The function leaf : XPÐ→N assigns the name of the
leaf node n ∈ N to an XPath xp ∈ XP. For example, let the XPath xp = /n1/n2/.../nn,
then length(xp) = n and leaf(xp) = nn. For the XPath expression xp with length(xp) = n
we define as xp(i) (1 ≤ i ≤ n) the ith node xp, with xp(1) being the root node. In case of
predicate existences in the ith node, x(i) refers both to the ith node and to the predicates.
As an example, let the XPath xp = /a/b/c[./d = 10]/@e, then, x(1) = a, x(2) = b, x(3) = c,
x(4) = c[./d = 10] and x(5) = @e.

In what follows, we introduce the notions required in order to specify the semantics of
the wildcards (*) and predicates ([ ]) operators while handling the XPath expression.

Definition 1. (Loosely Equal Nodes) Two XPath nodes v and w are defined to be
loosely equal, denoted as v

●

●
∼w if and only if: (a) v′ and w′ result, respectively, from v

and w if the predicates [ ] are removed; and (b) (v′ = w′) or (v′ = ∗ or w′ = ∗).

Intuitively, two XPath nodes are loosely equal nodes if they are the same when we do
not consider their predicates, or at least one of them is the wildcard (*) node.

Definition 2. (Loosely Equal XPaths) Two XPaths x and y are defined to be
loosely equal, denoted as x ≈ y if and only if: (a) they have equal lengths: length(x) =
length(y) = n; and (b) ∀i ∈ 1, ..., n⇒ x(i)

●

●
∼ y(i).

Intuitively, two XPath nodes are, loosely equal XPaths if they have the same length
and all their nodes are loosely equal nodes.

Definition 3. (Prefix XPath) An XPath x is defined to be a prefix of an XPath y,
denoted as x ∼⊂ y if and only if: ∃i ∶ i ≤ l and x(j)

●

●
∼ y(j), ∀j ∈ 1, . . . , i with l = length(x)

where length(x) ≤ length(y).
Intuitively, an XPath x is prefix of another XPath y, if a part of x starting from the

beginning of x is a loosely equal XPath of a path starting from the beginning of y.

Definition 4. (k−Prefix XPath) An XPath x is defined to be a k–prefix of an XPath

y, denoted as x
k
∼⊂ y if and only if: ∃k ∶ k ≤ l and x(i)

●

●
∼ y(i), ∀i ∈ 1, . . . , k with l = length(x)

where length(x) ≤ length(y).
Intuitively, an XPath x is k–prefix of another XPath y, if a part of length k of x starting

from the beginning of x is a loosely equal XPath to a part of y (of k length) starting from
the beginning of y.

Finally, we introduce the XPath Set notion.

Definition 5. (XPath Set) The set XPS = {xp1, xp2, . . . , xpn}, where xpi ∈ XP is
defined to be an XPath Set.

5.4.1.2 XPath Set Operators

In this section, we introduce and formally define a collection of XPath Set operators used
for handling XPath Sets.
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Common Ancestors Operator. The Common Ancestors operator is a binary operator
written as X ⋖ Y, where X and Y are XPath Sets. The result of this operator is the XPath
Set that contains the members (XPaths) of the left set X, which are prefixes of members
(i.e., have the same ancestors) of the right set Y. The operator is formally defined as:

X ⋖ Y = {z ∶ z = xi ∣ ∃yj ∈ Y ∶ xi
ki
∼⊂ yj}, where xi ∈ X and length(xi) = ki

Descendants of Common Ancestors Operator. The Descendants of Common An-
cestors operator is a binary operator written as X ⋗ Y, where X and Y are XPath Sets.
The result of this operator is the XPath Set that contains the members (XPaths) of the
right set Y, the prefix XPaths of which are members of the left set X. The operator is
formally defined as:

X ⋗ Y = {z ∶ z = yj ∣ ∃xi ∈ X ∶ xi
ki
∼⊂ yj}, where xi ∈ X and length(xi) = ki

Suffixes of Common Ancestors Operator. The Suffixes of Common Ancestors oper-
ator is a binary operator written as X ≫Y, where X and Y are XPath Sets. The result of
this operator is the XPath Set that contains the suffix parts of the members of the right
set Y, the prefix XPaths of which are contained in the left set X (i.e., XPaths contained
in Y with their ancestors contained in X). A suffix part of a Y member is formed by
removing the XPath parts corresponding to the lengthiest prefix XPath included in X.
The operator is formally defined as:

X ≫ Y = {z ∶ z = /yj(ki + 1)/yj(ki + 2)/.../yj(kj) ∣ ∃xi ∈ X ∶ xi
ki
∼⊂ yj and

∄x′i ∈ X ∶ x′i
k′i
∼⊂ yj , ki ≤ k′i}, where xi ∈ X, yj ∈ Y, and length(xi) = ki, length(xj) = kj ,

ki < kj

XPath Set Union Operator. The XPath Set Union operator is a binary operator
written as X⋃Y, where X and Y are XPath Sets. The result of this operator differs from
the result of the classic set theory Union operator when a member of X and/or Y includes
the wildcard operator (*) or predicates ([ ]). In these cases the more specific XPaths are
excluded from the result set.

In order to formally define the XPath Set Union operator, we firstly introduce some
special union operators: (a) the Node Union operator among XPath nodes; and (b) the
Loose XPath Union operator among loosely equal XPaths (Definition 2). These operators
are going to be exploited in the definition of the XPath Set Union operator among XPath
Sets.

(a) The Node Union operator is a binary operator written as v
●∨w, where v and w are

nodes. Let e, e1 and e2 be XPath expressions. The operator is formally defined as:

v
●∨w =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∗ if (v = ∗) or (w = ∗)
k if (v = k) or (w = k)
k[e] if (v = k[e] or w ≠ ∗) or (w = k[e] or v ≠ ∗)
k[e1 ∣ e2] if (v = k[e1]) or (w = k[e2])

(b) The Loose XPath Union operator is a binary operator written as x ∼∨ y and is applied
to x, y ∈ XP when x and y are loosely equal i.e., x ≈ y. The operator is formally
defined as:

x ∼∨ y = {z ∶ z = ‘/’x(1) ●∨ y(1)‘/’x(2) ●∨ y(2)‘/’ . . . ‘/’x(n) ●∨ y(n), where
n = length(x) = length(y)}
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Finally, the XPath Set Union operator is formally defined as:

X⋃Y = {z ∶ z = x ∼∨ y if x ≈ y}⋃{x ∈ X if not x ≈ y,∀y ∈ Y}⋃
{y ∈ Y if not y ≈ x∀x ∈ X}

XPath Set Intersection Operator. The XPath Set Intersection operator is a binary
operator written as

In order to formally define the XPath Set Intersection operator, we firstly introduce
some special intersection operators: (a) the Node Intersection operator among XPath
nodes; and (b) the Loose XPath Intersection operator among loosely equal XPaths (Def-
inition 2). These operators are going to be exploited in the definition of the XPath Set
Intersection operator among XPath Sets.

(a) The Node Intersection operator is a binary operator written as v
●∧w, where v and

w are nodes. Let e, e1and e2 be XPath expressions. Formally the operator is
defined as:

v
●∧w =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∗ if (v = ∗) or (w = ∗)
k if (v = k or w ≠ k[e]) or (w = k or v ≠ k[e])
k[e1] if (v = k[e1] or w ≠ k[e2]) or (w = k[e1] or v ≠ k[e2])
k[e1][e2] if (v = k[e1]) or (w = k[e2])

(b) The Loose XPath Intersection operator is a binary operator written as x∼∧ y, is
applied to x, y ∈ XP when x, and y are loosely equal i.e., x ≈ y. The operator is
formally defined as:

x∼∧ y = {z ∶ z = ‘/’x(1) ●∧ y(1)‘/’x(2) ●∧ y(2)‘/’ . . . ‘/’x(n) ●∧ y(n),
where n = length(x) = length(y)}

Finally, the XPath Set Intersection operator is formally defined as:

X⋂Y =
⎧⎪⎪⎨⎪⎪⎩

x
∼∧y if x ≈ y
∅ elsewhere

XPath Set Concatenation Operator. The XPath Set Concatenation operator is a
binary operator written as X ⊕ Y, where X and Y are XPath Sets. The result of this
operator is the set that contains the XPaths formed by appending a member of Y on every
member of X. The operator is formally defined as:

X⊕Y = {z ∶ z = x concatenate y,∀x ∈ X,∀y ∈ Y}.

5.4.1.3 Basic XML Schema & Ontology Constructs

Here, we specify the basic XML Schema and ontology constructs involved in the proposed
mapping model.

Let an XML Schema XS; (a) XT is the set of the (complex and simple) Types defined
in XS. Let XST be the set of the Simple Types of XS and XCT be the set of the
Complex Types of XS. Then, XT = XST ⋃ XCT; (b) XE is the set of the Elements
defined in XS; and (c) XAttr is the set of the Attributes defined in XS. As XML Schema
Constructs we defined the set XC = XT ⋃ XE ⋃ XAttr. Let xc1, xc2 ∈ XC be XML
constructs. We denote by xc1.xc2 that the definition of xc2 is nested in the definition of
xc1.
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Let also an OWL Ontology OL; (a) C is the set of the OL Classes; (b) DT is the
set of the OL Datatypes; and (c) Pr is the set of the (datatype and object) OL Prop-
erties. Let OP be the set of the OL Object Properties and DTP be the set of the OL
Datatype Properties. Then, Pr = DTP ⋃ OP. As Ontology Constructs we define the set
OC = C ⋃ DT ⋃ Pr.

In addition, we define a function Domain ∶ Pr Ð→ P(C), which assigns the powerset
(i.e., P) of C as domain to a property pr ∈ Pr. We also define a function Range ∶ PrÐ→A,
which assigns the range r ⊆ A to an ontology property pr ∈ P where A = DT if pr ∈ DTP
and A = P(C) if pr ∈ OP. The image (i.e., range) of the functions Range and Domain of
a Property pr (i.e., Domain(pr) and Range(pr)), are denoted, for the sake of simplicity,
as pr.domain and pr.range.

5.4.2 Schema Mappings

In this section we define the Schema Mappings, which are used to define associations
between disparate schema structures over ontologies and XML Schemas in the context of
SPARQL to XQuery translation. In our mapping model, the schema mappings may be
also enriched with data level information (e.g., conditions over data values), resulting into
precise and flexible mappings. Note that since in our context SPARQL queries expressed
over ontologies are translated to XQuery queries expressed over XML Schemas, the schema
mappings are defined in a directional way from ontologies to XML Schemas.

Given an ontology OL and an XML Schema XS, let oc be a set of OL constructs and
xc a set of XS constructs. A Schema Mapping (µS) between OL and XS is an expression
of the form:

µS ∶OE
E↦XE

where OE is an expression containing oc constructs, conjunctions (⋀) or/and disjunctions
(⋁), XE is an expression containing xc constructs, conjunctions or/and disjunctions and
E is a set of conditions applied over the xc members.

A schema mapping represents a association among oc and xc under the conditions
specified in E. We can simply say that the oc members are mapped to the xc members
under the conditions specified in E. The E conditions can be simply considered as tree
expressions applied over the xc constructs.

In more detail, a mapping condition e ∈ E is a tree expression referring toXS constructs
and/or XML data that follow XS. In particular, a mapping condition e is applied on a
set of XML Schema constructs xca ⊆ xc and it may also refer (i.e., include) to several
constructs independent on xca. In addition, a condition e may contain (a) tree paths,
(b) operators and functions (e.g., intersection, union, <, >, =, ≠, ends-with, concat), as
well as (c) constants (e.g., 25, 3.4, “John”). It is remarkable that every XML Schema
construct can be referred in a condition expression. Moreover, a mapping condition e
may be applied to specific constructs or may be applied to the whole XE expression. To
sum up, a schema mapping condition e could be any condition which can be expressed in
XPath syntax [17]; this way, the high expressiveness of the XPath expressions (including
the built-in functions [18]) may be exploited in a mapping condition, and, together with
the flexibility of applying independent conditions over different XML constructs, it leads
to rich, flexible and expressive schema mappings.

For example, let c be an ontology class and w, z be XML Schema complex types.
In addition, let the conditions e1 and e2 be applied, respectively, over w and z (denoted
as w⟪e1⟫, z⟪e2⟫) and a condition e3 applied over the whole XE expression (not over
a specific construct). A schema mapping µS of the class c to the disjunction of the
complex types w and z under the conditions e1 and e2, respectively on w and z, and

both under the condition e3 is denoted as: µS ∶ c
{e3,w⟪e1⟫, z⟪e2⟫}↦ w⋁ z, where, according
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to the schema mapping definition, c is the OE expression, w⋁ z is the XE expression and
{e3, w⟪e1⟫, z⟪e2⟫} is the condition set E. Since the condition e3 is not applied over a
specific construct (i.e., it is applied over all the constructs included in XE), it holds that
E = {w⟪e1⋀ e3⟫, z⟪e2⋀ e3⟫}.

Regarding the ontology properties, let pr be an ontology property and q be an XML
Schema element or attribute. The schema mapping µS ∶pr ↦ q corresponds to
pr.domain ↦ d and pr.range ↦ q, where d is the (complex) XML element in which q
is defined. In addition, the domain and range of an ontology property pr, might be indi-
vidually mapped to different XML Schema elements/attributes. For instance, let q, v be
XML Schema elements/attributes, then µS1 ∶pr.domain↦ q and µS2 ∶pr.range↦ v.

We can also observe from Figure 6.4 that the following three schema mappings are ob-

tained: µS1 ∶Class 1↦ Type H, µS2 ∶Class 2
{Z⟪e1⟫}↦ Type Z and µS3 ∶Object Property 1↦

Complex Element Y .

5.4.2.1 Schema Mapping Specification

In the first SPARQL2XQuery scenario, where the XS2OWL component is exploited, the
schema mappings between the constructs of the XML Schemas and the generated on-
tologies are automatically specified through the XS2OWL transformation process (Sec-
tion 5.3.1). Note that in this case, none of the schema mappings is conditional (i.e., the
condition set E is equal to the empty set).

We have presented in Figure 6.3 (with dashed grey lines) the automatically speci-
fied schema mappings of the schema transformation example of Section 5.3.2. Note that
the arrows represent the schema transformation process and the schema mappings follow
the inverse direction. In this example (Figure 6.3), we can observe several schema map-
pings, for instance: µS1 ∶Person Type ↦ Person, µS2 ∶Dept xs string ↦ Student.Dept,
µS3 ∶SSN xs integer ↦ Person.SSN ⋁Student.SSN , etc. For each of these schema
mappings, the condition set E is equal to the empty set and is omitted.

In the second SPARQL2XQuery scenario, an existing ontology is manually mapped
to an XML Schema by a domain expert. The mapping process is guided by the lan-
guage level correspondences (summarized in Table 6.4), which have also been adopt-ed by
the XS2OWL transformation model. For example, ontology classes can associated with
XML Schema complex types, ontology object properties with XML elements of complex
type, etc. Then, at the schema level, schema mappings between the ontology and XML
Schema constructs have to be manually specified (e.g., the person class is mapped to the
person type complex type), following the language level correspondences.

Example 9. In Figure 5.6, we present an example of the manual mapping specifica-
tion scenario, where two existing ontologies that describe the data of two organizations
(Organization A and Organization Z ) have been manually mapped to an XML Schema.
The mappings are presented with dashed grey lines.

In this example, the XML Schema is an extension of the previously presented Persons
XML Schema (Figure 6.2). Here, the Persons schema has been extended by adding the
complex element Courses of type Couses Type as a sub-element of the Student element.
The Courses element contains two simple sub-elements, ID and Grade, of type xs:integer
and xs:float respectively. These extensions were made in order to be able to define more
complex manual mappings in our examples.

Regarding the involved ontologies, the ontology of Organization A has the AGUFIL
Group class, where AGUFIL stands for “Adult Gmail Users with the First name Identical
to Last name”. Moreover, the ontology of Organization Z has the MIT CS Student class
which describes the Computer Science Students of the MIT institute. Each of these
ontologies has several (self-explained) properties.
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Figure 5.6: Manually specified schema mappings between existing ontologies and an XML
Schema (extension of the Persons XML Schema). A domain expert has manually mapped the
ontologies to the XML Schema. The mappings are drawn with dashed grey lines.

We can observe from Figure 5.6 that several schema mappings can be obtained.
For instance, the class AGUFIL Group from Organization A can be mapped to the
Person Type XML complex type (see µS1 above), under the e1 condition that restricts
the persons to those who are older than 18 years old (i.e., are adults), their first name
is the same with their last name and their email account is on the Gmail domain (i.e.,
ends with gmail.com).

µS1 ∶AGUFIL Group
{e1}↦ Person Type,

where e1 ≡ Age > 18⋀FirstName = Lastname⋀ email.ends-with(“gmail.com”)

In a similarly way, the class MIT CS Student from Organization Z can be mapped
to the Student Type XML complex type (µS2), under the e2 condition (see above) that
restricts the students to those who have the CS as department and their email account
is on the MIT domain (i.e., ends with mit.edu).

µS2 ∶MIT CS Student
{e2}↦ Student Type,

where e2 ≡Dept = “CS”⋀ email.ends-with(“mit.edu”)

In Organization A, the ontology property Code can be mapped to the SSN attribute
of the Person class under the e1 condition (µS3). Similarly, the property ID can be
mapped to the SSN attribute of the Student class under the e2 condition (µS4). The
Sur Name property can be mapped to the union of the LastName and Nachname sub-
elements of the Person element under the e1 condition (µS5). Finally, the same holds for
the LN property and the LastName and Nachname subelements of the Person element
(µS6).

µS3
∶Code {e1}↦ Person.SSN

µS4 ∶ ID
{e2}↦ Student.SSN

µS5 ∶Sur Name
{e1}↦ Person.LastName⋁Person.Nachname

µS6 ∶LN
{e2}↦ Student.LastName⋁Student.Nachname
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Similarly, in Organization Z, the property Passed Courses ID can be mapped to
the Course ID sub-element of the Student element (µS7), under the condition e3 that
restricts the Course IDs to those belonging to students from the CS department whose
email account is on the MIT domain (i.e., ends with mit.edu) and also refer to courses
having a passing grade (i.e., equal or greater than 5.0). A similar mapping (µS8) has
been defined for the Failed Courses property and the condition e4.

µS7 ∶Passed Courses ID
{e3}↦ Student.Course.ID,

where e3 ≡Dept = “CS”⋀ email.ends-with(“mit.edu”)⋀Grade ≥ 5.0

µS8 ∶Failed Courses ID
{e4}↦ Student.Course.ID,

where e4 ≡Dept = “CS”⋀ email.ends-with(“mit.edu”)⋀Grade < 5.0
�

5.4.3 Correspondences between XML Schema Constructs and XPath
Sets — Associating Schema and Data

We have already defined the schema mappings between ontology constructs and XML
Schema constructs (Section 5.4.2.1). Since we want to translate SPARQL queries into
XQuery expressions that are evaluated over XML data, we should identify the correspon-
dences between the ontology constructs (referred in the SPARQL queries) and the XML
data, with respect to the predefined schema mappings. In this section we attempt to ex-
press the associations that hold between the XML Schema constructs and the XML data
nodes using XPath Set expressions.

At the data level, the XML data is valid with respect to the XML Schema(s) it follows.
As a result, for each XML Schema construct we can identify its corresponding XML
data nodes and address them using XPath expressions. In this way, we can define the
associations between XML schema constructs and XML data.

Given a SPARQL query, for all the ontology constructs referred in the query: (a) we
identify the XML Schema constructs based on the predefined schema mappings; and (b)
we determine the corresponding XPath Sets for the identified XML Schema constructs.
As a result, the ontology constructs referred in the SPARQL query are directly associated
with XML data through XPaths.

Formally, let D be an XML dataset, valid with respect to an XML Schema XS.
A correspondence of an XML Schema construct xc to an XPath Set xps is a function
cXPS∶XC Ð→ XPS that assigns the XPath Set xps ∈ XPS to the XML construct
xc ∈ XC, where xps addresses all the corresponding XML nodes of xc in D.

For example, we can observe from Figure 6.4 that we have the following three XML
Schema Constructs to XPath Set Correspondences: cXPS(Type H) = {/ . . . /X},
cXPS(Type Z) = {/ . . . /X/Y } and cXPS(Complex Element Y ) = {/ . . . /X/Y }.

Table 6.7 summarizes the correspondences between the “XML part” (i.e., referring to
the XML Schema constructs) of the schema mapping expressions and XPath Sets. In the
left column of the Table 6.7, w and z are XML Schema constructs, e and p XML conditions
and ce an expression comprised of XML conditions ei, with i ≥ 1 and possibly conjunc-
tions and disjunctions. In the right column, xe, xp and xce are the XPath expressions
corresponding to the e, p and ce conditions respectively. Notice that the conditions are
applied over the XPaths using the XPath predicates “[ ]”.

5.4.4 Schema Mapping Representation

In the previous sections we have defined the associations at the schema level (Schema
Mappings – Section 5.4.2), as well as the associations between the XML Schema and
the XML data (Correspondences between XML Schema Constructs and XPath Sets –
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Table 5.6: Correspondences between schema mapping expressions (“XML part”) and XPath Sets

Schema Mapping Expression XPath Set Correspondences

w cXPS(w)
e⋁p xe⋃xp
e⋀p xe⋂xp
w⟪ce⟫ cXPS(w)[xce]
w⋁ z cXPS(w)⋃ cXPS(z)
w⋀ z cXPS(w)⋂ cXPS(z)
(w⋁ z)⟪ce⟫ cXPS(w)[xce]⋃ cXPS(z)[xce]
(w⋀ z)⟪ce⟫ cXPS(w)[xce]⋂ cXPS(z)[xce]

Section 5.4.3). Here we exploit these associations in order to define and represent the
schema mappings in the context of SPARQL to XQuery translation.

In particular, we specify the association of the ontology constructs with XPath Sets
through the exploitation of (a) the predefined schema mappings between the ontology
and XML Schema constructs; and (b) the determined XPath Set for the mapped XML
constructs (i.e., correspondences between XML Schema constructs and XPath Sets).

To sum up, a mapping in the context of SPARQL to XQuery translation (or simply a
mapping) is represented as the association of an ontology construct with XPath Sets. Thus,
this mapping representation forms a “direct association” between the ontology constructs
and the XML data using XPath expressions.

Formally, given an ontology OL and an XML Schema XS, let oc be a set of OL
constructs, xc a set of XS constructs and µS a schema mapping between oc and xc. A
Mapping (µ) between OL and XS in the context of the SPARQL to XQuery translation
is an expression of the form:

µ∶ oc ≡ sxps, where sxps is an XPath Set corresponding to xc constructs
under the schema mapping µS .

In the rest of the chapter, for every ontology class c, the associated XPath Set is denoted
as Xc (Class XPath Set). In addition, for every ontology property pr, the associated XPath
Set is denoted as Xpr (Property XPath Set). Furthermore, for the pr domains and ranges,
the associated XPath Sets are denoted as XprD (Property Domains XPath Set) and XprR

(Property Ranges XPath Set) respectively.

Example 10. Consider the schema mappings µS2 , µS3 , µS5 , µS6 , µS7 and µS8 of Exam-
ple 9 between the ontology and the XML Schema presented in Figure 5.6. The repre-
sentations of these schema mappings in the context of SPARQL to XQuery translation
are listed below:

µS2 ∶MIT CS Student ≡XMIT CS Student = {/Persons/Student[./Dept = “CS” and
ends-with(./email,“mit.edu”)]}

µS3 ∶Code ≡XCode = {/Persons/Person[./Age > 18 and ./firstName = ./Lastname
and ends-with(./email,“gmail.com”)]/@SSN}

µS5 ∶Sur Name ≡XSur Name = {/Persons/Person[./Age > 18 and ./firstName =
./Lastname and ends-with(./email,“gmail.com”)]/LastName}

µS6 ∶LN ≡XLN = {/Persons/Student[./Dept = “CS” and
ends-with(./email,“mit.edu”)]/LastName}

µS7 ∶Passed Courses ID ≡XPassed Courses ID = {/Persons/Student[./Dept =
“CS” and ends-with(./email,“mit.edu”) and ./Courses/Grade ≥ 5.0]/Courses/ID}
µS8 ∶Failed Courses ID ≡XFailed Courses ID = {/Persons/Student[./Dept = “CS” and

ends-with(./email,“mit.edu”) and ./Courses/Grade < 5.0]/Courses/ID}
�
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5.4.5 Automatic Mapping Generation

In the first SPARQL2XQuery scenario, the mappings are automatically generated. In par-
ticular, the generation of the mappings is carried out by the Mapping Generator compo-
nent, which takes as input an XML Schema and the OWL ontology generated by XS2OWL
for this XML Schema. In the first phase, the Mapping Generator component parses the
input files and obtains the schema mappings between the XML Schema and the gener-
ated ontology by exploiting the XS2OWL Transformation Model. Then, using the XML
Schema, the Mapping Generator component determines the XML Schema construct to
XPath Set Correspondences for all the XML constructs. Finally, the component gener-
ates an XML document that contains the associations of all the ontology constructs with
the XPath Sets. In particular, it generates the sets Xc, Xpr, XprD and XprR for all the
ontology classes and properties.

Example 11. Consider the XML Schema of Figure 6.2 and the corresponding ontology
generated by XS2OWL (Table 6.5 and Table 6.6). Based on the automatically specified
schema mappings (Figure 6.3), the Mapping Generator component generates the map-
ping representations listed below. It should be mentioned that in this case the mappings
are trivial, since the ontology is an OWL representation of the XML Schema.

1 

Generated Mappings between the XML Schema and the Ontology of  Figure 4

Classes: 

Person_Type ≡ XPerson_Type = { /Persons/Person } 

Student_Type ≡ XStudent_Type = { /Persons/Student } 

NS_Persons_UNType ≡ X NS_Persons_UNType = { /Persons } 

 

 

Object Properties: 

Persons__NS_Persons_UNType ≡ XPersons__NS_Persons_UNType = { /Persons } 

 Persons__NS_Persons_UNType.domain ≡ XPersons__NS_Persons_UNTypeD = 

     = { /Persons } 

 Persons__NS_Persons_UNType.range ≡ XPersons__NS_Persons_UNTypeR =  

    = { /Persons } 

Person__Person_Type ≡ XPerson__Person_Type = { /Persons/Person } 

 Person__Person_Type.domain ≡ XPerson__Person_TypeD = { /Persons } 

 Person__Person_Type.range ≡ XPerson__Person_TypeR = { /Persons/Person } 

Student__Student_Type ≡ XStudent__Student_Type = { /Persons/Student } 

 Student__Student_Type.domain ≡ XStudent__Student_Type D = { /Persons } 

 Student__Student_Type.range ≡ XStudent__Student_TypeR =  

    = { /Persons/Student } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Datatype Properties: 

FirstName__xs_string ≡ XFirstName__xs_string={ /Persons/Person/FirstName, /Persons/Student/FirstName } 

 FirstName__xs_string.domain ≡ XFirstName__xs_stringD={ /Persons/Person, /Persons/Student } 

 FirstName__xs_string.range ≡ XFirstName__xs_stringR={ /Persons/Person/FirstName, /Persons/Student/FirstName } 

LastName__xs_string ≡ XLastName__xs_string = { /Persons/Person/LastName, /Persons/Student/LastName } 

 LastName__xs_string.domain ≡ XLastName__xs_stringD = { /Persons/Person, /Persons/Student } 

 LastName__xs_string.range ≡ XLastName__xs_stringR ={ /Persons/Person/LastName, /Persons/Student/LastName } 

Age__xs_integer ≡ XAge__xs_integer = { /Persons/Person/Age, /Persons/Student/Age} 

 Age__xs_integer.domain ≡ XAge__xs_integerD = { /Persons/Person, /Persons/Student } 

 Age__xs_integer.range ≡ XAge__xs_integerR = { /Persons/Person/Age, /Persons/Student/Age} 

Email__xs_string ≡ XEmail__xs_string = { /Persons/Person/Email, /Persons/Student/Email} 

 Email__xs_string.domain ≡ XEmail__xs_stringD = { /Persons/Person, /Persons/Student } 

 Email__xs_string.range ≡ XEmail__xs_stringR = { /Persons/Person/Email, /Persons/Student/Email } 

Nachname__xs_string ≡ XNachname__xs_string = { /Persons/Person/Nachname, /Persons/Student/Nachname } 

 Nachname__xs_string.domain ≡ XNachname__xs_stringD = { /Persons/Person, /Persons/Student } 

 Nachname__xs_string.range ≡ XNachname__xs_stringR ={ /Persons/Person/Nachname, /Persons/Student/Nachname } 

SSN__xs_integer ≡ XSSN__xs_integer = { /Persons/Person/@SSN, /Persons/Student/@SNN} 

 SSN__xs_integer.domain ≡ XSSN__xs_integerD = { /Persons/Person, /Persons/Student } 

 SSN__xs_integer.range ≡ XSSN__xs_integerR ={ /Persons/Person/@SSN, /Persons/Student/@SNN} 

Dept__xs_string ≡ XDept__xs_string = { /Persons/Student/Dept }  

 Dept__xs_string.domain ≡ XDept__xs_stringD = { /Persons/Student }   

 Dept__xs_string.range ≡ XDept__xs_stringR = { /Persons/Student/Dept } 

 

 

 

 

 

 

�

5.5 Introducing the Query Translation Process

In this section, we give an overview of the SPARQL query language (Section 5.5.1), we
introduce several basic notions (Section 5.5.2), and finally we summarize the query trans-
lation process (Section 5.5.3).

5.5.1 SPARQL Query Language Overview

SPARQL [34] is a W3C recommendation and it is today the standard query language
for RDF data. The evaluation of a SPARQL query is based on graph pattern matching.
The SPARQL Where clause consists of a Graph Pattern. The Graph Pattern is defined
recursively and contains Triple patterns and SPARQL operators. The operators of the
SPARQL algebra that can be applied on Graph Patterns are: AND, UNION, OPTIONAL
and FILTER. Triple patterns are just like RDF triples but each of the subject, predicate
and object parts may be a variable.
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SPARQL allows four query forms: Select, Ask, Construct and Describe. In addition,
SPARQL provides various solution sequence modifiers that can be applied on the ini-
tial solution sequence in order to create another, user desired, sequence. The supported
SPARQL solution sequence modifiers are: Distinct, Order By, Reduced, Limit, and Offset.
Finally, the SPARQL query results may be RDF Graphs, SPARQL solution sequences and
Boolean values.

5.5.1.1 RDF and SPARQL Syntax

In this section, we provide a set of formal definitions of the syntax of RDF and SPARQL
(based on [304] and [314]). Let I be the set of the IRIs (Internationalized Resource
Identifiers), L the set of the RDF Literals, and B be the set of the Blank nodes. In
addition, assume the existence of an infinite set V of variables disjoint from the previous
sets (I, B, L).

Definition 6. (RDF Triple) A triple ⟨s, p, o⟩ ∈ (I⋃B)× I× (I⋃B⋃L) is called RDF
triple. s, p and o represent, respectively, the subject, predicate and object of an RDF
triple. The subject s can either be an IRI or a Blank node. The predicate p must be an
IRI. The object o can be an IRI, a Blank node or an RDF Literal.

Definition 7. (RDF Dataset) An RDF Dataset (or RDF Graph) is a set of RDF
triples.

Definition 8. (RDF Triple) A triple ⟨s, p, o⟩ ∈ (I⋃B⋃V)×(I⋃V)×(I⋃B⋃L⋃V)
is called Triple pattern.

In the rest of the chapter, when we refer to variables, we also refer to Blank nodes,
since they are semantically equivalent.

Definition 9. (Graph Pattern) A Graph Pattern (GP ) is a SPARQL graph pattern
expression defined recursively as follows: (a) A triple pattern is a graph pattern. (b) If
P1 and P2 are graph patterns, then the expressions (P1 AND P2), (P1 OPT P2), and
(P1 UNION P2) are graph patterns. (c) If P is a graph pattern and R is a SPARQL
built-in condition, then the expression (P FILTER R) is a graph pattern.

Note that a SPARQL built-in condition (or else Filter expression) is constructed using
IRIs, RDF literals, variables and constants, as well as operators (e.g., &&, ∣∣, !, =, ! =, >, ≤,
+, bound, lang, regex, etc.) (Refer to [314] for a complete list). With var(gp) we denote
the set of variables occurring in a graph pattern gp.

Definition 10. (Union–Free Graph Pattern) A SPARQL graph pattern that does
not contain UNION operators is a Union–Free Graph Pattern (UF–GP).

Definition 11. (Basic Graph Pattern) A finite sequence of conjunctive triple pat-
terns and possible Filters is called Basic Graph Pattern (BGP).

5.5.2 Query Translation Preliminaries

Here, we introduce some essential query translation notions. Let IRDF be the set con-
taining the IRIs of the RDF vocabulary (e.g., rdf:type, rdf:Property), IRDFS the set
containing the IRIs of the RDF Schema vocabulary (e.g., rdfs:subClassOf, rdfs:domain)
and IOWL the set containing the IRIs of the OWL vocabulary (e.g., owl:equivalentClass,
owl:FunctionalProperty). Moreover, let ICL be the set containing the IRIs of the classes
of an ontology and IPR the set containing the IRIs of the properties of an ontology.
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From the above sets, we define the set IV C , containing all the IRIs of the RDF/S
and OWL vocabularies IV C = IRDF ⋃ IRDFS ⋃ IOWL. Moreover, we define the set IOL,
containing the IRIs that refer to ontology classes and properties IOL = ICL⋃ IPR.

Definition 12. (Schema Triple Pattern) A Schema Triple Pattern is a triple pattern
which refers to the ontology structure and/or semantics. In particular, a Schema Triple
Pattern is a triple pattern that contains concepts and properties of the RDF/S and OWL
vocabularies, or, a triple pattern having IRIs that refer to ontology classes or properties.
Formally, a Schema Triple Pattern is defined as follows:

A triple ⟨s, p, o⟩ ∈ (IV C ⋃ IOL⋃B⋃V) × (IV C ⋃ IOL) × (IV C ⋃ IOL⋃B⋃L⋃V) is
called Schema Triple Pattern (or simply Schema Triple).

We use schemaTr(gp) to denote the set of Schema Triples occurring in a graph
pattern gp.

In what follows we introduce the notion of semantically corresponding queries. Let
SL1 and SL2 be schema definition languages, and, s1 and s2 be schemas expressed in
SL1 and SL2, respectively. Let M be a set of mappings between s1 and s2. Let D1 be
a set of instances (i.e., dataset) over s1. A Data Transformation (DTr) from a set of
instances D1 to a set of instances D2 w.r.t. M, is the transformation of D1 into instances
of s2 w.r.t. M; resulting D2. Thus, the Data Transformation can be considered a function
DTr ∶ {D1} ×M Ð→ D2, where D1 and D2 are sets of instances over the schemas s1 and
s2, and, s1 and s2 are expressed in SL1 and SL2 schema definition languages.

Let SL1 and SL2 be schema definition languages, and, s1 and s2 be schemas expressed
in SL1 and SL2, respectively. Let M be a set of mappings between s1 and s2. Let D1

be a set of instances over s1. Let D2 =DTr(D1,M) the data transformation of the set of
instances D1 w.r.t. M, where D2 is a set of instances over s2. Let QL1 and QL2 be query
languages, and, Q1 and Q2 be queries expressed in QL1 and QL2, respectively. We say
that Q1 is semantically correspondent to Q2 w.r.t. M if and only if the solutions returned
from the evaluation of Q1 over D1 are the same as the evaluation of Q2 over D2.

In our problem, SL1 and SL2 are, respectively, the XML Schema and OWL schema
definition languages. Moreover, QL1 and QL2 are, respectively, the XQuery and SPARQL
query languages.

5.5.3 Query Translation Overview

In this section we present an overview of the SPARQL to XQuery query translation process,
which is performed by the Query Translator component. The Query Translator takes as
input a SPARQL query and the mappings between an ontology and an XML Schema and
translates the SPARQL query to semantically corresponding XQuery expressions w.r.t.
the mappings.

The query translation process is based on a generic method and a set of algorithms
for translating SPARQL queries to XQuery expressions following strictly the SPARQL
semantics. The translation covers all the syntax variations of the SPARQL grammar
[314]; as a result, it can handle every SPARQL query. In addition, the translation process
is generic and scenario independent, since the mappings are represented in an abstract
formal form as XPath Sets. The mappings may be automatically generated or manually
specified.

The objectives for the development of the query translation process have been the fol-
lowing: (a) Development of a generic method for the SPARQL to XQuery translation; (b)
Capability of translating every query compliant to the SPARQL grammar; (c) Obeying
strictly the SPARQL semantics; (d) Independence from query engines and storage envi-
ronments; (e) Production of as simple XQuery expressions as possible; (f) Construction of
XQuery expressions so that their correspondence with SPARQL can be easily understood;
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Figure 5.7: UML activity diagram describing the SPARQL to XQuery translation process. The
activity takes as input a SPARQL query and the mappings between an OWL ontology and an
XML Schema and generates the semantically corresponding XQuery expressions.

and (g) Construction of XQuery expressions that produce results that do not need any
further processing.

Figure 5.7 presents, in the form of a UML diagram, the entire translation process.
As is shown in Figure 5.7, the translation process takes as input a SPARQL query and
the mappings between an ontology and an XML Schema. The SPARQL Graph Pattern
Normalization activity (Section 5.6.1) rewrites the Graph Pattern (GP) of the SPARQL
query in an equivalent normal form, resulting into a simpler and more efficient translation
process. The Graph Pattern Processing follows, in order to translate the Graph Pattern
of the SPARQL query (the query Where clause) to XQuery expressions. Afterwards, the
solution sequence modifiers (SSMs) that may be contained in the query are translated
(Section 5.9.1). Finally, based on the SPARQL query form, the generated XQuery is en-
hanced with appropriate expressions in order to achieve the desired structure of the results
(e.g., either construct an RDF graph or return a SPARQL result sequence) (Section 5.9.2).

The Graph Pattern Processing is a composite activity with various sub-activities (Fig-
ure 5.7). Initially, an activity identifies the types of the SPARQL variables, in order to
determine the form of the results, as well as to perform consistency checking in variable
usage (Section 5.6.2). Afterwards, an activity (Section 5.6.3) processes the Schema Triples
(Definition 12) that may exist in the pattern and determines the variable bindings for them
(i.e., assigns the appropriate XPaths to variables). These bindings are going to be used in
the next steps as initial variable bindings. Finally, a translation algorithm (GP2XQuery)
that translates GPs to XQuery expressions is exploited (Section 5.8.2). Throughout the
GP2XQuery translation, for each Basic Graph Pattern (BGP) contained in the GP, a
Variable Binding phase (Section 5.7) and a BGP to XQuery translation (Section 5.8.3)
are preformed.

5.6 Query Normalization, Variable Types & Schema Triples

5.6.1 SPARQL Graph Pattern Normalization

In this section, we describe the SPARQL Graph Pattern normalization phase, which
rewrites the graph pattern (GP) of a SPARQL query, and transforms it to an equivalent
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normal form. The SPARQL graph pattern normalization is based on the GP expression
equivalences proved in [304] and on query rewriting techniques.

Definition 13. (Well Designed Graph Pattern) [304] A union–free graph pattern
P is well designed if for every sub-pattern P ′ = (P1 OPT P2) of P and for every variable
?X occurring in P , the following condition holds: if ?X occurs both inside P2 and
outside P ′ then it also occurs in P1.

The graph pattern equivalences differ for the well designed GPs and the non-well
designed GPs7. Thus, in case of OPT existence, it is essential for this phase to identify if
the GP is well designed or not (if OPT does not exist, GP is always well designed). This
clarification is performed by validating the well design condition over the GP. Finally,
every GP is transformed to a normal form formally described as follows:

P1 UNION P2 UNION P3 UNION . . . UNION Pn,

where Pi (1 ≤ i ≤ n) is a union-free graph pattern.
(1)

The new GP normal form allows an easier and more efficient translation process, as
well as the creation of more efficient XQuery queries since: (a) The normal form contains a
sequence of union–free graph patterns, each of which can be processed independently. (b)
The normal form contains larger Basic Graph Patterns. The larger basic graph patterns
result in a more efficient translation process, since they reduce the number of the variable
bindings, as well as the BGP to XQuery translation processes that are required (more
details can be found in Section 5.8). (c) The larger basic graph patterns result in more
sequential conjunctions (i.e., ANDs) intrinsically handled by XQuery expressions, thus
more efficient XQuery queries (more details in can be found Section 5.8). Note that in
almost all cases, the “real-world” (i.e., user defined) SPARQL graph patterns are initially
expressed in normal form [307], thus this phase is often avoided.

5.6.2 Variable Type Determination

In this section we describe the variable type determination phase. This phase identifies the
type of every SPARQL variable referenced in a union–free graph pattern (UF–GP). The
determined variable types are used to specify the form of the results and, consequently,
the syntax of the Return XQuery clause. Moreover, the variable types are exploited
for generating more efficient XQuery expressions. In particular, the variable types are
exploited by the processing Schema Triple patterns and the variable binding phases, in
order to reduce the possible bindings by pruning the redundant bindings. Finally, through
the variable type determination, a consistency check is performed in variable usage, in
order to detect possible conflicts (i.e., the same variable may be determined with different
types in the same UF–GP). In such a case, the UF–GP can not be matched against
any RDF dataset, thus, this UF–GP is pruned and is not translated, resulting into more
efficient XQuery expressions that speed up the translation process. In Table 5.7 we define
the variable types that may occur in triple patterns.

5.6.2.1 Variable Type Determination Rules

Here we describe the rules that are used for the determination of the variable types. Let
OL be an ontology, UF–GP be a Union–Free Graph Pattern expressed over OL, mDTP
(Mapped Data Type Properties Set) be the set of the mapped datatype properties of OL,
mOP (Mapped Object Properties Set) be the set of the mapped object properties of OL,

7A graph pattern that is not compatible with Definition 13 is called a non-well designed graph pattern.

151



Table 5.7: Variable Types

Notation Name Description

CIVT Class Instance Variable Type Represents class instance variables

LVT Literal Variable Type Represents literal value variables

UVT Unknown Variable Type Represents unknown type variables

DTPVT Data Type Predicate Variable Type Represents data type predicate variables

OPVT Object Predicate Variable Type Represents object predicate variables

UPVT Unknown Predicate Variable Type Represents unknown predicate variables

VUFGP (UF–GP Variables Set) be the set of the variables that are defined in the UF–GP8

and LUFGP (UF–GP Literal Set) be the set of the literals referenced in the UF–GP.
The variable type determination is a function V arType∶VUFGP Ð→ VT that assigns

a variable type vt ∈ VT to every variable v ∈ VUFGP , where VT = {CIV T,LV T,UV T,
DTPV T,OPV T,UPV T} includes all the variable types. The relation between the domain
and range of the function V arType is defined by the determination rules presented below.

Here, we enumerate the determination rules that are applied iteratively for each triple
in the given UF–GP. The final result of the rules is not affected by the order in which the
rules are applied neither by the order in which the triple patterns are parsed. As Tx is
denoted the type of a variable x.

Given a (non-Schema) triple pattern t ∈ ⟨s, p, o⟩, where s is the subject part, p the
predicate part and o the object part, we define the following rules:

Rule 1: If s ∈ VUFGP Ô⇒ Ts = CIV T . If the subject is a variable, then the variable type
is Class Instance Variable Type (CIVT).

Rule 2: If p ∈ DTP, and o ∈ VUFGP Ô⇒ To = LV T . If the predicate is a datatype
property and the object is a variable, then the type of the object variable is Literal Variable
Type (LVT).

Rule 3: If p ∈ mOP, and o ∈ VUFGP Ô⇒ To = CIV T . If the predicate is an object
property and the object is a variable, then the type of the object variable is Class Instance
Variable Type (CIVT).

Rule 4: Tp = DTPV T ⇐⇒ To = LV T ∣ p, o ∈ VUFGP . If the predicate variable type
is Data Type Predicate Variable Type (DTPVT), then the type of the object variable is
Literal Variable Type (LVT). The inverse also holds.

Rule 5: Tp = OPV T ⇐⇒ To = CIV T ∣ p, o ∈ VUFGP . If the predicate variable type is
Object Predicate Variable Type (OPVT), then the type of the object variable is Class
Instance Variable Type (CIVT). The inverse also holds.

Rule 6: If o ∈ LUFGP and p ∈ VUFGP Ô⇒ Tp = DTPV T . If the object is a literal value,
then the type of the predicate variable is Data Type Predicate Variable Type (DTPVT).

The unknown variable types UTV and UPTV do not result in conflicts in case that
a variable has been also defined to have another type since they can be just ignored. All
the variable types are initialized to the Unknown Predicate Variable Type (UPVT) if they
appear in the predicate part of a triple; otherwise, they are initialized to the Unknown
Variable Type (UVT).

As a result of the variable initialization, the following rule holds: If s, p, o ∈ VUFGP

and Tp = UPV T and To = UV T ⇒ Tp = UPV T and To = UV T . If a triple has subject,

8The VUFGP set does not include the variables that occur only in Schema triple patterns, since the
Schema triple patterns are omitted from the variables type determination phase.
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predicate and object variables, the predicate variable type is Unknown Predicate Variable
Type (UPVT) and the object variable type is Unknown Variable Type (UVT), no change
is needed since they cannot be specified.

The variable type determination phase, including the variable initialization, the deter-
mination rules and the conflict check is also presented as an algorithm in [84].

5.6.2.2 Variable Result Form

For the formation of the result set we follow the Linked Data principles for publishing
data. The resources are identified using Uniform Resource Identifiers (URI) in order to
have a unique and universal name for every resource. The form of the results depends
on the variable types. The following result forms are adopted for each variable type: (a)
For CIVT variables, every result item is a combination of the URI of the XML Docu-
ment that contains the node assigned to the variable with the XPath of the node itself
(including the node context position). In XML, every element and/or attribute can be
uniquely identified using XPath expressions and document–specific context positions. For
example: http://www.music.tuc.gr/xmlDoc.xml#/Persons/Student[3]. (b) For DTPVT,
OPVT and UPVT variables, every result item consists of the XPath of the node itself
(without the position of the node context). For example: /Persons/Student/FirstName.
(c) For LVT variables, every result item is the text representation of the node content. (d)
For UVT variables, two cases are distinguished: (i) If the assigned node corresponds to a
simple element, then the result form is the same with that of the LVT variables; and (ii)
If the assigned node corresponds to a complex element, the result form is the same with
that of the CIVT variables.

For the construction of the proper result form, XQuery functions (e.g., func:CIVT( ))
formed using standard XQuery expressions, are used in the Return XQuery clauses.

5.6.3 Schema Triple Pattern Processing

In this section we present the schema triple pattern processing. This phase is performed
in order to support schema-based queries. As schema-based queries are considered queries
which contain triple patterns that refer to the ontology structure and/or semantics (i.e.,
Schema Triple Patterns, Definition 12). In the schema triple pattern processing context,
the Schema Triple Patterns contained in the query are processed against the ontology so
that the schema information can be used throughout the translation.

At first, ontology constructs are bound to the variables contained in the Schema Triples.
Then, using the predefined mappings, the ontology constructs are replaced with the cor-
responding XPath Sets. As a result of this processing, XPaths are bound to the variables
contained in the Schema Triples. These bindings will be used as initial bindings by the
variable binding phase (Section 5.7). Note that as specified in Definition 12, triple pat-
terns having a variable on their predicate part are not defined as schema triples, since
they can deal either with data or with schema info. Hence, these triples are considered as
non-schema triple patterns.

The schema triple patterns can be analyzed over the ontology, using a query or an in-
ference engine. It should be noted that, in our approach we do not consider the semantics
(e.g., entailment, open/close world assumptions, etc.) adopted in the evaluation of schema
triples over the ontology. Since, the schema triple processing uses the results (i.e., ontology
constructs) of the schema triple evaluation. Here, we have adopted simple entailment se-
mantics (like the current SPARQL specification [314]). However, inferred results adhering
to the RDFS or OWL entailments can be used if the SPARQL engine performs a query
expansion step before evaluating the schema triples query, or an RDFS/OWL reasoner has
been used. Currently, W3C works on defining the entailment regimes in the forthcoming
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SPARQL 1.1 [185], which specify exactly what answers we get for several common entail-
ment relations such as RDFS entailment or OWL Direct Semantics entailment. Finally,
note that the SW is based on the Open World Assumption (OWA), while the XML world
is based on the Closed World Assumption (CWA). This means that in the SW whatever
is not explicitly stated is considered to be unknown, while in the XML world whatever is
not explicitly stated in considered to be false.

5.7 Variable Binding

In this section, we describe the variable binding phase. In our context the term “variable
bindings” is used to describe the assignment of XPaths to the variables referenced in a
given BGP, thus enabling the translation of the BGPs in XQuery expressions.

Intuitively, this phase considers the graph structure(s) constructed by the triples pat-
terns defined in the BGP, as well as the mappings, in order to determine the appropriate
set of bindings. This set of bindings is going to be used in the construction of the XQuery
expressions. It should be noted that, due to the form of the mappings (i.e., XPaths Sets)
the (hierarchical) structure of XML data is also considered by the variable binding phase.

Additional schema information and/or semantics possibly expressed in the SPARQL
query are exploited in the variable binding phase by using the bindings determined in
the Schema Triple processing phase (Section 5.6.3). For this reason, the Schema Triples
are omitted (i.e., pruned) from this phase and the determined Schema Triple bindings are
used as initial bindings.

The variable binding algorithm is presented in Section 5.7.1, the variable binding rules
are described in Section 5.7.2 and the XPath Set relations for triple patterns are discussed
in Section 5.7.3.

5.7.1 Variable Binding Algorithm

5.7.1.1 Preliminaries

An RDF triple ⟨s, p, o⟩ is a sub graph of the directed RDF graph, where s, o are graph
nodes and p is a directed graph edge, directed from s to o. As Xs, Xp and Xo we denote the
XPath Set correspond to subject, predicate and object XPath Sets respectively. Moreover,
let XpD and XpR be the XPath Sets corresponding, respectively, to the predicate domains
and ranges.

Considering the hierarchical structure of XML data and the structure of the directed
RDF graph, the following relations must hold for the XPath Sets of the triple pattern
parts:

(a) ∃xs ∈ Xs and ∃xpD ∈ XpD ∶ xs ∼⊂xpD. The subject XPath Set (Xs) contains XPaths
that prefix the XPaths contained in the predicate domains XPath Set (XpD).

(b) ∃xpD ∈ XpD and ∃xpR ∈ XpR ∶ xpD ∼⊂xpR. The predicate domains XPath Set (XpD)
contains XPaths that prefix the XPaths contained in the predicate ranges XPath
Set (XpR).

(c) ∃xpR ∈ XpR and ∃xo ∈ Xo ∶ xpR ∼⊂xo. The predicate ranges XPath Set (XpR)
contains XPaths that prefix the XPaths contained in the object XPath Set (Xo).

Thus, from (a), (b) and (c), we conclude to the Subject–Predicate–Object Relation,
formally defined in (2):

∃xs ∈ Xs,∃xpD ∈ XpD,∃xpR ∈ XpR,∃xo ∈ Xo ∶ xs ∼⊂xpD ∼⊂xpR ∼⊂xo (2)
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The Subject–Predicate–Object Relation must holds for every single triple pattern.
Thus, the variable binding algorithm uses this relation in order to determine the appro-
priate bindings for the entire set of the conjunctive triple patterns (i.e., BGP), starting
from the bindings of any single triple pattern part (subject, predicate, object).

Definition 14. (Shared Variable) A variable contained in a Union–Free Graph
Pattern is called a Shared Variable when it is referenced in more than one triple patterns
of the same Union–Free Graph Pattern regardless of its position in those triple patterns.

In case of shared variables, the algorithm uses the XPath Set Operators (i.e., ⋖, ⋗,

⋃ ), in order to determine the maximum set of bindings that satisfy the Subject– Predi-
cate–Object Relation for the entire set of triple patterns (i.e., the entire BGP). As a result,
all the XML nodes that satisfy the BGP are identified.

The variable binding algorithm does not determine the XPaths for Literal Variable
Type (LVT) shared variables, since the literal equality (e.g., string equality, integer equal-
ity, etc.) is independent of the XML structure (i.e., XPath expressions). For example, con-
sider that we want to identify the students with the same First Name and Last Name val-
ues. In this case, let the XPaths be /Persons/Student/FirstName and
/Persons/Student/LastName. Thus, the bindings for variables of LVT type cannot be
determined at this step. Instead, they will be handled by the BGP2XQuery algorithm
(Section 5.8.3), which exploits a combination of the mappings and the determined vari-
able bindings.

For this phase we introduce the “special” XPath set value “⊖”. The value “⊖”, can be
considered as the not initialized value, similar to the null value, however, different than
the empty set ∅. Regarding the “⊖” value, (a) the Intersection (⋂ ), (b) the Descendants
of Common Ancestors (⋗) and (c) the Common Ancestors (⋖) operators have the following
semantics. Let the XPath Set A, where ⊖ ∉ A and A ≠ ∅ and the XPath Set e = {⊖}. We
have: (a) Intersection: (i) A⋂e = e⋂A = A (ii) e⋂e = e; (b) Descendants of Common
Ancestors: (i) A ⋗ e = e (ii) e ⋗ A = A (iii) e ⋗ e = e; (c) Common Ancestors: (i)
A ⋖ e = A, (ii) e ⋖ A = e (iii) e ⋖ e = e.

5.7.1.2 Algorithm Overview

Here we outline the Variable Binding algorithm (Algorithm 1), which takes as input (a) a
Basic Graph Pattern (BGP ); (b) a set of initial bindings (XSch); (c) the types of variables
that are present in the BGP (varTypes); and (d) the mappings of the BGP ontology
constructs (M). The variable types are determined by the determining of variable types
phase and the initial bindings are those resulting from the Schema Triple processing.

In the beginning (lines 1∼7 ), the variables that are not included in any Schema Triple,
thus, no binding has been previously determined (from the Schema Triple Processing
phase), are initialized here with the “special” value “⊖” (line 5 ). The rest of the variables
(included in a Schema Triple) are initialized to the initial bindings (line 3 ). Then, the
algorithm performs an iterative process (lines 11∼21 ) where it determines, at each step,
the bindings of the entire BGP (triple by triple). The determination of the bindings of
a single triple is performed using binding rules (lines 13, 16 & 19). Each part of the
triple (subject–predicate–object) uses a binding rule (Section 5.7.2).This iterative process
continues until the bindings for all the variables found in the successive iterations are
equal (line 23 ). This implies that no further modifications in the variable bindings are
to be made and that the current bindings are the final ones. Thus, the variable binding
algorithm ensures that all the variables have been bound to the largest XPath sets with
respect to: (a) the structure of the RDF data; (b) the structure of the XML data; and (c)
the mappings between them. Note that Xi

w denotes the determined XPath Set at the ith

iteration of the algorithm for the w triple part.
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 BS (t, 𝐗s
i, 𝐗pD

i, 𝐗o
i, 𝐌) =               

 𝐗s
i ⋂̅ 𝐗pD

i
                               if Type 1 

  

𝐗s
i ⋂̅ 𝐗pD

i ⋖ 𝐗o
i
       if Type 2  

  

   = 𝐗S1   if 𝐗s
i = ⊝ and 𝐗pD

i = ⊝   {1}
  if Type 3 

 𝐗s
i ⋂̅ 𝐗pD

i  else   

         

 𝐗S1     if 𝐗s
i = ⊝ and 𝐗pD

i = ⊝ and 𝐗o
i = ⊝     {2} if Type 4 

 𝐗pD
i ⋂̅ 𝐗s

i ⋖ 𝐗o
i                        else    

  

(3) 

XML Schema Complex Types 
Ontology Classes 

rdf:ID rdfs:subClassOf 

Person_Type Person_Type owl:Thing 

Student_Type Student_Type Person_Type 

Persons (unnamed complex type) NS_Persons_UNType owl:Thing 

Algorithm 1: Variable Binding Algorithm   

Input: Basic Graph Pattern BGP, Initial Bindings 𝐗Sch,  

 Variable Types varTypes, Mappings 𝐌 

Output: Variable Bindings 𝐗v 

1. for each variable v in BGP //initialize the bindings  

2. if v ∈ var(schemaTr(BGP))     //if the variable v are included at schema triples  

3.   𝐗v
0 = 𝐗v

Sch  

//initialize the bindings from the bindings determined the from schema triple processing 

4. else 

5.  𝐗v
0 = {⊝}    //initialize with the “special” value "⊝" 

6. end if 

7. end for 

8. it = 0  //iteration counter initialization  

9. repeat  

11. for each triple t in BGP   //loop over all the BGP triples  

12.  if s ∈ 𝐕 //if the subject is a variable 

13.   𝐗s
i+1 = Bs( t, 𝐗s

i, 𝐗pD
i, 𝐗o

i, 𝐌 )  
//determine the subject bindings of the current iteration (i.e., t+1)  

14.  end if  

15.  if p ∈ 𝐕 //if the predicate is a variable 

16.   𝐗p
i+1 = Bp( t, 𝐗s

i, 𝐗p
i, 𝐌, varTypes )   

//determine the predicate bindings of the current iteration (i.e., i+1)  

17.  end if 

18.  if o ∈ 𝐕 //if the object is a variable 

19.   𝐗o
i+1 = Bo( t, 𝐗s

i, 𝐗p
i, 𝐗o

i, 𝐌, varTypes )  
//determine the object bindings of the current iteration (i.e., i+1)  

20.  end if  

21. end for 

22. i = i + 1   //increase the counter  

23   until (∀ v ∈ var(BGP)⇒ 𝐗v
i = 𝐗v

i-1 ) 
//loop until the bindings of the previous iteration are equal with the bindings of this iteration 

24. 24.  return 𝐗v ∀ v ∈ var(BGP) //return all the variable bindings for this basic graph pattern 

Algorithm 2: For or Let XQuery Clause Selection (QF, 𝐑�𝐕�, v ) 

Input: SPARQL query form QF, Return Variables 𝐑�𝐕�, SPARQL variable v 

Output: XQuery Clause Type 

1.    if QF ≠ Ask  

2. if (v ∈ 𝐑�𝐕�) or ( K ∈ 𝐑�𝐕� | K is extension of v )  

3. return Create a For XQuery Clause  

4. else 

5. return Create a Let XQuery Clause  

6. end if 

7. else 

8. return Create a Let XQuery Clause  

9. end if 

5.7.2 Variable Binding Rules

In this section we present the Variable Binding Rules applied by the variable binding
algorithm (lines 13, 16 & 19) in order to determine the bindings for all the parts (i.e.,
subject, predicate and object) of a single triple pattern.

Initially, in order to define the binding rules we distinguish the Triple Pattern Types.
According to the specified types we have defined the variable binding rules presented
above.

Let the sets V, L, I, B (as defined in Section 5.5.1.1). We define four different types
of triple patterns: (a) a triple pattern ⟨s, p, o⟩ ∈ (V⋃B)×I×L, where the subject part s is
a variable or a blank node, the predicate part p is an IRI and the object part o is a literal,
is defined to be of Type 1; (b) a triple pattern ⟨s, p, o⟩ ∈ (V⋃B)× I× (V⋃B), where the
subject and object parts s, o are variables or blank nodes and the predicate part p is an
IRI, is defined to be of Type 2; (c) a triple pattern ⟨s, p, o⟩ ∈ (V⋃B)× (V⋃B)×L, where
the subject and predicate parts s, p are variables or blank nodes and the object part o is a
literal, is defined to be of Type 3; (d) a triple pattern ⟨s, p, o⟩ ∈ (V⋃B)×(V⋃B)×(V⋃B),
where all the parts s, p, o are variables or blank nodes, is defined to be of Type 4.

Given a triple pattern t ⟨s, p, o⟩, where s is the subject part, p the predicate part and
o the object part, we define the following binding rules depending on the triple pattern
types. The following rules are applied to the triple pattern parts that are variables or
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blank nodes. Firstly, the subject binding rule is applied, then the predicate binding rule,
and finally the object binding rule, in order to determine the new XPath Set for every
variable or blank node part.

In what follows, Xi
w denotes the determined XPath Set at the ith iteration of the bind-

ing algorithm for the w triple part. In particular, Xi
s denotes the XPath Set corresponding

to the subject part s, Xi
p denotes the XPath Set corresponding to the predicate part p,

Xi
pD denotes the XPath Set corresponding to the domains of the predicate part p and Xi

o

denotes the XPath Set corresponding to the object part o.

5.7.2.1 Subject Binding Rule

Here we present the binding rule BS (3), which is applied in order to determine the XPath
Set of the subject part (Xi+1

s ). The subject binding rule takes as input (a) the triple for
which the determination is performed (t); (b) the previously determined bindings for the
subject part (Xi

s); (c) the previously determined bindings for the domains of the predicate
part (Xi

pD); (d) the previously determined bindings for the object part (Xi
o); and (e) the

mappings (M). Note that with the term previously determined bindings we refer to the
bindings determined in the previous algorithm iteration.
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 BS (t, 𝐗s
i, 𝐗pD

i, 𝐗o
i, 𝐌) =               

 𝐗s
i ⋂̅ 𝐗pD

i
                               if Type 1 

  

𝐗s
i ⋂̅ 𝐗pD

i ⋖ 𝐗o
i
       if Type 2  

  

   = 𝐗S1   if 𝐗s
i = ⊝ and 𝐗pD

i = ⊝   {1}
  if Type 3 

 𝐗s
i ⋂̅ 𝐗pD

i  else   

         

 𝐗S1     if 𝐗s
i = ⊝ and 𝐗pD

i = ⊝ and 𝐗o
i = ⊝     {2} if Type 4 

 𝐗pD
i ⋂̅ 𝐗s

i ⋖ 𝐗o
i                        else    

  

(3) 

XML Schema Complex Types 
Ontology Classes 

rdf:ID rdfs:subClassOf 

Person_Type Person_Type owl:Thing 

Student_Type Student_Type Person_Type 

Persons (unnamed complex type) NS_Persons_UNType owl:Thing 

Algorithm 1: Variable Binding Algorithm   

Input: Basic Graph Pattern BGP, Initial Bindings 𝐗Sch,  

 Variable Types varTypes, Mappings 𝐌 

Output: Variable Bindings 𝐗v 

1. for each variable v in BGP //initialize the bindings  

2. if v ∈ var(schemaTr(BGP))     //if the variable v are included at schema triples  

3.   𝐗v
0 = 𝐗v

Sch  

//initialize the bindings from the bindings determined the from schema triple processing 

4. else 

5.  𝐗v
0 = {⊝}    //initialize with the “special” value "⊝" 

6. end if 

7. end for 

8. it = 0  //iteration counter initialization  

9. repeat  

11. for each triple t in BGP   //loop over all the BGP triples  

12.  if s ∈ 𝐕 //if the subject is a variable 

13.   𝐗s
i+1 = Bs( t, 𝐗s

i, 𝐗pD
i, 𝐗o

i, 𝐌 )  
//determine the subject bindings of the current iteration (i.e., t+1)  

14.  end if  

15.  if p ∈ 𝐕 //if the predicate is a variable 

16.   𝐗p
i+1 = Bp( t, 𝐗s

i, 𝐗p
i, 𝐌, varTypes )   

//determine the predicate bindings of the current iteration (i.e., i+1)  

17.  end if 

18.  if o ∈ 𝐕 //if the object is a variable 

19.   𝐗o
i+1 = Bo( t, 𝐗s

i, 𝐗p
i, 𝐗o

i, 𝐌, varTypes )  
//determine the object bindings of the current iteration (i.e., i+1)  

20.  end if  

21. end for 

22. i = i + 1   //increase the counter  

23   until (∀ v ∈ var(BGP)⇒ 𝐗v
i = 𝐗v

i-1 ) 
//loop until the bindings of the previous iteration are equal with the bindings of this iteration 

24. 24.  return 𝐗v ∀ v ∈ var(BGP) //return all the variable bindings for this basic graph pattern 

Algorithm 2: For or Let XQuery Clause Selection (QF, 𝐑�𝐕�, v ) 

Input: SPARQL query form QF, Return Variables 𝐑�𝐕�, SPARQL variable v 

Output: XQuery Clause Type 

1.    if QF ≠ Ask  

2. if (v ∈ 𝐑�𝐕�) or ( K ∈ 𝐑�𝐕� | K is extension of v )  

3. return Create a For XQuery Clause  

4. else 

5. return Create a Let XQuery Clause  

6. end if 

7. else 

8. return Create a Let XQuery Clause  

9. end if 

In above rule, {1} holds if the type of the triple pattern is Type 3, in case that the
subject XPath Set (Xi

s) and the predicate XPath Set (Xi
p) have not been determined (are

equal to ⊖). Moreover, {2} holds for triple patterns of Type 4, in case that Xi
s, Xi

p and

the object XPath Set (Xi
o) have not been determined.

In the above cases, we assign to the subject XPath Set (Xi
s) the XPath Set union of

the sets of all the mapped classes (exploiting M). Thus, XS1 = Xc1⋃Xc2 ⋃⋯⋃Xcn , for
each mapped class ci, where Xci is the XPath Set corresponding to ci,∀i ∈ {1, . . . , n}.

Similarly are defined the predicate (BP ) and the object (BO) binding rules, which are
available in [84].

5.7.3 XPath Set Relations for Triple Patterns

In several cases, XPath Sets that correspond to different SPARQL variables must be as-
sociated. For example, let the triple pattern ?x FirstName xs string ?y; the variable x
corresponds to Persons and Students and the variable y to their first name(s). The variable
binding phase will result in two XPath Sets: one for all the Persons and Students corre-
sponding to variable x (i.e., Xx = {/Persons/Person, /Persons/Student}) and one for all
the First Names corresponding to variable y (i.e., Xy = {/Persons/Person/FirstName,
/Persons/Student/FirstName}). However, the association of persons and their names
still has to be done. We introduce the extension relation which can hold among different
XPath Sets and can be exploited in order to associate them.
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Definition 15. (Extension Relation) An XPath Set D is said to be an extension
of an XPath Set A if all the XPaths in D are descendants of the XPaths of A. This
relation can be achieved if the XPath Set Concatenation (⊕) operator is applied to the
XPath Set A having as right operand an XPath Set C, and as result the XPath Set D,
which will be an extension of A (i.e., A⊕C=D, D is an extension of A).

In the above example, the XPath Set Xy is an extension of the XPath Set Xx.
The XPath Set Xymay result from the XPath Set Xx since: Xx ⊕ {/FirstName} =
{/Persons/Person, /Persons/Student}⊕{/FirstName} = {/Persons/Person/FirstName,
/Persons/Student/FirstName} which is equal to the XPath Set Xy.

Based on the Subject–Predicate–Object Relation defined in (2), the extension relation
holds for the XPath Sets and results from the Variable Binding Algorithm. It implies
that the XPath Set bound to the object part corresponds to an extension of the XPath
Set bound to one of the predicate and subject parts. Moreover, the XPaths bound to the
predicate part correspond to an extension of the XPath Sets bound to the subject part.
Thus, the extension relation is exploited by the translation process, using also the For and
Let XQuery clauses, in order to associate different XQuery variables.

Note that the notion of extension is also used to describe relations between XQuery
variables. If the extension relation holds for the XPaths used in the For/Let clauses
that assign values to the variables, then the extension relation also holds between these
variables. In particular, consider the following For or Let (For/Let) XQuery clauses:
For/Let $v1 in/:= expr1 and For/Let $v2 in/:= expr2; if the XPath expressions occurring
in expr2 are extensions of the XPath expressions occurring in expr1, then the XQuery
variable $v2 is also said to be an extension of the $v1 XQuery variable. For example,
consider the XQuery expressions: Let $x ∶= /Persons/Person union /Persons/Student
and For $y in $x/FirstName. In these XQuery expressions, the XQuery variable $y is
said to be an extension of the XQuery variable $x.

5.8 Graph Pattern Translation

In this section, we describe the graph pattern translation phase, which translates a graph
pattern into semantically corresponding XQuery expressions. The XQuery and SPARQL
basic notions are introduced in Section 5.8.1, an overview of the graph pattern trans-
lation is presented in Section 5.8.2, the basic graph pattern translation is described in
Section 5.8.3 and we close with a discussion on the major challenges that we faced during
the graph pattern translation in Section 5.8.4.

5.8.1 Preliminaries

In this section we provide an overview of the semantics of the SPARQL graph patterns
(most of them defined in [304]), as well as some preliminary notions regarding the XQuery
syntax representation.

Definition 16. (SPARQL Graph Pattern Solution) A SPARQL Graph Pattern
solution ω ∶ V Ð→ (I⋃B⋃L) is a partial function that assigns RDF terms of an RDF
dataset to variables of a SPARQL graph pattern. The domain of ω, dom(ω), is the
subset of V where ω is defined. The empty graph pattern solution ω∅ is a graph pattern
solution with an empty domain. The SPARQL graph pattern evaluation result is a set
Ω of graph pattern solutions ω.

Two Graph Pattern solutions ω1 and ω2 are compatible when for all
x ∈ dom(ω1)⋂dom(ω2) it holds that ω1(x) = ω2(x). Furthermore, two graph pattern
solutions with disjoint domains are always compatible, and the empty graph pattern so-
lution ω∅ is compatible with any other graph pattern solution.
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Let Ω1 and Ω2 be sets of Graph Pattern solutions. The Join, Union, Difference
and Left Outer Join operations between Ω1 and Ω2 are defined as follows: (a) Ω1 &
Ω2 = {ω1⋃ω2 ∣ ω1 ∈ Ω1, ω2 ∈ Ω2 are compatible graph pattern solutions}, (b) Ω1⋃Ω2 =
{ω ∣ ω1 ∈ Ω1 or ω2 ∈ Ω2}, (c) Ω1 Ω2 = {ω ∈ Ω1 ∣ for all ω′ ∈ Ω2, ω and ω′ are not
compatible}, (d) Ω1 ⋊Ω2 = (Ω1 &Ω2)⋃(Ω1 Ω2).

The semantics of the SPARQL graph pattern expressions are defined as a function
[[.]]D, which takes a graph pattern expression and an RDF dataset D and returns a set
of graph pattern solutions.

Definition 17. (SPARQL Graph Pattern Evaluation) Let D be an RDF dataset
over (I⋃B⋃L), t a triple pattern, P , P1, P2 graph patterns and R a built-in con-
dition. Given a graph pattern solution ω, we denote as ω ⊧ R that ω satisfies R
(the Filter operator semantics are described in detail in [311]). The evaluation of a
graph pattern over D, denoted by [[.]]D, is defined recursively as follows: (a) [[t]]D =
{ω ∣ dom(ω) = var(t) and ω(t) ∈ D}, (b) [[(P1 AND P2)]]D = [[P1]]D & [[P2]]D,
(c) [[(P1 OPT P2)]]D = [[P1]]D⋊[[P2]]D, (d) [[(P1 UNION P2)]]D = [[P1]]D ⋃ [[P2]]D
and (e) [[(P FILTER R)]]D = {ω ∈ [[P ]]D ∣ ω ⊧ R}.

Finally, we introduce the SPARQL Return Variable notion, which is exploited through-
out the SPARQL to XQuery translation, as well as some basic notions regarding the
XQuery syntax.

Definition 18. (SPARQL Return Variable)A SPARQL return variable is a variable
for which the SPARQL query would return some information. The Return Variables
(RV) of a SPARQL query constitute the Return Variables set RV ⊆ V. In particular: (a)
for Select and Describe SPARQL queries, the RV consists of the variables referred after
the query form clause; in case of wildcard (*) use, RV = V; (b) for Ask SPARQL queries,
RV = ∅; (c) for Construct SPARQL queries, RV consists of the variables referred in the
query graph template (i.e., the variables that belong to the graph template variable set
GTV), thus, RV = GTV.

Due to the fact that the term “predicate” is used in the SPARQL and XPath languages,
in the rest of this chapter we will refer to the XPath predicate as XPredicate. Moreover, the
XQuery variable $doc is defined to be initialized by the clauses: let $doc := fn:doc(“URI”),
or let $doc := fn:collection(“URI”); where URI is the address of the XML document or
document collection that contains the XML data over which the produced XQuery will be
evaluated.

Finally, we define the abstract syntax representation of the XQuery For and Let clauses
xC as follows: (a) for $var in expr ; and (b) let $var := expr, where $var is an XQuery
variable named var and expr is a sequence of XPath expressions. As xC.var we denote the
name of the XQuery variable defined in xC, as xC.expr we denote the XPath expressions
of xC and as xC.type we denote the type (For or Let) of the XQuery clause xC. Finally,
as xE we denote a sequence of XQuery expressions.

5.8.2 Graph Pattern Translation Overview

The graph pattern concept is defined recursively. The basic graph pattern translation
phase (Section 5.8.3) translates the basic components of a GP (i.e., BGPs) into XQuery
expressions, which in several cases have to be associated in the context of a GP. That
is, to apply the SPARQL operators (i.e., UNION, AND, OPT and FILTER) that may
occur outside the BGPs. The GP2XQuery algorithm traverses the SPARQL evaluation
tree resulting from the GP, so as to identify and handle the SPARQL operators.

Particularly, the SPARQL UNION operator corresponds to the union operation ap-
plied to the graph pattern solutions of its operand graphs. The implementation of the
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UNION operator is straightforward in XQuery. The FILTER operator restricts the query
solutions to the ones for which the filter expression is true. The translation of the FIL-
TER operator in the context of BGPs is presented in Section 5.8.3.6. The same holds
for the translation of the filters occurring outside the BGPs. The SPARQL AND and
OPT operators correspond to the Join and Left Outer Join operators respectively, applied
to the graph pattern solutions of their operand graphs. The semantics of the Join and
Left Outer Join operators in SPARQL differ slightly from the relational algebra join se-
mantics, in the case of unbound9 variables10. In particular, the existence of an unbound
variable in a SPARQL join operation does not produce an unbound result. In other words,
the join in the SPARQL semantics, is defined as a non null-rejecting join. The seman-
tics of the compatible mappings in the case of unbound variables have been discussed in
[316, 311, 304].

Note however that SPARQL does not provide the minus operator at syntax level.
The minus operator can be expressed as a combination of optional patterns and filter
conditions which include the bound operator (like the Negation as Failure (NAS) in logic
programming11). The semantics of the SPARQL minus operator have been extensively
studied in [34].

The unbound variable semantics in conjunction with the OPT operator result in a
“special” type of GPs. This type is well known as non-well designed GPs (Definition 13)
with some of its properties being different from the rest of the GPs (i.e., the well designed
ones). In particular, in the context of translating the AND and OPT operators, the
possible evaluation strategies differ for the well designed and the non-well designed graph
patterns (for more details see [304]). As a result, in order to provide an efficient translation
for the AND and OPT operators, we must not handle all graph patterns in a uniform
way. Below we outline the translation for both well-designed and non-well designed graph
patterns in XQuery expressions.

5.8.2.1 Well Designed Graph Patterns

Every well-designed Union–Free Graph Pattern Pi contained in the normal form (1) is
transformed in the form of (4) after the graph pattern normalization phase (Section 5.6.1):

(⋯(t1 AND ⋯ AND tk) OPT O1) OPT O2)⋯) OPT On), (4)

where each ti is a triple pattern, n ≥ 0 and each Oj has the same form (4) [304].

We can observe from (4) that the AND operators are occurring only between triple
patterns (expressed with “.” in the SPARQL syntax) in the context of basic graph pat-
terns (BGPs). As a consequence, in the case of well designed GPs, the AND operators
are exclusively handled by the BGP2XQuery algorithm, as described in Section 5.8.3. In
particular, the BGP2XQuery algorithm uses associated For/Let XQuery clauses to resem-
ble nested loop joins. In addition, throughout the For/Let XQuery clauses creation, the
BGP2XQuery algorithm exploits the extension relation (Definition 15) in order to use the
already evaluated XQuery values, providing a more efficient join implementation.

Considering the well designed GP definition, as well as the form (4), we conclude
that the following holds for the operands of an OPT operator: For the expressions of
the form P = (P1 OPT P2) occurring in (4), every variable occurring both inside P and
outside P , it occurs for sure in P1. As a result, the variables occurring outside P have

9Similar to the unknown/null value in SQL.
10It is not clear why the W3C has adopted the specific semantics.
11 Although the SPARQL language expresses the minus operator like Negation as Failure (NAS) [104],

it does not make any assumption to interpret statements in an RDF graph using negation as failure or
other non-monotonic [104] assumption (e.g., Closed World Assumption). Note that both SPARQL and
RDF are based on the Open World Assumption (OWA).
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always bound values, imposed from the P1 evaluation. Note that the above property
holds only for well designed GPs and not for the non-well designed ones. Exploiting this
property, we can provide an efficient implementation of the OPT operators, which are
going to use the already evaluated results (produced from the left operand evaluation) in
the evaluation of the right operand. Consider for example the well designed graph pattern
P = (t1 OPT (t2 OPT t3), where t1, t2 and t3 triple patterns. The evaluation of P over a
dataset D will be [[t1]]D ⋊ (([[t1]]D & [[t2]]D)) ⋊ (([[t1]]D & [[t2]]D & [[t3]]D)).

The GP2XQuery algorithm traverses the SPARQL execution tree in a depth-first man-
ner, the BGP2XQuery algorithm translates the BGPs occurring in GP. In case of OPT
operators, the XQuery expressions resulting from the translation of the right operands use
the XQuery values already evaluated from the translation of the left operand, reducing
the required computations.

5.8.2.2 Non-Well Designed Graph Patterns

The evaluation strategy outlined above can not be applied in the case of the non-well
designed GPs. The unbound variables semantics and the “confused” use of variables in
the OPT operators of the non-well designed GPs do not allow the use of the intermediate
results during the graph pattern evaluation.

For example, consider the following non-well designed graph pattern P = ((?x p1 ?y)
OPT (?x p2 ?z)) OPT (?w p3 ?z). The evaluation of the expression ((?x p1 ?y) OPT
(?x p2 ?z)) will possibly return results with unbound values for the variable ?z. In the
evaluation strategy adopted for the well designed GPs, the results from the evaluation
of ((?x p1 ?y) OPT (?x p2 ?z)) expression (intermediate results) and in particular the
results from the variable ?z, will be used to evaluate the OPT(?w p3 ?z) expression.
The unbound values that possibly occur for variable ?z, will reject the evaluation of the
OPT(?w p3 ?z) expression. However, this rejection is not consistent with the unbound
variable semantics. Due to that, an unbound ?z value resulting from the evaluation of
expression ((?x p1 ?y) OPT (?x p2 ?z)), will not reject a bound value ?z resulting from
the evaluation of expression OPT(?w p3 ?z).

As a result, for the non-well designed GPs, we are forced to independently evaluate the
BGPs, so that the AND and OPT operators will be applied over the results produced from
the BGP evaluation. In the context of SPARQL to XQuery translation, the GP2XQuery
algorithm traverses the SPARQL execution tree in a button-up fashion and the BGP are
independently translated by the BGP2XQuery algorithm. Finally, the AND and OPT op-
erators are applied using XQuery clauses among the XQuery expressions resulting from the
BGP2XQuery translation, taking also into consideration the semantics of the compatible
mappings for unbound variables.

5.8.3 Basic Graph Pattern Translation

This section describes the translation of basic graph pattern into XQuery expressions.

5.8.3.1 BGP2XQuery Algorithm Overview

We outline here the BGP2XQuery algorithm, which translates BGPs into XQuery expres-
sions. The algorithm is not executed triple by triple. Instead, it processes the subjects,
predicates, and objects of all the triples separately. For each SPARQL variable included in
the BGP, the algorithm creates For or Let XQuery clauses, using the variable bindings, the
input mappings, and the extension relation (Definition 15). In every case, the name of an
XQuery variable is the same with that of the corresponding SPARQL variable, so the corre-
spondences between the SPARQL and XQuery queries can be easily captured. Regarding
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the literals included in the BGP, the algorithm translates them as XPath conditions using
XPredicates. The translation of SPARQL Filters depends on the Filter expression. Most
of the Filters are translated as XPath conditions expressed using XPredicates, however
some “special” Filter expressions are translated as conditions expressed in XQuery Where
clauses. Finally, the algorithm creates an XQuery Return clause that includes the Return
Variables that were defined in the BGP. The translation of BGPs is described in detail in
the following sections.

5.8.3.2 For or Let Clause?

A crucial issue in the XQuery expression construction is the enforcement of the appropriate
solution sequence based on the SPARQL semantics. To achieve this, for a SPARQL
variable v, we create a For or a Let clause according to the algorithm presented below
(Algorithm 2). Intuitively, the algorithm chooses between the construction of For and
Let clauses in order to produce the desired solution sequence. For example, consider a
SPARQL query which returns persons and their first names. For a person A, that has two
first name n1 and n2, the returned solution sequence will consist of two results A, n1 and
A, n2.
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 BS (t, 𝐗s
i, 𝐗pD

i, 𝐗o
i, 𝐌) =               

 𝐗s
i ⋂̅ 𝐗pD

i
                               if Type 1 

  

𝐗s
i ⋂̅ 𝐗pD

i ⋖ 𝐗o
i
       if Type 2  

  

   = 𝐗S1   if 𝐗s
i = ⊝ and 𝐗pD

i = ⊝   {1}
  if Type 3 

 𝐗s
i ⋂̅ 𝐗pD

i  else   

         

 𝐗S1     if 𝐗s
i = ⊝ and 𝐗pD

i = ⊝ and 𝐗o
i = ⊝     {2} if Type 4 

 𝐗pD
i ⋂̅ 𝐗s

i ⋖ 𝐗o
i                        else    

  

(3) 

XML Schema Complex Types 
Ontology Classes 

rdf:ID rdfs:subClassOf 

Person_Type Person_Type owl:Thing 

Student_Type Student_Type Person_Type 

Persons (unnamed complex type) NS_Persons_UNType owl:Thing 

Algorithm 1: Variable Binding Algorithm   

Input: Basic Graph Pattern BGP, Initial Bindings 𝐗Sch,  

 Variable Types varTypes, Mappings 𝐌 

Output: Variable Bindings 𝐗v 

1. for each variable v in BGP //initialize the bindings  

2. if v ∈ var(schemaTr(BGP))     //if the variable v are included at schema triples  

3.   𝐗v
0 = 𝐗v

Sch  

//initialize the bindings from the bindings determined the from schema triple processing 

4. else 

5.  𝐗v
0 = {⊝}    //initialize with the “special” value "⊝" 

6. end if 

7. end for 

8. it = 0  //iteration counter initialization  

9. repeat  

11. for each triple t in BGP   //loop over all the BGP triples  

12.  if s ∈ 𝐕 //if the subject is a variable 

13.   𝐗s
i+1 = Bs( t, 𝐗s

i, 𝐗pD
i, 𝐗o

i, 𝐌 )  
//determine the subject bindings of the current iteration (i.e., t+1)  

14.  end if  

15.  if p ∈ 𝐕 //if the predicate is a variable 

16.   𝐗p
i+1 = Bp( t, 𝐗s

i, 𝐗p
i, 𝐌, varTypes )   

//determine the predicate bindings of the current iteration (i.e., i+1)  

17.  end if 

18.  if o ∈ 𝐕 //if the object is a variable 

19.   𝐗o
i+1 = Bo( t, 𝐗s

i, 𝐗p
i, 𝐗o

i, 𝐌, varTypes )  
//determine the object bindings of the current iteration (i.e., i+1)  

20.  end if  

21. end for 

22. i = i + 1   //increase the counter  

23   until (∀ v ∈ var(BGP)⇒ 𝐗v
i = 𝐗v

i-1 ) 
//loop until the bindings of the previous iteration are equal with the bindings of this iteration 

24. 24.  return 𝐗v ∀ v ∈ var(BGP) //return all the variable bindings for this basic graph pattern 

Algorithm 2: For or Let XQuery Clause Selection (QF, 𝐑�𝐕�, v ) 

Input: SPARQL query form QF, Return Variables 𝐑�𝐕�, SPARQL variable v 

Output: XQuery Clause Type 

1.    if QF ≠ Ask  

2. if (v ∈ 𝐑�𝐕�) or ( K ∈ 𝐑�𝐕� | K is extension of v )  

3. return Create a For XQuery Clause  

4. else 

5. return Create a Let XQuery Clause  

6. end if 

7. else 

8. return Create a Let XQuery Clause  

9. end if 

For the Select, Construct and
Describe query forms (lines 1∼6 )
the algorithm will create for the
variable v a For XQuery clause
if v is included in the RV or if
any return variable is an exten-
sion (Definition 15) of the variable
v (line 3 ), otherwise it will cre-
ate a Let XQuery clause (line 5 ).
For Ask queries (lines 7∼9 ) that
do not return a solution sequence, and in order to make the generated XQueries more
efficient, the algorithm will create only Let XQuery clauses (line 8 ), in order to check if a
BGP can be matched over XML data.

5.8.3.3 Subject Translation
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Algorithm 1: Predicate Translation ( BGP, QF, 𝐑�𝐕�, bindings ) 

Input: Basic Graph Pattern BGP, SPARQL query form QF,  

  SPARQL Return Variables 𝐑�𝐕�, Variable Bindings bindings 

Output: For or Let XQuery Clause xC 

1. for each triple in BGP 

2. if p ∈ 𝐕�   // If predicate is a variable  

3.  xC.type ← For or Let XQuery Clause Selection ( QF, RV, p )  
 //Create a For or Let XQuery Clause   

4. xC.var ← Np            // Define an XQuery Variable with the same name with the SPARQL Variable p 

5. xC.expr ← $ Ns /x1 union $ Ns /x2 union … union $ Ns /xn , ∀ xi ∈ 𝐗�s≫𝐗�p  
// Set expr equal to the variable corresponding to the triple subject variable suffixed with XPaths that have 

resulted from the 𝐗�s≫𝐗�p operation. The XPath Set. 𝐗�p is the binding XPath Set for the variable p and 𝐗�S 

is the binding XPath Set for the subject s 

6. end if 

7. end for 

8.  return xC 

Algorithm 3: Subject Translation ( BGP, QF, 𝐑�𝐕�, bindings ) 

Input: Basic Graph Pattern BGP, SPARQL query form QF,  

 SPARQL Return Variables 𝐑�𝐕�, Variable Bindings bindings 

Output: For or Let XQuery Clause xC 

1.  for each triple in BGP 

2. if s ∈𝐕�  // If subject is a variable  

3. xC.type ← For or Let XQuery Clause Selection ( QF, 𝐑�𝐕�, s ) 
 //Create a For or Let XQuery Clause   

4. xC.var ← Ns                // Define an XQuery Variable with the name of SPARQL Variable s 

5. xC.expr ← $doc/x1 union $doc/x2 union … union $doc/xn , ∀ xi ∈ 𝐗�s   
  // Set expr equal to the XPath Set of the Subject prefixed with the $doc variable  

 //𝐗�s is the binding XPath Set for the variable s 

6. end if 

7. end for 

10. 8.  return xC 

XML Schema 

Elements & 

Attributes  

Ontology Properties 

Type rdf:ID rdfs:subPropertyOf rdfs:domain rdfs:range 

LastName DTP LastName__xs_string — Person_Type xs:string 

FirstName DTP FirstName__xs_string — Person_Type xs:string 

Age DTP Age__validAgeType — Person_Type validAgeType 

Nachname DTP Nachname__xs_string LastName__xs_string Person_Type xs:string 

Email DTP Email__xs_string — Person_Type xs:string 

SSN DTP SSN__xs_integer — Person_Type xs:integer 

Dept DTP Dept__xs_string — Student_Type xs:string 

Person OP Person__Person_Type — NS_Persons_UNType Person_Type 

Student OP Student__Student_Type — NS_Persons_UNType Student_Type 

Persons  OP Persons__NS_Persons_UNType — owl:Thing NS_Persons_UNType 

The Subject Translation algo-
rithm (Algorithm 3) translates
the subject part of all the triple
patterns of a given BGP to
XQuery expressions. It should be
noted that, for the rest of the
chapter the symbol NX denotes
the name of SPARQL variable X
and the triple patterns are repre-
sented as s p o, where s is the sub-
ject, p the predicate and o the ob-
ject part of the triple pattern.

For each subject s that is a variable (line 2 ), the algorithm creates a For or Let
XQuery clause xC, using the For or Let XQuery Clause Selection algorithm (line 3 ) to
determine the type (i.e., For or Let) of the clause. The XQuery variable xC.var defined
in the XQuery clause being created has the same value with the name of the subject Ns

(i.e., the SPARQL and the XQuery variables have the same name) (line 4 ). The XQuery
expression xC.expr is defined using the variable bindings of the subject Xs and the $doc
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variable (line 5 ). Finally, the algorithm returns the generated For or Let XQuery clause
(line 8 ).

5.8.3.4 Predicate Translation

1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 5: Object Translation ( BGP, QF, 𝐑�𝐕�, bindings, mappings ) 

Input: Basic Graph Pattern BGP, SPARQL query form QF, SPARQL Return Variables 𝐑�𝐕�, Variable Bindings bindings, 

mappings between the ontology and the XML schema mappings 

Output: For or Let XQuery Clause xC 

1. for each triple in BGP 

2. if o ∈ 𝐈�   // If the object is a literal  

3. if p ∈ 𝐕�   // If the predicate is a variable  

4. Create XPredicate over the xC.expr where xC is the For/Let clause created for the predicate p 

5. XPredicate ← [.= "o"] 

6. if Let XQuery Clause created for p 

7. Create “Bindings Assurance Condition” for p   //see “Biding Assurance Condition” Section  

8. end if 

9. else // The predicate is not a variable – it is an IRI  

10. Create XPredicate ∀ xi ∈ 𝐗�s in xC.expr, where xC is the For/Let clause created for the subject s 

11. XPredicate ← [./y1 = "o" or ./y2 = "o" or … or ./yn = "o"] ∀ yi ∈ {xi} ≫ μp
 

 // 𝐗�S is the bindings XPath Set for the subject S and μP is the mappings XPath Set for the property p 
12. end if 

13. else if o ∈ 𝐕�  // If the object is a variable  

14. if p ∈ 𝐕�   // If the predicate is a variable  

15. xC.type ← Create a Let XQuery Clause   

16. xC.var ← No              // Define an XQuery Variable with the name of the SPARQL Variable o 

17. xC.expr ← $ Np     // Set expr equal to the predicate Variable  

18. if Let XQuery Clause created for p 

19. Create “Bindings Assurance Condition” for o    //see “Biding Assurance Condition” Section 

20. end if 

21. else // The predicate is not a variable – it is an IRI  

22. xC.type ← For or Let XQuery Clause Selection ( QF, 𝐑�𝐕�, o )  //Create a For or Let XQuery Clause  

23. xC.var ← No             // Define an XQuery Variable with the name of the SPARQL Variable o 

24. xC.expr ← $ Ns / x1 union $ Ns /x2 union … union $ Ns / xn ∀ xi ∈ 𝐗s ≫ μp  
 // Set expr equal to the variable corresponding to the triple subject suffixed with some of the XPath of the Predicate XPath Set 

 // 𝐗�s is the bindings XPath Set for the subject s and μp is the mappings XPath Set for the property p. 

25. if Let XQuery Clause created for o 

26. Create “Bindings Assurance Condition” for o    //see “Biding Assurance Condition” Section  

27. end if 

28. end if 

29. end if 

30. end for 

31. return xC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4: Predicate Translation ( BGP, QF, 𝐑�𝐕�, bindings ) 

Input: Basic Graph Pattern BGP, SPARQL query form QF,  

  SPARQL Return Variables 𝐑�𝐕�, Variable Bindings bindings 

Output: For or Let XQuery Clause xC 

1. for each triple in BGP 

2. if p ∈ 𝐕�   // If predicate is a variable  

3.  xC.type ← For or Let XQuery Clause Selection ( QF, RV, p )  
 //Create a For or Let XQuery Clause   

4. xC.var ← Np            // Define an XQuery Variable with the same name with the SPARQL Variable p 

5. xC.expr ← $ Ns /x1 union $ Ns /x2 union … union $ Ns /xn , ∀ xi ∈ 𝐗�s≫𝐗�p  
// Set expr equal to the variable corresponding to the triple subject variable suffixed with XPaths that have 

resulted from the 𝐗�s≫𝐗�p operation. The XPath Set. 𝐗�p is the binding XPath Set for the variable p and 𝐗�S 

is the binding XPath Set for the subject s 

6. end if 

7. end for 

8.  return xC 

Algorithm 6: Filter Translation ( BGP ) 

Input: Basic Graph Pattern BGP 

Output: Where XQuery Clause xC or Create XPredicates over 

XQuery clauses 

1. for each Filter in BGP 

2. Translate the SPARQL Operators of the Filter expression 

3. if (Filter is safe )  

4. Create XPredicates for the Filter expressions  

5. else 

6. xC ← Create an XQuery Where Clause Condition 

7. end if 

8. end for 

9. return xC 

Algorithm 7: Construct Return Clause ( BGP, QF, 𝐑�𝐕�, varTypes ) 

Input: Basic Graph Pattern BGP, SPARQL query form QF,  

  SPARQL Return Variables 𝐑�𝐕�, Variable Types varTypes 

Output: Return XQuery Clause xC 

1. if QF = Ask  

2. xC ← return(“yes”)   //Create an XQuery Return clause 

3. else //The query form is not Ask 

 //Create an XQuery Return clause 

4. xC ← return(<Result>  

 <var1>...</var1> , <var2>...<var2>,…,<vari>...</vari></Result>)  

∀ vari ∈ 𝐑�𝐕� ⋂ var(BGP) 
  // Each Return Variable included in the given BGP is inserted in the XQuery return clause 

5. ∀ vari ∈ 𝐑�𝐕� ⋂ var(BGP) use the varTypes to  

determine the result form of vari  

6. end if 

7. return xC 

The Predicate Translation al-
gorithm (Algorithm 4) trans-
lates the predicate part of all
the triple patterns of a given
BGP to XQuery expressions.
For each predicate p that is a
variable (line 2 ), the algorithm
creates a For or Let XQuery
clause xC, using the For or Let
XQuery Clause Selection Algo-
rithm (line 3 ) to determine the
type (i.e., For or Let) of the
clause. The XQuery variable
xC.var defined in the XQuery clause being created has the same value with the name
of the predicate Np (line 4 ). The XQuery expression xC.expr is defined using: (a) the
variable bindings of the predicate Xp; (b) the variable bindings of the subject Xs; (c)
the XQuery variable $Ns that represents the subject of the triple; and (d) the extension
relation. xC.expr4 associates the subject and predicate bindings (line 5 ). Finally, the
algorithm returns the generated For or Let XQuery clause (line 8 ).

5.8.3.5 Object Translation

The Object Translation algorithm (Algorithm 5) translates the object part of all the
triple patterns of a given BGP to XQuery expressions. For the objects o that are lit-
erals (lines 2∼12 ), the algorithm creates XPredicates in order to translate them. If the
predicate p of the triple is a variable, the XPredicate restriction is applied to the (For or

Let) XQuery clause created during the translation of the predicate variable (lines 3∼5 ). If
the predicate is not a variable, the appropriate restrictions using XPredicates are applied
to the (For or Let) XQuery clause, created during the translation of the subject s of the
triple (lines 9∼12 ).

For the objects o that are variables (lines 13∼29 ), if the predicate p is also a variable
(lines 14∼21 ) the algorithm creates a Let XQuery clause (lines 15∼17 ), in order to assign
the predicate XQuery variable to the XQuery variable of the object. If the predicate is an
IRI (lines 21∼28 ), the algorithm creates a For or Let XQuery clause xC using the For or
Let XQuery Clause Selection Algorithm (line 22 ) to determine the type (i.e., For or Let)
of the clause. In this case, the algorithm uses the variable bindings of the subject Xs,
the mapping µp of the property defined in the predicate part and the extension relation
(Definition 15) for triple patterns, in order to associate the subject, the predicate and the
object bindings (line 24 ).

Binding Assurance Condition. According to the SPARQL semantics, all the variables
used in a BGP must be bound for all the solutions in the solution sequence. That is,
RDF terms must be assigned to all the variables in all the solutions. In the BGP2XQuery
translation, this is not always guaranteed when Let XQuery clauses are used to translate
SPARQL variables. In these cases, we must check if a value has been bound to each variable
(lines 7, 19, 26). In order to perform this check, we exploit the XQuery function exists( ),
which allows checking the assignment of some value to a variable. A Binding Assurance
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Algorithm 5: Object Translation ( BGP, QF, 𝐑�𝐕�, bindings, mappings ) 

Input: Basic Graph Pattern BGP, SPARQL query form QF, SPARQL Return Variables 𝐑�𝐕�, Variable Bindings bindings, 

mappings between the ontology and the XML schema mappings 

Output: For or Let XQuery Clause xC 

1. for each triple in BGP 

2. if o ∈ 𝐈�   // If the object is a literal  

3. if p ∈ 𝐕�   // If the predicate is a variable  

4. Create XPredicate over the xC.expr where xC is the For/Let clause created for the predicate p 

5. XPredicate ← [.= "o"] 

6. if Let XQuery Clause created for p 

7. Create “Bindings Assurance Condition” for p   //see “Biding Assurance Condition” Section  

8. end if 

9. else // The predicate is not a variable – it is an IRI  

10. Create XPredicate ∀ xi ∈ 𝐗�s in xC.expr, where xC is the For/Let clause created for the subject s 

11. XPredicate ← [./y1 = "o" or ./y2 = "o" or … or ./yn = "o"] ∀ yi ∈ {xi} ≫ μp
 

 // 𝐗�S is the bindings XPath Set for the subject S and μP is the mappings XPath Set for the property p 
12. end if 

13. else if o ∈ 𝐕�  // If the object is a variable  

14. if p ∈ 𝐕�   // If the predicate is a variable  

15. xC.type ← Create a Let XQuery Clause   

16. xC.var ← No              // Define an XQuery Variable with the name of the SPARQL Variable o 

17. xC.expr ← $ Np     // Set expr equal to the predicate Variable  

18. if Let XQuery Clause created for p 

19. Create “Bindings Assurance Condition” for o    //see “Biding Assurance Condition” Section 

20. end if 

21. else // The predicate is not a variable – it is an IRI  

22. xC.type ← For or Let XQuery Clause Selection ( QF, 𝐑�𝐕�, o )  //Create a For or Let XQuery Clause  

23. xC.var ← No             // Define an XQuery Variable with the name of the SPARQL Variable o 

24. xC.expr ← $ Ns / x1 union $ Ns /x2 union … union $ Ns / xn ∀ xi ∈ 𝐗s ≫ μp  
 // Set expr equal to the variable corresponding to the triple subject suffixed with some of the XPath of the Predicate XPath Set 

 // 𝐗�s is the bindings XPath Set for the subject s and μp is the mappings XPath Set for the property p. 

25. if Let XQuery Clause created for o 

26. Create “Bindings Assurance Condition” for o    //see “Biding Assurance Condition” Section  

27. end if 

28. end if 

29. end if 

30. end for 

31. return xC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4: Predicate Translation ( BGP, QF, 𝐑�𝐕�, bindings ) 

Input: Basic Graph Pattern BGP, SPARQL query form QF,  

  SPARQL Return Variables 𝐑�𝐕�, Variable Bindings bindings 

Output: For or Let XQuery Clause xC 

1. for each triple in BGP 

2. if p ∈ 𝐕�   // If predicate is a variable  

3.  xC.type ← For or Let XQuery Clause Selection ( QF, RV, p )  
 //Create a For or Let XQuery Clause   

4. xC.var ← Np            // Define an XQuery Variable with the same name with the SPARQL Variable p 

5. xC.expr ← $ Ns /x1 union $ Ns /x2 union … union $ Ns /xn , ∀ xi ∈ 𝐗�s≫𝐗�p  
// Set expr equal to the variable corresponding to the triple subject variable suffixed with XPaths that have 

resulted from the 𝐗�s≫𝐗�p operation. The XPath Set. 𝐗�p is the binding XPath Set for the variable p and 𝐗�S 

is the binding XPath Set for the subject s 

6. end if 

7. end for 

8.  return xC 

Algorithm 6: Filter Translation ( BGP ) 

Input: Basic Graph Pattern BGP 

Output: Where XQuery Clause xC or Create XPredicates over 

XQuery clauses 

1. for each Filter in BGP 

2. Translate the SPARQL Operators of the Filter expression 

3. if (Filter is safe )  

4. Create XPredicates for the Filter expressions  

5. else 

6. xC ← Create an XQuery Where Clause Condition 

7. end if 

8. end for 

9. return xC 

Algorithm 7: Construct Return Clause ( BGP, QF, 𝐑�𝐕�, varTypes ) 

Input: Basic Graph Pattern BGP, SPARQL query form QF,  

  SPARQL Return Variables 𝐑�𝐕�, Variable Types varTypes 

Output: Return XQuery Clause xC 

1. if QF = Ask  

2. xC ← return(“yes”)   //Create an XQuery Return clause 

3. else //The query form is not Ask 

 //Create an XQuery Return clause 

4. xC ← return(<Result>  

 <var1>...</var1> , <var2>...<var2>,…,<vari>...</vari></Result>)  

∀ vari ∈ 𝐑�𝐕� ⋂ var(BGP) 
  // Each Return Variable included in the given BGP is inserted in the XQuery return clause 

5. ∀ vari ∈ 𝐑�𝐕� ⋂ var(BGP) use the varTypes to  

determine the result form of vari  

6. end if 

7. return xC 

Condition for a variable w corresponds to a definition of the form “exists($w) = true” in
the XQuery Where clause.

5.8.3.6 Filter Translation

The Filter Translation algorithm (Algorithm 6) translates the SPARQL FILTERs that
may be contained in a given BGP into XQuery expressions. A straightforward approach
for handing SPARQL Filters would be to translate Filter expressions as conditions ex-
pressed in XQuery Where clauses. However, this approach would result in inefficient
XQuery expressions, since the Filter conditions are evaluated at the final stage of the
query processing.
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Algorithm 5: Object Translation ( BGP, QF, 𝐑�𝐕�, bindings, mappings ) 

Input: Basic Graph Pattern BGP, SPARQL query form QF, SPARQL Return Variables 𝐑�𝐕�, Variable Bindings bindings, 

mappings between the ontology and the XML schema mappings 

Output: For or Let XQuery Clause xC 

1. for each triple in BGP 

2. if o ∈ 𝐈�   // If the object is a literal  

3. if p ∈ 𝐕�   // If the predicate is a variable  

4. Create XPredicate over the xC.expr where xC is the For/Let clause created for the predicate p 

5. XPredicate ← [.= "o"] 

6. if Let XQuery Clause created for p 

7. Create “Bindings Assurance Condition” for p   //see “Biding Assurance Condition” Section  

8. end if 

9. else // The predicate is not a variable – it is an IRI  

10. Create XPredicate ∀ xi ∈ 𝐗�s in xC.expr, where xC is the For/Let clause created for the subject s 

11. XPredicate ← [./y1 = "o" or ./y2 = "o" or … or ./yn = "o"] ∀ yi ∈ {xi} ≫ μp
 

 // 𝐗�S is the bindings XPath Set for the subject S and μP is the mappings XPath Set for the property p 
12. end if 

13. else if o ∈ 𝐕�  // If the object is a variable  

14. if p ∈ 𝐕�   // If the predicate is a variable  

15. xC.type ← Create a Let XQuery Clause   

16. xC.var ← No              // Define an XQuery Variable with the name of the SPARQL Variable o 

17. xC.expr ← $ Np     // Set expr equal to the predicate Variable  

18. if Let XQuery Clause created for p 

19. Create “Bindings Assurance Condition” for o    //see “Biding Assurance Condition” Section 

20. end if 

21. else // The predicate is not a variable – it is an IRI  

22. xC.type ← For or Let XQuery Clause Selection ( QF, 𝐑�𝐕�, o )  //Create a For or Let XQuery Clause  

23. xC.var ← No             // Define an XQuery Variable with the name of the SPARQL Variable o 

24. xC.expr ← $ Ns / x1 union $ Ns /x2 union … union $ Ns / xn ∀ xi ∈ 𝐗s ≫ μp  
 // Set expr equal to the variable corresponding to the triple subject suffixed with some of the XPath of the Predicate XPath Set 

 // 𝐗�s is the bindings XPath Set for the subject s and μp is the mappings XPath Set for the property p. 

25. if Let XQuery Clause created for o 

26. Create “Bindings Assurance Condition” for o    //see “Biding Assurance Condition” Section  

27. end if 

28. end if 

29. end if 

30. end for 

31. return xC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4: Predicate Translation ( BGP, QF, 𝐑�𝐕�, bindings ) 

Input: Basic Graph Pattern BGP, SPARQL query form QF,  

  SPARQL Return Variables 𝐑�𝐕�, Variable Bindings bindings 

Output: For or Let XQuery Clause xC 

1. for each triple in BGP 

2. if p ∈ 𝐕�   // If predicate is a variable  

3.  xC.type ← For or Let XQuery Clause Selection ( QF, RV, p )  
 //Create a For or Let XQuery Clause   

4. xC.var ← Np            // Define an XQuery Variable with the same name with the SPARQL Variable p 

5. xC.expr ← $ Ns /x1 union $ Ns /x2 union … union $ Ns /xn , ∀ xi ∈ 𝐗�s≫𝐗�p  
// Set expr equal to the variable corresponding to the triple subject variable suffixed with XPaths that have 

resulted from the 𝐗�s≫𝐗�p operation. The XPath Set. 𝐗�p is the binding XPath Set for the variable p and 𝐗�S 

is the binding XPath Set for the subject s 

6. end if 

7. end for 

8.  return xC 

Algorithm 6: Filter Translation ( BGP ) 

Input: Basic Graph Pattern BGP 

Output: Where XQuery Clause xC or Create XPredicates over 

XQuery clauses 

1. for each Filter in BGP 

2. Translate the SPARQL Operators of the Filter expression 

3. if (Filter is safe )  

4. Create XPredicates for the Filter expressions  

5. else 

6. xC ← Create an XQuery Where Clause Condition 

7. end if 

8. end for 

9. return xC 

Algorithm 7: Construct Return Clause ( BGP, QF, 𝐑�𝐕�, varTypes ) 

Input: Basic Graph Pattern BGP, SPARQL query form QF,  

  SPARQL Return Variables 𝐑�𝐕�, Variable Types varTypes 

Output: Return XQuery Clause xC 

1. if QF = Ask  

2. xC ← return(“yes”)   //Create an XQuery Return clause 

3. else //The query form is not Ask 

 //Create an XQuery Return clause 

4. xC ← return(<Result>  

 <var1>...</var1> , <var2>...<var2>,…,<vari>...</vari></Result>)  

∀ vari ∈ 𝐑�𝐕� ⋂ var(BGP) 
  // Each Return Variable included in the given BGP is inserted in the XQuery return clause 

5. ∀ vari ∈ 𝐑�𝐕� ⋂ var(BGP) use the varTypes to  

determine the result form of vari  

6. end if 

7. return xC 

Therefore, we attempt to provide
an efficient Filter translation algorithm
by applying the Filter restrictions ear-
lier, when this is possible. The ear-
lier the Filter conditions are applied the
more efficient XQuery expressions are
constructed. The conditions reduce the
size of the evaluated data which are go-
ing to be used in the later stages of the
query processing, similarly to the predi-
cate pushdown technique which is used in
the query optimization context.
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The early evaluation of the Filter expressions in XQuery can be achieved using XPred-
icates. This way, the Filter conditions are applied when the XPath expressions are evalu-
ated. However, not all the Filter expressions can be expressed as XPredicates conditions.
There exist “special” cases, where the Filter expressions can not be evaluated in an earlier
stage, because of the SPARQL variables that occur inside the Filter expression. In these
cases the Filters are translated as conditions expressed in XQuery Where clauses. These
“special” cases are known as not safe Filter expressions (Definition 19) and are discussed
below.

Safe Filter. There are cases, where the evaluation of Filter expressions is not valid under
the evaluation function semantics (Definition 17). These “special” cases are identified by
the usage of the variables inside the Filter expression and the graph patterns.

Definition 19. (Safe Filter Expressions) A Filter expression R is safe if for Filter
expressions of the form P FILTER R, it holds that, all the variables that occur in R
also occur in P (i.e., var(R) ⊆ var(P ) ) [304].

In case of existence of Filter expressions which are not safe, the evaluation function of
the SPARQL queries has to be modified in comparison to the standard SPARQL evaluation
semantics. As an example, consider the following pattern: (?x p1 ?y) OPT ((?x p2 ?z)
FILTER (?y =?z)). Based on the evaluation function, the expression (?x p2 ?z)
FILTER (?y =?z) is evaluated first. However, the variable ?y inside the Filter expres-
sion does not exist in left side pattern (i.e., ?x p2 ?z), thus, this evaluation will produce
an ambiguous result. Our translation method overcomes this issue by evaluating the Fil-
ter expression as an XQuery Where clause conditions, applied after the graph pattern
(translation and) evaluation.

Filter Expressions Operators. The SPARQL query language provides several unary
and binary operations which can be used inside the Filter expressions. Some of these
operators (e.g., &&, ∣∣, !, =, ≤, ≥, +, regex, bound) can be mapped directly to XQuery
built-in functions and operators, whereas for other operators (e.g., sameTerm, lang)
XQuery functions have to be implemented in order to simulate them. Finally, a few
SPARQL operators can not be supported in the XQuery language. In particular, the
isBlank SPARQL operator can not be implemented for the XML data model, since the
blank node notion is not defined in XML. In addition, it is very complex to evaluate the
isIRI, isLiteral and datatype SPARQL operators over XML data. The result of these
operators is difficult and inefficient to be determined on-the-fly through the evaluation of
the XQuery expressions over XML data. This can only be achieved via a complex and a
large sequence of XQuery if – if else conditions. The if – if else conditions will exploit
the mappings in order to evaluate the above operators, resulting in inefficient XQuery
expressions. However, the results of these operators can be determined after the XQuery
evaluation, by processing the return results and the mappings.

Filter Evaluation. The SPARQL query language supports three-valued logic (i.e., True,
False and Error) for Filter expression evaluation. Instead, the XQuery query language
supports two-valued logic or Boolean logic (i.e., True and False). In order for our method
to bridge this difference, based on the semantics presented at [314] and [311], the SPARQL
Error value is mapped to the XQuery False value, while, the SPARQL Error value could be
easily supported by our translation by exploiting XQuery if – if else conditions through-
out the Filter expression translation. These conditions would check for errors that have
occurred during the evaluation of the XQuery Where clause conditions and would return
the Error value. A common SPARQL error example occurs when unbound variables exist
inside the Filter expression.
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5.8.3.7 Return Clause Construction
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Algorithm 5: Object Translation ( BGP, QF, 𝐑�𝐕�, bindings, mappings ) 

Input: Basic Graph Pattern BGP, SPARQL query form QF, SPARQL Return Variables 𝐑�𝐕�, Variable Bindings bindings, 

mappings between the ontology and the XML schema mappings 

Output: For or Let XQuery Clause xC 

1. for each triple in BGP 

2. if o ∈ 𝐈�   // If the object is a literal  

3. if p ∈ 𝐕�   // If the predicate is a variable  

4. Create XPredicate over the xC.expr where xC is the For/Let clause created for the predicate p 

5. XPredicate ← [.= "o"] 

6. if Let XQuery Clause created for p 

7. Create “Bindings Assurance Condition” for p   //see “Biding Assurance Condition” Section  

8. end if 

9. else // The predicate is not a variable – it is an IRI  

10. Create XPredicate ∀ xi ∈ 𝐗�s in xC.expr, where xC is the For/Let clause created for the subject s 

11. XPredicate ← [./y1 = "o" or ./y2 = "o" or … or ./yn = "o"] ∀ yi ∈ {xi} ≫ μp
 

 // 𝐗�S is the bindings XPath Set for the subject S and μP is the mappings XPath Set for the property p 
12. end if 

13. else if o ∈ 𝐕�  // If the object is a variable  

14. if p ∈ 𝐕�   // If the predicate is a variable  

15. xC.type ← Create a Let XQuery Clause   

16. xC.var ← No              // Define an XQuery Variable with the name of the SPARQL Variable o 

17. xC.expr ← $ Np     // Set expr equal to the predicate Variable  

18. if Let XQuery Clause created for p 

19. Create “Bindings Assurance Condition” for o    //see “Biding Assurance Condition” Section 

20. end if 

21. else // The predicate is not a variable – it is an IRI  

22. xC.type ← For or Let XQuery Clause Selection ( QF, 𝐑�𝐕�, o )  //Create a For or Let XQuery Clause  

23. xC.var ← No             // Define an XQuery Variable with the name of the SPARQL Variable o 

24. xC.expr ← $ Ns / x1 union $ Ns /x2 union … union $ Ns / xn ∀ xi ∈ 𝐗s ≫ μp  
 // Set expr equal to the variable corresponding to the triple subject suffixed with some of the XPath of the Predicate XPath Set 

 // 𝐗�s is the bindings XPath Set for the subject s and μp is the mappings XPath Set for the property p. 

25. if Let XQuery Clause created for o 

26. Create “Bindings Assurance Condition” for o    //see “Biding Assurance Condition” Section  

27. end if 

28. end if 

29. end if 

30. end for 

31. return xC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4: Predicate Translation ( BGP, QF, 𝐑�𝐕�, bindings ) 

Input: Basic Graph Pattern BGP, SPARQL query form QF,  

  SPARQL Return Variables 𝐑�𝐕�, Variable Bindings bindings 

Output: For or Let XQuery Clause xC 

1. for each triple in BGP 

2. if p ∈ 𝐕�   // If predicate is a variable  

3.  xC.type ← For or Let XQuery Clause Selection ( QF, RV, p )  
 //Create a For or Let XQuery Clause   

4. xC.var ← Np            // Define an XQuery Variable with the same name with the SPARQL Variable p 

5. xC.expr ← $ Ns /x1 union $ Ns /x2 union … union $ Ns /xn , ∀ xi ∈ 𝐗�s≫𝐗�p  
// Set expr equal to the variable corresponding to the triple subject variable suffixed with XPaths that have 

resulted from the 𝐗�s≫𝐗�p operation. The XPath Set. 𝐗�p is the binding XPath Set for the variable p and 𝐗�S 

is the binding XPath Set for the subject s 

6. end if 

7. end for 

8.  return xC 

Algorithm 6: Filter Translation ( BGP ) 

Input: Basic Graph Pattern BGP 

Output: Where XQuery Clause xC or Create XPredicates over 

XQuery clauses 

1. for each Filter in BGP 

2. Translate the SPARQL Operators of the Filter expression 

3. if (Filter is safe )  

4. Create XPredicates for the Filter expressions  

5. else 

6. xC ← Create an XQuery Where Clause Condition 

7. end if 

8. end for 

9. return xC 

Algorithm 7: Construct Return Clause ( BGP, QF, 𝐑�𝐕�, varTypes ) 

Input: Basic Graph Pattern BGP, SPARQL query form QF,  

  SPARQL Return Variables 𝐑�𝐕�, Variable Types varTypes 

Output: Return XQuery Clause xC 

1. if QF = Ask  

2. xC ← return(“yes”)   //Create an XQuery Return clause 

3. else //The query form is not Ask 

 //Create an XQuery Return clause 

4. xC ← return(<Result>  

 <var1>...</var1> , <var2>...<var2>,…,<vari>...</vari></Result>)  

∀ vari ∈ 𝐑�𝐕� ⋂ var(BGP) 
  // Each Return Variable included in the given BGP is inserted in the XQuery return clause 

5. ∀ vari ∈ 𝐑�𝐕� ⋂ var(BGP) use the varTypes to  

determine the result form of vari  

6. end if 

7. return xC 

The Construct Return Clause al-
gorithm (Algorithm 7) builds the
XQuery Return Clause. For Ask
SPARQL queries (lines 1∼2 ), the
algorithm creates an XQuery Re-
turn clause which, for efficiency
reasons, includes only the literal
“yes” (line 2 ). For the other
query forms (i.e., Select, Con-
struct, Describe) (lines 3∼6 ), the
algorithm creates an XQuery Re-
turn clause xC that includes all
the return variables (RV) used in
the BGP (line 4 ). The syntax of the return clause allows (using markup tags) the distinc-
tion of each solution in the solution sequence, as well as the distinction of the corresponding
values for each variable. The structure of the return results allows the SPARQL operators
AND and OPT to be applied over the results returned by different XQuery Return clauses.
Finally the algorithm, for each variable included in the return clause, and based on the
variable types (varTypes), uses the appropriate function to format the result form of the
variable (Section 5.6.2.2) and returns the generated return XQuery clause (line 7 ).

5.8.4 Discussion

The Graph Pattern Translation is the most complex phase of the SPARQL to XQuery
translation process. The noteworthy issues that have arisen throughout this phase are
outlined and discussed here.

Creating XQuery Clauses. Throughout the XQuery clause creation we had to overcome
several difficulties, involving the accurate solution sequence cardinality, the association of
different XQuery variables and the binding assurance.

Associating Different XQuery Variables. Throughout the creation of the For/Let XQuery
clauses, the BGP2XQuery algorithm (Section 5.8.3) exploits the extension relation (Def-
inition 15) in order to achieve the association of different XQuery variables. For ex-
ample, consider the case where the XQuery variable $per that refers to Persons (corre-
sponding to the XPath: /Persons/Person) should be associated with the XQuery vari-
able $fn, which refers to the First Names of the Persons (corresponding to the XPath:
/Persons/Person/FirstName). This can be accomplished using For XQuery clauses
and defining the XQuery variable $fn as an extension of the XQuery variable $per, i.e.,
for $per in /Persons/Person for $fn in $per/FirstName.
Accurate Solution Sequence Cardinality. An interesting issue in the graph pattern transla-
tion is to ensure the generation of the appropriate solution sequence based on the SPARQL
semantics. In our translation, this has been accomplished by the For or Let XQuery Clause
Selection algorithm (Section 5.8.3.2) which determines the creation of the appropriate For
or Let XQuery clauses.

Binding Assurance. In order to guarantee that all the variables defined in a basic graph
pattern are bound in all the solutions, we have developed a binding condition assurance
mechanism. The binding assurance mechanism exploits the XQuery function exists( )
when it is required to guarantee the assignment of a value to the XQuery variables (Sec-
tion 5.8.3.5).
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Implementing SPARQL Operators. Several issues have arisen throughout the imple-
mentation of the SPARQL algebra operations (i.e., UNION, AND, OPT and FILTER)
using XQuery expressions.

Well Designed Graph Patterns vs. Non-Well Designed Graph Patterns. The existence
of non-well designed graph patterns, as well as the SPARQL operator semantics, which
define the Join (i.e., AND) and Left Outer Join (i.e., OPT) operators as non null-rejecting
forced us to handle the well designed in a different way from the non-well designed graph
patterns. This way we have provided an efficient implementation for the former. In this
implementation the intermediate results are used in the XQuery expression in order to
reduce the computation cost (Section 5.8.3.1).

Efficient Join & Condition Implementation. The efficient implementation of some basic
SPARQL query features using XQuery expressions is an interesting part of the translation.
Consider as an example the translation of the joins occurring between the triple patterns
(expressed with “.” in the SPARQL syntax) in the Basic Graph patterns. In the context of
BGPs, the joins are implemented efficiently by the BGP2XQuery algorithm (Section 5.8.3)
that associates For/Let XQuery clauses that resemble a nested loop join. In addition,
throughout the For/Let XQuery clause creation, the BGP2XQuery algorithm exploits the
extension relation (Definition 15) in order to use the already evaluated XQuery values
providing a more efficient join implementation. Another issue, is the translation of the
literal parts of the triple patterns (Section 5.8.3.5), which are translated as conditions over
the For/Let XQuery clauses using XPredicates. In this way, the conditions imposed by
the existence of the literals are applied early in the XQuery evaluation plan, resulting in
a more efficient XQuery evaluation.

Solution Structure. Remarkable issues are the need of the distinction of the different
solutions in the solution sequence, as well as the distinction of the corresponding values
for each variable in each solution. In this way, the SPARQL solution sequence modifiers
and algebra operators can be applied on the results produced by the XQuery expressions.
The above issues have been resolved by exploiting “special” markup tags (e.g., <Result>)
throughout the creation of the XQuery Return clause (Section 5.8.3.7).

Handling SPARQL Filters. Several interesting issues resulted from the translation of
the Filter expressions, including handling the safe and non-safe Filter expressions, mapping
the SPARQL three-valued logic to the XQuery two-valued logic, translating the SPARQL
operators used in the Filter expressions, etc.

Safe vs. non-Safe Filter Expressions. In order to provide efficient Filter translation, we
try to evaluate the Filter Expressions in an early stage of the XQuery evaluation. This
is achieved using XPredicates that apply the Filter conditions over the For/Let XQuery
clauses. However, there are “special” cases, where the Filter Expressions can not be evalu-
ated in an earlier stage, due to the SPARQL variables that occur in the Filter Expression.
These cases are known as not safe Filter expressions (Definition 19). They occur because
of the flexibility of the SPARQL syntax in expressing queries. In order to overcome this
issue, our translation method evaluates the conditions defined in these Filter expressions
at the end (using Where clauses), in order to guarantee that the variables occurring in the
Filter expression have already been evaluated (Section 5.8.3.6).

Implementing Filter Expression Operators. Regarding the SPARQL operators included in
Filter expressions, most of them can be directly mapped to XQuery built-in functions and
operators (e.g., regex, &&, ∣∣, +). However, for some “more complex” SPARQL operators
(e.g., sameTerm, lang, etc.) we have developed native XQuery functions that simulate
them. Finally, a few SPARQL operators (e.g., isBlank) can not be implemented in the
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XQuery language, since they are not supported by the XML data model (Section 5.8.3.6).

Three-valued Logic vs. Two-valued Logic. The evaluation of Filter expressions in the
SPARQL query language is based on three-valued logic (i.e., True, False and Error),
while the XQuery query language supports Boolean logic (i.e., True and False). An issue
is to handle and relate the three-valued logic using the XQuery Boolean logic. In our
translation, for efficiency reasons, the SPARQL Error value has been mapped to the False
XQuery value. However, it is possible, but inefficient, to support the Error value in the
generated XQuery expressions (Section 5.8.3.6).

5.9 Solution Sequence Modifiers & Query Forms

5.9.1 Translating Solution Sequence Modifiers

This section describes the Solution Sequence Modifier translation phase, which translates
the SPARQL Solution Sequence Modifiers (SSMs) into XQuery expressions. The SSMs
that may be contained in a SPARQL query are translated using XQuery clauses and built-
in functions. The SSMs supported by the current SPARQL specification are the Distinct,
Reduced, Order By, Limit, and Offset solution sequence modifiers.

Table 5.8 summarizes the XQuery expressions and built-in functions that are used for
the translation of the solution sequence modifiers. Let xEGP be the XQuery expressions
produced from the graph pattern (GP) translation. In Table 5.8, $Results is an XQuery
variable, which is bound to the solution sequence produced by the XQuery expressions
xEGP (i.e., let $Results ∶= (xEGP )), n, m are positive integers and ?x, ?y are SPARQL
variables.

Table 5.8: Translation of the SPARQL Solutions Sequence Modifiers in XQuery expressions

Solution Sequence Modifier XQuery Expressions

LIMIT n return( $Results[position( )<= n ] )

OFFSET n return( $Results[position( )> n ] )

LIMIT n && OFFSET m return( $Results[ position( )>m and position( )<= n +m ] )

ORDER BY DESC(?x) ASC(?y) for $res in $Results

order by $res/x descending empty least, $res/y empty least

return $res

Solution Sequence Modifier Priorities. If more than one solution modifiers are de-
clared in the given SPARQL query, the order in which they are applied during the trans-
lation phase is the following (the order is compatible with the SPARQL query language
semantics): (a) Order By, (b) Distinct / Reduced and (c) Offset / Limit.

5.9.2 Translating Query Forms

The Query Form Translation is the final phase of the SPARQL to XQuery translation. The
current specification of the SPARQL query language supports four query forms: Select,
Ask, Construct and Describe. According to the query form, the type of the returned
results is different. In particular, after the translation of any solution sequence modifier,
the generated XQuery is enhanced with the appropriate, for this query form, XQuery
expressions in order to form the appropriate type of the results (e.g., an RDF graph, a
result sequence, or a Boolean value).

Select Queries. The Select SPARQL queries return (all or a subset of) the variables
bound in a query pattern match. To simulate this query form in XQuery, the results are
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returned as sequences of XML elements created by the XQuery Return clauses (see the
Build Return Clause Algorithm, Section 5.8.3.7). This sequence should be contained in
a root element in order to be a valid XML document. Thus, we create a root element
“Results” containing the result sets produced by the XQuery return clause.

Ask Queries. The Ask SPARQL queries return a Boolean value (yes or no), indicating
whether a query pattern is matched in a dataset or not. The cardinality of the solution
for Ask queries is one (i.e., the value yes/no should be returned once). Thus, we check
for the existence of any result and we return “yes” if one or more results exist and “no”
otherwise.

Construct Queries. The Construct SPARQL queries return an RDF graph structured
according to the graph template of the query. The result is an RDF graph formed by
taking each query solution in the solution sequence, substituting the variables in the graph
template, and combining the triples into a single RDF graph using the union operation.

In order to implement the semantics for the unbound variables, for each triple pattern
of the graph template that contains variables we check if any one of these variables is
unbound. In that case, the triple is not returned. Moreover, in order to enforce the
semantics of the Blank node naming conventions in the RDF graph, we exploited an
XQuery positional variable (defined using “at” term in XQuery syntax).

Describe Queries. The Describe SPARQL queries return an RDF graph which provides
a “description” of the matching resources. The “description” semantics are not determined
by the current SPARQL specification, however they are determined by the SPARQL query
engines (note that several SPARQL engines do not support Describe queries). As a result,
we provide an “approximate” support for this query form, by evaluating the Describe
SPARQL query against the source ontology and then translating it as a Select query. The
overall result is a combination of the RDF graph returned by the SPARQL Describe query
and the result sequence returned by the translated XQuery.

2 
 

 

 

 

 let $Results := (xEQ )  if QF = Select 

 return ( <Results> $Results </Results> ) 

  

 

 let $Results := (xEQ)  if QF = Ask 

 return ( if ( empty ($Results) ) then “no” else “yes” ) 

 

QX  = 

let $Results := (xEQ)  if QF = Construct  

for $res at $iter in $Results  

return ( if ( exists( $res/x ) ) then 

        concat ( concat ( “_:a” , $iter ), “ iri:property ” , string( $res/x ) , “.” ) 

 else ( ) 

        if ( exists( $res/p ) and exists( $res/y ) ) then 

        concat ( concat( “_:a” , $iter ),  string( $res/p ) , string( $res/y ) , “.” ) 

 else ( ) ) 

 

 

 

(5) 

 Initial XQuery Expressions Rewritten XQuery Expressions 

for/let $v1 in/:= expr1       for/let $v1 in/:= expr1[./xp1] 

 …  … 

let $v2 := $v1/xp1     for/let $v3  in/:= $v1/xp1/xp2 

 …  … 

for/let $v3  in/:= $v2/xp2     where  ( …   funcX($v1/xp1) …  ) 

 …       return ( …  $v1/xp1 … ) 

where  ( exists($v2) … funcX($v2) … )  

return ( …  $v2 … ) 
 

 Initial XQuery Expressions Rewritten XQuery Expressions 

for $v1 in expr1       for $v2 in expr1/xp1 

 …  … 

for $v2 in $v1/xp1     where  ( …   funcX(expr1) …  ) 

 …       return ( … ) 

where  ( … funcX($v1) … )  

return ( … ) 

 

 

 

5.9.2.1 Translation Overview

The translation of the query forms described above is outlined in (5), where QX is the set
of the XQuery expressions resulted after the translation of SPARQL query form. Let the
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SPARQL query QS = ⟨QF,GP,SSM⟩, where QF is the query form, GP is the query graph
pattern and SSM the solution sequence modifiers. Let xEQ be the XQuery expressions
produced from the graph pattern (GP ) and solution sequence modifier (SSM) transla-
tion. For the Construct query form (last case in (5)), we consider the graph template:
“ ∶a iri:property ?x. ∶a ?p ?y.”, which consists of two triple patterns and containing the
blank node “ ∶a”.

5.10 XQuery Rewriting/Optimization

It was pointed out in Section 5.5.3 that among the objectives of the proposed SPARQL to
XQuery translation method was the generation of simple XQuery expressions, so that their
correspondence with the SPARQL queries could be easily understood. This has led to the
generation of some inefficient XQuery expressions, but it was expected that the XQuery
optimizer would optimize those queries to achieve better execution performance. However,
we have attempted to use the query optimizer of two XQuery engines with no improvement
to be achieved for any of the queries. This observation led us to develop some XQuery
rewriting rules and integrate them in our Framework. The performance evaluation studies
(Section 5.12) show that they are useful in improving the XQuery performance.

In this section, we introduce a small number of simple rewriting rules aiming to provide
more efficient XQuery expressions. These rules are applied to the XQueries generated from
the SPARQL to XQuery translation. Since the XQuery performance is beyond the scope
of this work, we present here a limited number of simple rules and in the Section 5.12.3
we examine their effect on the XQuery evaluation performance.

5.10.1 Rewriting Rules

The proposed rewriting rules aim at providing more efficient XQuery expressions that ben-
efit from the knowledge of how the XQuery expressions are generated from the SPARQL
to XQuery translation, as well as from the XML Schema semantics. The rules exploit
the aforementioned, in order to remove redundant XQuery clauses and variables, unnest
nested For XQuery clauses and minimize the loops executed by the For XQuery clause.

Note that the rewriting rules that we currently include in the Framework, focus on the
optimization of XQuery expressions generated from the translation of Basic Graph Pat-
terns. Optimization of the XQuery expressions generated from the translation of solution
sequence modifies, algebra operators, etc. are not considered in this work.

The rewriting rules are applied sequentially on the generated XQuery queries. Firstly,
Rule 1 is applied, then Rule 2 is applied on the resulting XQuery query, and finally Rule 3
is applied.

Rewriting Rule 1 [Changing For Clauses to Let]: Let xC be a For XQuery clause, A
be the set of the XML elements and/or attributes corresponding to the XPath expressions
contained in xC.expr. If each of the XML elements/attributes contained in A may appear
at most once, then xC is changed from a For XQuery clause to a Let XQuery clause.
Formally, the Changing For Clauses to Let rule is expressed as:

∀a ∈ A ∶ a.cardinality ∈ [0,1]⇒ xC.type← Let

The element and attribute cardinality can be specified in the XML Schema using
the minOccurs (minimum number of occurrences) and maxOccurs (maximum number of
occurrences) XML Schema declarations. Thus, in our case we examine if the values of the
minOccurs and the maxOccurs declarations are between zero and one. In this case, the
element/attribute can not have multiple values, so a For clause which is going to perform
an iteration over the element/attribute value is meaningless.
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The Changing For Clauses to Let rule is applied on the For XQuery clauses, from the
top to the bottom (or the inverse). Intuitively, this rule exploits the schema information
in order to convert the For in Let clauses in cases where multiple values can not exist.
The objective of this rule is to avoid the unnecessary checks for possible multiple values
performed by the For clauses, in cases where Let clauses can also be used. The use of this
rule results in more Let clauses that may be removed later, when Rule 2 is applied.

Rewriting Rule 2 [Reducing Let Clauses]: Let xCl1 be a Let XQuery clause. If the
variable xCl1.var of the Let clause, is extension (Definition 15) of another XQuery variable
xCl2.var, where xCl2 is a For or Let XQuery Clause. Then the Let clause is removed
and xCl1.var is replaced everywhere with xCl1.epr. In addition, if a Biding Assurance
Condition has been defined for xCl1.var i.e., an exists (xCl1.var) statement in the Where
XQuery clause (Section 5.8.3.5). Then, the exists function is removed and replaced by a
condition over xCl2.expr. The condition is defined using XPredicates and the XPaths of
xCl1.expr.

The Reducing Let Clauses rule is applied iteratively to the Let XQuery clauses, from
the bottom to the top. Intuitively, this rule removes the unnecessary Let clauses that
have been produced from triple pattern translation and can be pruned. The objective
of the rule is to eliminate the unnecessary XQuery clauses and variables. In addition,
in the case of Biding Assurance Condition existence, a predicate pushdown is performed.
In particular, the exists condition placed in the Where XQuery clause is evaluated in an
earlier query processing stage since it is applied to the XPaths using XPath predicates.

Let xp ∈ XP be an XPath expression and expr be a sequence of the form
“xp1 union xp2 union ⋯ union xpn”12. Moreover, $v is an XQuery variable and funcX( )
is a user-defined or built-in XQuery function.

Formally, the Reducing Let Clauses rule is described as:

SPARQL  

Translated XQuery Expressions SPARQL Update 

Operation 
Syntax Template 1 

DELETE DATA 

Delete data{  

   tr 

} 

delete nodes collection("http://dataset...")/xp1 

... 

delete nodes collection("http://dataset...")/xpn 

INSERT DATA 

Insert data{  

   tr  

} 

let $n1 := xn1 
… 
let $nn := xnn 
let $data1 := ($nk, $nm,…)                   // k, m,…  ∈ [1,n] 
… 
let $datap := ($nj, $nv,…)                    // j, y,…  ∈ [1,n] 
let $insert_location1 := collection("http://xmldataset...")/xp1 
… 
let $insert_locationp := collection("http://xmldataset...")/xpp 
return( 
      insert nodes $data1 into $insert_location1 , 
      … 
      insert nodes $datap into $insert_locationp 

) 

DELETE / 

INSERT 

 (a) Delete{  
       trp 
     }Where{ 
       gp 
     }  

 
 (b) Insert{  
       trp 
     }Where{ 

    gp 
     } 

 
 

(c) Delete{  
     trp  
  }Insert{  
     trp  
  }Where{ 
     gp 
  } 

 

(a) 

  let $where_gp := xEW 

  let $delete_gp:= xED ($where_gp) 

  return delete nodes $delete_gp 

 

(c) 

Translate Delete Where same as (a), 

then translate Insert Where same as (b) 

 

(b) let $where_gp := xEW 

  let $insert_location1 := xp1 

  for $it1 in $insert_location1 

  xEI ($where_gp, $it1) 

  return insert nodes into $it1 

  … 

  let $where_gp := xEW 

  let $insert_ location n := xpn 

  for $itn in $insert_locationn 

  xEI ($where_gp, $itn) 

   return insert nodes into $itn 
1 For simplicity, the WITH, GRAPH and USING clauses are omitted.  

 

 

 

 

 

Initial XQuery Expressions Rewritten XQuery Expressions 

for/let $v1 in/:= expr1      for/let $v1 in/:= expr1[./xp1] 

 …   

let $v2 := $v1/xp1     for/let $v3  in/:= $v1/xp1/xp2 

 …   

for/let $v3  in/:= $v2/xp2    where  ( …   funcX($v1/xp1) …  ) 

 …      return ( …  $v1/xp1 … ) 

where  ( exists($v2) … funcX($v2) … )  

return ( …  $v2 … ) 

 

Rewriting Rule 3 [Unnesting For Clauses]: Let xCl1 be a For XQuery clause. If the
variable of the For clause xCl1.var is not a Return Variable (xCl1.var ∉ RV) and only one
XQuery variable xCl2.var is extension (Definition 15) of xCl1.var. Then, the For clause
is removed and xCl1.var is replaced by the xCl1.expr.

The Unnesting For Clauses rule is applied iteratively on the For XQuery clauses,
from the top to the bottom. Intuitively, this rule unnests nested For clauses that can be
expressed as a single For clause. The objective of the rule is to reduce the nested For
clauses, in this way, also some XQuery clauses and variables are removed.

Let xp ∈ XP be an XPath expression and expr be a sequence of the form
“xp1 union xp2 union ⋯ union xpn”. Moreover, $v is an XQuery variable and funcX( )
is a user-defined or built-in XQuery function.

12At this point, it should be reminded that the disjunctions that may occur in epxr have been expressed
as predicates inside the XPath expressions xp.
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Formally, the Unnesting For Clauses rule is described as:

2 
 

 

 

 

 let $Results := (xEQ )  if QF = Select 

 return ( <Results> $Results </Results> ) 

  

 

 let $Results := (xEQ)  if QF = Ask 

 return ( if ( empty ($Results) ) then “no” else “yes” ) 

 

QX  = 

let $Results := (xEQ)  if QF = Construct  

for $res at $iter in $Results  

return ( if ( exists( $res/x ) ) then 

        concat ( concat ( “_:a” , $iter ), “ iri:property ” , string( $res/x ) , “.” ) 

 else ( ) 

        if ( exists( $res/p ) and exists( $res/y ) ) then 

        concat ( concat( “_:a” , $iter ),  string( $res/p ) , string( $res/y ) , “.” ) 

 else ( ) ) 

 

 

 

(5) 

 Initial XQuery Expressions Rewritten XQuery Expressions 

for/let $v1 in/:= expr1       for/let $v1 in/:= expr1[./xp1] 

 …  … 

let $v2 := $v1/xp1     for/let $v3  in/:= $v1/xp1/xp2 

 …  … 

for/let $v3  in/:= $v2/xp2     where  ( …   funcX($v1/xp1) …  ) 

 …       return ( …  $v1/xp1 … ) 

where  ( exists($v2) … funcX($v2) … )  

return ( …  $v2 … ) 
 

 Initial XQuery Expressions Rewritten XQuery Expressions 

for $v1 in expr1       for $v2 in expr1/xp1 

 …  … 

for $v2 in $v1/xp1     where  ( …   funcX(expr1) …  ) 

 …       return ( … ) 

where  ( … funcX($v1) … )  

return ( … ) 

 

 

 5.11 Towards Supporting SPARQL Update Operations

In this section, we briefly describe an extension of the SPARQL2XQuery Framework in the
context of supporting the SPARQL 1.1 update operations [334]. We present how similar
methods and algorithms used in the SPARQL2XQuery Framework can be adopted for the
update operation translation. For instance, graph pattern and triple pattern translation
are also used in the update operation translation.

In order to support SPARQL update operations, we have studied the extension of the
SPARQL to XQuery translation using the recently introduced XQuery Update Facility
[322]. SPARQL 1.1 supports two main categories of update operations: a) Graph up-
date, which includes operations regarding graph additions and removals; and b) Graph
management, which contains “storage-level” operations, e.g., CREATE, DROP, MOVE,
COPY, etc. Our work focuses on the graph update operations, since the storage-level
operations are out of scope of the SPARQL2XQuery Framework working scenario (i.e.,
interoperability/integration scenario).

Considering SPARQL update queries, in the RDB–RDF interoperability scenario,
D2R/Update [158] (a D2R extension) and OntoAccess [207] enable SPARQL update
queries over relational databases. Regarding the XML–RDB–RDF interoperability sce-
nario, the work presented in [31] extends the XSPARQL language [86] in order to support
update queries.

5.11.1 Translating SPARQL Update Queries to XQuery

Table 5.9 presents the SPARQL update operations and summarizes their translation in
XQuery. In particular, there are three main categories of SPARQL update operations a)
Delete Data; b) Insert Data; and c) Delete/Insert. For each update operation, a simplified
SPARQL syntax template is presented, as well as the corresponding XQuery expressions.
In SPARQL context, we assume the following sets, let tr be an RDF triple set, tp a
triple pattern set, trp a set of triples and/or triple patterns, and gp a graph pattern.
Additionally, in XQuery, we denote as xEW , xEI and xED the sets of XQuery expressions
(i.e., FLOWR expressions) that have resulted from the translation of the graph pattern
included in the Where, Insert and Delete SPARQL clauses, respectively. Let xE be a set
of XQuery expressions, xE($v1,$v2, . . .$vn) denote that xE are using (as input) the values
assigned to XQuery variables $v1,$v2, . . .$vn. Finally, xn denotes an XML fragment, i.e.,
a set of XML nodes, and xp denotes an XPath expression.

Delete Data. The Delete Data SPARQL operation removes a set of triples from RDF
graphs. This SPARQL operation can be translated in XQuery using the Delete Nodes
XQuery operation. Specifically, using the predefined mappings, the set of triples tr defined
in the SPARQL Delete Data clause is transformed (using a similar approach such as the
BGP2XQuery algorithm, Section 5.8.3) in a set of XPath expressions XP. For each
xpi ∈ XP an XQuery Delete Nodes operation is defined.
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Table 5.9: Translation of the SPARQL Update Operations in XQuery

SPARQL  

Translated XQuery Expressions SPARQL Update 

Operation 
Syntax Template 1 

DELETE DATA 

Delete data{  

   tr 

} 

delete nodes collection("http://dataset...")/xp1 

... 

delete nodes collection("http://dataset...")/xpn 

INSERT DATA 

Insert data{  

   tr  

} 

let $n1 := xn1 
… 
let $nn := xnn 
let $data1 := ($nk, $nm,…)                   // k, m,…  ∈ [1,n] 
… 
let $datap := ($nj, $nv,…)                    // j, y,…  ∈ [1,n] 
let $insert_location1 := collection("http://xmldataset...")/xp1 
… 
let $insert_locationp := collection("http://xmldataset...")/xpp 
return( 
      insert nodes $data1 into $insert_location1 , 
      … 
      insert nodes $datap into $insert_locationp 

) 

DELETE / 

INSERT 

 (a) Delete{  
       trp 
     }Where{ 
       gp 
     }  

 
 (b) Insert{  
       trp 
     }Where{ 

    gp 
     } 

 
 

(c) Delete{  
     trp  
  }Insert{  
     trp  
  }Where{ 
     gp 
  } 

 

(a) 

  let $where_gp := xEW 

  let $delete_gp:= xED ($where_gp) 

  return delete nodes $delete_gp 

 

(c) 

Translate Delete Where same as (a), 

then translate Insert Where same as (b) 

 

(b) let $where_gp := xEW 

  let $insert_location1 := xp1 

  for $it1 in $insert_location1 

  xEI ($where_gp, $it1) 

  return insert nodes into $it1 

  … 

  let $where_gp := xEW 

  let $insert_ location n := xpn 

  for $itn in $insert_locationn 

  xEI ($where_gp, $itn) 

   return insert nodes into $itn 
1 For simplicity, the WITH, GRAPH and USING clauses are omitted.  

 

 

 

 

 

Initial XQuery Expressions Rewritten XQuery Expressions 

for/let $v1 in/:= expr1      for/let $v1 in/:= expr1[./xp1] 

 …   

let $v2 := $v1/xp1     for/let $v3  in/:= $v1/xp1/xp2 

 …   

for/let $v3  in/:= $v2/xp2    where  ( …   funcX($v1/xp1) …  ) 

 …      return ( …  $v1/xp1 … ) 

where  ( exists($v2) … funcX($v2) … )  

return ( …  $v2 … ) 

 

Insert Data. The Insert Data SPARQL operation, adds a set of new triples in RDF
graphs. This SPARQL operation can be translated in XQuery using the Insert Nodes
XQuery operation. In the Insert Data translation, the set of triples tr defined in SPARQL
are transformed into XML node sets xni, using the predefined mappings. In particular,
a set of Let XQuery clauses is used to build the XML nodes and define the appropriate
node nesting and grouping. Then, the location of the XML node insertion can be easily
determined considering the triples and the mappings. Finally, the constructed nodes are
inserted in their location of insertion using the XQuery Insert nodes clause.

Insert / Delete. The Delete/Insert SPARQL operations are used to remove and/or add
a set of triples from/to RDF graphs, using the bindings that resulted from the evaluation of
the graph pattern defined in the Where clause. According to the SPARQL 1.1 semantics,
the Where clause is the first one that is evaluated. Then, the Delete/Insert clause is applied
over the produced results. Especially, in case, that both Delete and Insert operations
exist, the deletion is performed before the insertion, and the Where clause is evaluated
once. The Delete and the Insert SPARQL operations can be translated to XQuery using
the Delete Nodes and Insert Nodes operations, respectively. In brief, initially the graph
pattern used in the Where clause is translated to XQuery expressions xEW (similarly
as in the GP2XQuery, Section 5.8). Then, the graph pattern used in the Delete/Insert
clause is translated to XQuery expressions xED/xEI (as it is also in the BGP2XQuery,
Section 5.8.3) using also the bindings that resulted from the evaluation of xEW .

5.12 Experimental Analysis

In this section we present the results of the experimental evaluation that we have conducted
on the SPARQL2XQuery Framework using both synthetic and real datasets. The objective
was to evaluate the efficiency of: (a) schema transformation; (b) mapping generation; (c)
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query translation; and (d) query evaluation. We have used several query sets attempting
to cover almost all the SPARQL syntax variations, features and special cases.

The SPARQL2XQuery Framework has been implemented using Java related tech-
nologies (Java 2SE and Jena) on top of the open source, native XML database. The
experimental evaluation was performed on an Intel Xeon processor at 2.00 Ghz, with 16
GB RAM, running Linux and Java 1.6. We have used two native XML Databases (and
their XQuery engines) denoted as “XML Store Y” and “XML Store Z”. In addition, we
have used a memory-based XQuery engine denoted as “Memory-based XQuery Engine”.
For RDF store, we have used the Jena TDB 0.10.1 storage component and the Jena ARQ
2.10.1 SPARQL engine. Finally, for the evaluation of the XS2OWL component we used
two XSLT processors, a freeware XSLT processor denoted as “Freeware XSLT Processor”,
and the XSLT processor that is integrated in a commercial tool, denoted as “Commercial
XSLT Tool ”. Note that, in all experiments, the default configurations for all the software
have been used.

The rest of this section is structured as follows. We discuss the performance of the
schema transformation and mapping generation processes in Section 5.12.1, we examine
the efficiency of the translation process in Section 5.12.2, we present the query evaluation
efficiency in Section 5.12.3 and we provide an evaluation overview in Section 5.12.4.

5.12.1 Schema Transformation & Mapping Generation Performance

In order to evaluate the SPARQL2XQuery Framework, we have used several international
standards from different domains (e.g., Digital Libraries, Cultural Heritage, Multimedia)
that have been expressed in XML Schema. The Persons XML Schema that we have
defined in Section 5.3.2 has also been used. These XML Schemas have been used in order
to evaluate the schema transformation and mapping generation processes. The basic
characteristics (e.g., number of elements, attributes, etc.) of the XML Schemas used in
the evaluation can be found in [84].

In what follows, we present the results of the experiment we conducted in order to
study the schema transformation and mapping generation performance. Both the schema
transformation and the mapping generation processes are off-line processes and are per-
formed once for every XML Schema in the context of first scenario (Querying XML data
based on automatically generated ontologies). Although these processes are off-line and
are performed once for every XML Schema, we can observe from this experiment that we
can characterize them as lightweight processes that take negligible time even for very large
XML Schemas (e.g., schemas with 4000 XML Schema constructs).

In this experiment we have used several international standards that have been ex-
pressed in XML Schema. For each of these XML Schemas, we have used the XS2OWL
component in order to automatically transform the XML Schema in OWL ontologies, mea-
suring the time required for this transformation (Schema Transformation Time). Then,
using the generated Schema ontology and the XML Schema, we measure the time required
for the Mapping Generator component of the SPARQL2XQuery Framework to automati-
cally discover and generate the mappings (Mapping Generation Time).

Table 5.10 presents the Schema Transformation Time and the Mapping Generation
Time for each XML Schema. Notice that the schema transformation time is presented for
both Freeware XSLT Processor and Commercial XSLT Tool. The schema transformation
time mainly depends on: (a) The number of the XML Schema constructs, since this
number corresponds to the number of the transformations performed; and (b) The size of
the XML Schema file, since it should be parsed. Similarly, the mapping generation time
basically depends on: (a) The number of the XML Schema constructs, since this number
equals to the number of the generated mappings; and (b) The size of the XML Schema
and ontology files, since these files should be parsed.
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Table 5.10: Schema Transformation & Mapping Generation Time (msec)

XML Schema
Schema Transformation Time Mapping

Generation

Time
Freeware XSLT

Processor

Commercial

XSLT Tool

Persons (Section 5.3.2) 2.4 17.9 8.7

DBLP ⋆ 62.5 22.5 360.9

METS [6] 58.2 270.5 388.9

Text MD [14] 7.7 45.1 14.5

MPEG-7 [9] 730.7 3500.6 1954.2

SCORM 12 [12] 132.7 415.2 421.1

MARC 21 [4] 6.3 51.4 12.5

MODS [7] 191.3 594.8 482.3

TEI [15] 840 980.1 2208.4

TEI Lite [15] 418 932.6 1288.3

EAD [2] 402.7 3305.7 1052

VRA Core 4 [16] 47.3 290 304.3

VRA Core 4 Strict [16] 3.3 122.1 10

MIX [10] 200 601.3 495.5

MADS [5] 50.1 393.4 345.6

⋆Note that in our experiments, the DTD that originally describes the DBLP
dataset has been expressed in XML Schema syntax.

We can observe from Table 5.10 that, for both the XSLT processors, the TEI and
MPEG-7 require the maximum transformation time (840.0 and 730.7 msec respectively)
due to their large number of XML Schema constructs (4279 and 2567 constructs respec-
tively, see [84]). On the other hand, due to the small number of XML Schema constructs,
the Persons (13 constructs, [84]) and VRA Core 4 Strict (19 constructs, [84]) require the
minimum transformation time (2.4 and 3.3 msec respectively). Finally, as at is expected,
the XML Schema file size slightly affects the transformation time. For example, despite
the large size (345.3Kb, [84]) of the SCORM 21 XML Schema file, the transformation time
is not analogously high (132.7 msec) due to its small number of XML Schema constructs
(i.e., small number of transformations).

In addition, we observe that the TEI and MPEG-7 require the maximum mapping
generation time (2208.4 and 1954.2 msec respectively) due to their large number of XML
Schema constructs (i.e., number of mappings discovered and generated). On the other
hand, the Persons and VRA Core 4 Strict require the minimum mapping generation time
(8.7 and 10.0 msec respectively).

5.12.2 Translation Efficiency

In this section we present the experimental results related to the efficiency of the SPARQL
to XQuery translation process. To evaluate the efficiency of the translation process, we
measured the translation time required by the SPARQL2XQuery Framework to translate
a SPARQL query to an XQuery query. Below, we present three experiments. In the first
experiment (Section 5.12.2.1), we have generated several SPARQL queries by modifying
their graph pattern size and type. In the second experiment (Section 5.12.2.1), we have
varied in the previously generated queries the number of mappings between the ontology
and the XML Schema. Finally, in the third experiment we have employed three SPARQL
query sets attempting to cover all the SPARQL grammar variations (Section 5.12.2.2).
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5.12.2.1 Translation Time for different Graph Patterns & Mappings

Here, we examine the efficiency of the query translation process. The translation time
mainly depends on two factors:

(a) The number of the SPARQL variables included in the Graph Pattern, since the
SPARQL variable number determines: (i) the number of the XQuery clauses gen-
erated throughout the translation; (ii) the number of the required Variable Binding
phases; and (iii) the number of the required Variable Type Determination phases.

(b) The complexity of the variable binding determination process. In particular, the
complexity of the variable binding determination depends on: (i) the number of
the XPath Set operations; (ii) the type of the XPath Set operations; and (iii) the
size of the operands (i.e., the size of the XPath Sets).

In the first experiment, we have generated several SPARQL queries by modifying the
size and the type of their graph patterns. For the SPARQL query generation, we assumed
that the queries are expressed on an ontology that has been mapped to an XML Schema.
We also assume that the ontology has the properties Pi with 1 ≤ i ≤ 30 (i.e., P1, P2,. . . ,
P30). In the second experiment, for each of the generated SPARQL queries we have varied
the number of the predefined mappings (i.e., the XPath Set sizes) between the ontology
and the XML Schema.

Note that the queries generated for these experiments are Select SPARQL queries,
containing one return variable and their Where clause is a Graph Pattern consisting of
sequences of conjunctive triple patterns (i.e., Basic Graph Pattern).

5.12.2.1.1 Varying the Graph Pattern Type & Size

In this experiment, we have obtained several (different) SPARQL queries by modifying
the type and the size of their graph pattern. To this end, we have varied (a) the number;
and (b) the type of the triple patterns included in the graph pattern. The number of triple
patterns determines the number of SPARQL variables and, as a consequence, the number
of the generated XQuery clauses. The triple pattern type determines: (a) the number of
the SPARQL variables; (b) the number of the XPath Set operations; and (c) the type of
the XPath Set operations.

Table 5.11: Translation characteristics over the number of Tripple Patterns (n)

Graph 

Pattern Type 

Characteristics w.r.t. Number of Triple Patterns (n) 

SPARQL 

Variables 
Generated XQuery Clauses XPath Set Operations 

GP1 2n 
2n For/Let, 1 Where and 1 

Return 
2n (⋂̅) and n (⋖) 

GP2 n n For/Let, 1 Where and 1 Return n (⋂̅) 

GP3 3n 
3n For/Let, 1 Where and 1 

Return 

2n (⋂̅), n (⋗) and n 

(⋖) 

GP4 2n 
2n For/Let, 1 Where and 1 

Return 
2n (⋂̅) and n (⋗) 

 

 

Query Translation Time [SPARQL Parsing Time] 

Graph Pattern 

Type 

Number of Triple Patterns (n) 

1 3 7 10 15 20 30 

GP1 2.09 [0.14] 2.13 [0.15] 2.17 [0.17] 2.20 [0.66] 2.37 [0.69] 2.91 [0.70] 3.93 [0.72] 

GP2 2.07 [0.38] 2.07 [0.37] 2.11 [0.38] 2.13 [0.39] 2.29 [0.42] 2.79 [0.46] 3.81 [0.65] 

GP3 3.22 [0.22] 3.26 [0.24] 3.28 [0.29] 3.39 [0.32] 3.74 [0.37] 3.89 [0.41] 4.25 [0.46] 

GP4 3.21 [0.21] 3.26 [0.24] 3.29 [0.28] 3.35 [0.30] 3.64 [0.31] 3.76 [0.34] 4.04 [0.40] 

Average 2.65 [0.24] 2.68 [0.25] 2.71 [0.28] 2.76 [0.42] 3.01 [0.45] 3.34 [0.48] 4.01 [0.56] 
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We have defined four types of graph patterns (GP1, GP2, GP3 and GP4) by modifying
the types of the included triple patterns: (a) GP1 =?x1 P1 ?y1. ?x2 P2 ?y2 ⋯ ?xn Pn ?yn
(b) GP2 =?x1 P1 “abc”. ?x2 P2 “abc” ⋯ ?xn Pn “abc” (c) GP3 =?x1 ?y1 ?z1. ?x2 ?y2 ?z2. ⋯
?xn ?yn ?zn and (d) GP4 =?x1 ?y1 “abc”. ?x2 ?y2 “abc” ⋯ ?xn ?yn “abc”, where n is the
number of triple patterns. Table 5.11 presents the basic characteristics of the SPARQL to
XQuery translation for the previous graph pattern types. The last column refers to the
XPath Set operations occurring in the variable binding phase.
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Table 5.12: Query Translation Time & SPARQL Parsing Time vs. Graph Pattern Type and
Size

Graph 

Pattern Type 

Characteristics w.r.t. Number of Triple Patterns (n) 

SPARQL 

Variables 
Generated XQuery Clauses XPath Set Operations 

GP1 2n 
2n For/Let, 1 Where and 1 

Return 
2n (⋂̅) and n (⋖) 

GP2 n n For/Let, 1 Where and 1 Return n (⋂̅) 

GP3 3n 
3n For/Let, 1 Where and 1 

Return 

2n (⋂̅), n (⋗) and n 

(⋖) 

GP4 2n 
2n For/Let, 1 Where and 1 

Return 
2n (⋂̅) and n (⋗) 
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GP4 3.21 [0.21] 3.26 [0.24] 3.29 [0.28] 3.35 [0.30] 3.64 [0.31] 3.76 [0.34] 4.04 [0.40] 

Average 2.65 [0.24] 2.68 [0.25] 2.71 [0.28] 2.76 [0.42] 3.01 [0.45] 3.34 [0.48] 4.01 [0.56] 
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For each of the above graph pattern types (GP1, GP2, GP3 and GP4), we have con-
structed graph patterns containing n triple patterns with n = 1,3,7,10,15,20,30. Finally,
for each ontology property Pi, we have assumed the mapping Pi ≡ {/a/b/i}. The trans-
lation time required by the SPARQL2XQuery Framework for the SPARQL to XQuery
translation of each query is presented in Table 5.12. The SPARQL parsing time is also
presented in Table 5.12. As SPARQL Parsing Time we refer to the time required by an
SPARQL query engine to parse the SPARQL query and build the query object. Note
that, in order to translate the SPARQL queries, a parsing phase using a SPARQL engine
is required. As a result, in Table 5.12 the translation time a [b] means that the total
translation time is a msec and it includes the SPARQL parsing time, which is b msec.

We can observe from Table 5.12 that the GP2 type has achieved the lowest translation
time. This is due to the fact that GP2 contains only one variable. On the other hand, the
GP3 type has taken the maximum translation time, since the GP3 contains the maximum
number of variables in the triples and as a result, a large number of variable binding and
determination of variable type phases are required.

In particular, the single variable included in the triple patterns of the GP2 graph
patterns has resulted in the generation of a small number of XQuery clauses. For a query
with n triple patterns, n + 2 XQuery clauses (n For/Let, one Where and one Return)
have been generated (Table 5.11). Accordingly, the three variables included in the triple
patterns of the GP3 graph patterns have resulted in a large number (i.e., 3n+2) of XQuery
clauses.

Finally, the triple patterns of the GP1 and GP4 graph patterns include two variables.
Throughout the translation, 2n+2 XQuery clauses have been generated. Despite the same
number of generated XQuery clauses, variable binding and variable type determination
phases, the GP1 type has achieved lower translation time than the GP4 type. This is ex-
plained as follows: The variable binding determination process for the GP4 graph patterns
is of higher complexity than that of GP1, since the predefined mappings for the Pi prop-
erties in the GP1 graph patterns reduce the number of possible bindings, and, therefore,
the complexity of determining the variable bindings decreases (see Section 5.7 for details).

5.12.2.1.2 Varying the Number of Mappings

In this experiment we have used the SPARQL queries generated in the previous experi-
ment. In addition, we have varied here the number of the predefined mappings between
the ontology and the XML Schema; In particular, we have modified the number of the
mappings (i.e., the size of XPath Sets) for all the ontology properties Pi, and, therefore
we have modified the complexity of the variable binding phase.

In this experiment, for each property Pi we have assumed the mapping Pi ≡ {/a/b/ci},
which contains one XPath expression. We have then modified the number of the XPath
expressions that correspond to each Pi mapping. Hence, for each property Pi, we have the
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Graph 

Pattern Type 

Characteristics w.r.t. Number of Triple Patterns (n) 

SPARQL 

Variables 
Generated XQuery Clauses XPath Set Operations 

GP1 2n 
2n For/Let, 1 Where and 1 

Return 
2n (⋂̅) and n (⋖) 

GP2 n n For/Let, 1 Where and 1 Return n (⋂̅) 

GP3 3n 
3n For/Let, 1 Where and 1 

Return 

2n (⋂̅), n (⋗) and n 

(⋖) 

GP4 2n 
2n For/Let, 1 Where and 1 

Return 
2n (⋂̅) and n (⋗) 

 

 

Query Translation Time [SPARQL Parsing Time] 

Graph Pattern 

Type 

Number of Triple Patterns (n) 

1 3 7 10 15 20 30 

GP1 2.09 [0.14] 2.13 [0.15] 2.17 [0.17] 2.20 [0.66] 2.37 [0.69] 2.91 [0.70] 3.93 [0.72] 

GP2 2.07 [0.38] 2.07 [0.37] 2.11 [0.38] 2.13 [0.39] 2.29 [0.42] 2.79 [0.46] 3.81 [0.65] 

GP3 3.22 [0.22] 3.26 [0.24] 3.28 [0.29] 3.39 [0.32] 3.74 [0.37] 3.89 [0.41] 4.25 [0.46] 

GP4 3.21 [0.21] 3.26 [0.24] 3.29 [0.28] 3.35 [0.30] 3.64 [0.31] 3.76 [0.34] 4.04 [0.40] 

Average 2.65 [0.24] 2.68 [0.25] 2.71 [0.28] 2.76 [0.42] 3.01 [0.45] 3.34 [0.48] 4.01 [0.56] 
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(a) n = 1 (b) n = 3
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Pattern Type 

Characteristics w.r.t. Number of Triple Patterns (n) 

SPARQL 

Variables 
Generated XQuery Clauses XPath Set Operations 

GP1 2n 
2n For/Let, 1 Where and 1 

Return 
2n (⋂̅) and n (⋖) 

GP2 n n For/Let, 1 Where and 1 Return n (⋂̅) 

GP3 3n 
3n For/Let, 1 Where and 1 

Return 

2n (⋂̅), n (⋗) and n 
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(e) n = 20 (f) n = 30

Figure 5.8: Query Translation Time vs. Number of mappings (n = 1,2,3,7,10,20 and 30 triple
patterns)

mapping Pi ≡ {/a/b/i1, /a/b/i2, . . . , /a/b/ik}, with k = 1,2,3,5 being the number of XPath
expressions for each Pi mapping.

Figure 5.8 presents the query translation time with a varying number of XPath expres-
sions per mapping. Each diagram of Figure 5.8 corresponds to a specific number (n) of
triple patterns and depicts all the graph pattern types (GP1, GP2, GP3 and GP4), while
varying the number of XPath expressions from 1 to 5.

As it is expected, the number of XPath expressions per mapping had no effect in the
query translation time for a small number of triple patterns (Figures 5.8a & 5.8b), because
of the very low translation time required and the small number of operations involved.
In particular, for n = 1 and n = 3 triple patterns the translation time for all the graph
pattern types remains stable as the number of XPath expressions increases. For graph
patterns containing n = 7 triple patterns (Figure 5.8c) we observe only a slight increase in
the query translation time as the number of XPath expressions increases. For n > 7, as
the number of XPath expressions increases, the query translation time grows linearly for
all the graph pattern types. The former is explained as follows: Increasing the number
of XPath expressions results in the (analogous) increase of the iterations for parsing and
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processing the XPath Sets.

5.12.2.2 Translation Time for the Persons, DBLP & Berlin Query Sets

5.12.2.2.1 Query Sets

In this section we present the three query sets that have been exploited in our experiments.
The first query set comprises the 12 SPARQL queries of the Berlin SPARQL Benchmark
[91]. An overview of the SPARQL features that are used by the Berlin query set can be
found in [84]. The second query set (Persons Queries) contains 15 SPARQL queries based
on the Persons ontology (Table 6.5 and Table 6.6). The third query set (DBLP Queries)
contains 5 SPARQL queries based on the DBLP ontology. The last two query sets have
been used for evaluating our system in terms of: (a) the translation time; and (b) the
query evaluation time.

The second and the third SPARQL query sets attempt to cover almost all the SPARQL
grammar variations, features and special cases, with varying SPARQL query types (e.g.,
Select, Ask, etc.), graph patterns with different sizes and complexity. These queries use all
the SPARQL algebra operators (e.g., Optional, Union, Filter, etc.), exploit combinations
of the solution sequence modifiers (e.g., Limit, Offset, Order by, etc.) and contain several
other features (e.g., Built-in functions, Schema triples, complex Filter conditions, etc.). In
our attempt to cover almost all the possible SPARQL syntax variations and special cases,
we have also considered the existing SPARQL Benchmarks (Berlin SPARQL Benchmark
[91], SP2Bench [336], W3C SPARQL Implementation Coverage Report13 and W3C DAWG
Test cases14) throughout the query set specification.

All the SPARQL queries, the translated XQuery queries, as well as an analysis of their
characteristics and features can be found in [84].

5.12.2.2.2 Results

In this experiment we have evaluated the efficiency of the translation process by exploiting
several different SPARQL queries. We have utilized three SPARQL query sets, attempting
to cover almost all the SPARQL syntax variations, features and special cases. For each
query, we have measured the translation time required by the SPARQL2XQuery Frame-
work to translate the SPARQL query in XQuery expressions. The query translation time
and the SPARQL parsing time as well as the average parsing and translation time for each
query set are presented in Table 5.13.

Table 5.13a presents the translation times for the 15 queries of the Persons query set.
We can observe from [84] that the queries of the Persons query set have in average 4
triple patterns per query and 1–2 XPaths per mapping. In addition, some of these queries
contain one or more solution sequence modifiers and Schema Triples. The translation of
the solution sequence modifiers and the Schema Triples has made the translation time for
the queries of the Persons query set slightly higher than the translation time of the queries
of the previous experiment, since the later have neither solution sequence modifiers nor
Schema Triples.

The translation time for the queries of the DBLP query set are presented in Table 5.13b.
These queries have some characteristics similar to the ones of the Persons query set (i.e.,
in average 4 triple patterns per query and 1–2 XPaths per mapping). However, the DBLP
queries are more complex in order to encapsulate most of the SPARQL features in five
queries, thus resulting in slightly higher translation times compared to the ones of the
Persons query set.

13www.w3.org/2001/sw/DataAccess/tests/implementations
14www.w3.org/2001/sw/DataAccess/tests/r2
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Table 5.13: Query Translation & SPARQL Parsing Time (msec) for (a) Person, (b) DBLP and
(c) Berlin Query Sets

(a) Person Query Set 

Persons 

Query 

Translation 

Time 

SPARQL 

Parsing Time 

Q1 3.35 0.90 

Q2 3.35 0.80 

Q3 3.31 0.97 

Q4 3.32 0.74 

Q5 3.34 0.62 

Q6 3.30 0.50 

Q7 3.32 0.87 

Q8 6.23 0.49 

Q9 6.46 0.68 

Q10 3.26 0.34 

Q11 3.30 0.39 

Q12 3.29 0.39 

Q13 3.28 0.50 

Q14 3.26 0.32 

Q15 3.26 0.29 

Avg. 3.71 0.59 
 

(b) DBLP Query Set 

DBLP 

Query 

Translation 

Time 

SPARQL 

Parsing Time 

Q1 5.73 1.2 

Q2 4.19 1.4 

Q3 7.70 1.2 

Q4 7.62 1.0 

Q5 3.89 0.6 

Avg. 5.83 1.1 
 

(c) Berlin Query Set 

Berlin 

Query 

Translation 

Time 

SPARQL 

Parsing Time 

Q1 4.04 1.29 

Q2 13.82 0.90 

Q3 10.54 0.88 

Q4 7.26 0.82 

Q5 3.85 0.99 

Q6 3.61 0.50 

Q7 16.11 0.79 

Q8 19.02 0.71 

Q9 3.55 0.28 

Q10 3.70 0.51 

Q11 6.63 0.29 

Q12 3.72 0.48 

Avg. 7.99 0.70 
 

 

 

XML Dataset Characteristics  
 Corresponding RDF 

Dataset Characteristics   

Dataset 

Name 
N 

XML 

Nodes 
Size (Kb) 

 
Triples Size (Kb) 

DT1 102 1450 20  6·102 40 

DT2 5·102 7250 102  3·103 2·102 

DT3 103 145·102 2·102  6·103 4·102 

DT4 5·103 725·102 103  3·104 2·103 

DT5 104 145·103 2·103  6·104 4·103 

DT6 5·104 725·103 104  3·105 2·104 

DT7 105 145·104 2·104  6·105 4·104 

DT8 5·105 725·104 105  3·106 2·105 

DT9 106 145·105 2·105  6·106 4·105 

DT10 5·106 725·105 106  3·107 2·106 

 

 

Query Evaluation Time (sec) 

Query 
SPARQL 

(QS) 

Manual  

(QXm) 

Auto-Rw  

(QXa-Rw) 

Auto 

(QXa) 

Auto-Rw 

 vs. Auto 

Auto-Rw 

 vs. Manual 

Q1 1.66 5.95 4.30 6.78 57.7 % 27.7 % 

Q2 1.69 5.96 4.28 6.76 57.8 % 28.1 % 

Q3 1.53 0.41 0.42 0.45 7.6 % -1.0 % 

Q4 2.78 10.79 11.00 11.08 0.7 % -1.9 % 

Q5 10.83 55.70 55.77 63.97 14.7 % -0.1 % 

Q6 1.55 6.55 6.49 6.89 6.1 % 0.9 % 

Q7 1.36 0.91 0.92 0.93 1.2 % -0.2 % 

Q8 6.03 12.93 13.09 13.11 0.2 % -1.3 % 

Q9 5.34 3.21 3.22 5.76 79.1 % -0.3 % 

Q10 0.00 6.63 5.74 6.91 20.4 % 13.4 % 

Q11 21.74 14.89 15.07 16.47 9.3 % -1.2 % 

Q12 2.44 15.47 15.49 15.74 1.6 % -0.1 % 

Q13 0.00 0.23 0.24 0.25 5.5 % 2.1 % 

Q14 1.37 3.69 3.61 3.80 5.2 % 2.2 % 

Q15 2.74 9.14 15.69 15.88 1.2 % -71.7 % 

Average 4.07 10.17 10.36 11.65 12.5 % -1.9 % 

 

Finally, Table 5.13c presents the translation times for the Berlin query set. This query
set is the most complex, with an average of 8 triple patterns per query, 1–4 XPaths
per mapping, several solution sequence modifiers per query and several OPTIONAL and
FILTER operators. The highest translation times occur in Queries 7 and 8 with 14 and
10 triple patterns respectively, 4 OPTIONAL operators, FILTERs and solution sequence
modifiers.

5.12.3 Query Evaluation Efficiency

In this section we present the experimental results that refer to the efficiency of evalu-
ating the XQuery expressions generated by the SPARQL2XQuery Framework. In Sec-
tion 5.12.3.1 we outline the datasets, queries and metrics that are used in our evaluation
scenario. In the first part of this experiment (Section 5.12.3.2) we have employed the
synthetic Persons XML dataset and the Persons query set. In the second part (Sec-
tion 5.12.3.3) we have utilized the real DBLP XML dataset and the corresponding query
set.

5.12.3.1 Methodology

Datasets. In order to evaluate the SPARQL2XQuery Framework in term of query eval-
uation efficiency, we have used both real and synthetic datasets. The real dataset we
have employed is the XML DBLP dataset. The characteristics of the DBLP dataset have
been presented in [336]. The size of the DBLP dataset is 833Mb. First we have manually
expressed the DTD that describes the DBLP dataset in XML Schema syntax. Then, the
XML Schema has been transformed to an OWL ontology using the XS2OWL component.
The DBLP XML Schema and the ontology generated by XS2OWL are available in [84].

Our synthetic dataset is structured according to the Persons XML Schema (Figure 6.2).
The SPARQL queries expressed on it are based on the Persons OWL ontology generated
for this XML Schema by the XS2OWL component (Table 6.5 and Table 6.6). For the
generation of the synthetic XML dataset that follows the Persons XML Schema, we have
implemented a data generator that takes as input a factor N , which is the number of the
records to be generated. Finally, all the Persons XML datasets have been transformed in
RDF format, in order to be able to perform a native evaluation of the SPARQL queries
on them.
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Table 5.14: Characteristics of the Persons XML datasets DT1 to DT10 and the corresponding
RDF datasets

(a) Person Query Set 

Persons 

Query 

Translation 

Time 

SPARQL 

Parsing Time 

Q1 3.35 0.90 

Q2 3.35 0.80 

Q3 3.31 0.97 

Q4 3.32 0.74 

Q5 3.34 0.62 

Q6 3.30 0.50 

Q7 3.32 0.87 

Q8 6.23 0.49 

Q9 6.46 0.68 

Q10 3.26 0.34 

Q11 3.30 0.39 

Q12 3.29 0.39 

Q13 3.28 0.50 

Q14 3.26 0.32 

Q15 3.26 0.29 

Avg. 3.71 0.59 
 

(b) DBLP Query Set 

DBLP 

Query 

Translation 

Time 

SPARQL 

Parsing Time 

Q1 5.73 1.2 

Q2 4.19 1.4 

Q3 7.70 1.2 

Q4 7.62 1.0 

Q5 3.89 0.6 

Avg. 5.83 1.1 
 

(c) Berlin Query Set 

Berlin 

Query 

Translation 

Time 

SPARQL 

Parsing Time 

Q1 4.04 1.29 

Q2 13.82 0.90 

Q3 10.54 0.88 

Q4 7.26 0.82 

Q5 3.85 0.99 

Q6 3.61 0.50 

Q7 16.11 0.79 

Q8 19.02 0.71 

Q9 3.55 0.28 

Q10 3.70 0.51 

Q11 6.63 0.29 

Q12 3.72 0.48 

Avg. 7.99 0.70 
 

 

 

XML Dataset Characteristics  
 Corresponding RDF 

Dataset Characteristics   

Dataset 

Name 
N 

XML 

Nodes 
Size (Kb) 

 
Triples Size (Kb) 

DT1 102 1450 20  6·102 40 

DT2 5·102 7250 102  3·103 2·102 

DT3 103 145·102 2·102  6·103 4·102 

DT4 5·103 725·102 103  3·104 2·103 

DT5 104 145·103 2·103  6·104 4·103 

DT6 5·104 725·103 104  3·105 2·104 

DT7 105 145·104 2·104  6·105 4·104 

DT8 5·105 725·104 105  3·106 2·105 

DT9 106 145·105 2·105  6·106 4·105 

DT10 5·106 725·105 106  3·107 2·106 

 

 

Query Evaluation Time (sec) 

Query 
SPARQL 

(QS) 

Manual  

(QXm) 

Auto-Rw  

(QXa-Rw) 

Auto 

(QXa) 

Auto-Rw 

 vs. Auto 

Auto-Rw 

 vs. Manual 

Q1 1.66 5.95 4.30 6.78 57.7 % 27.7 % 

Q2 1.69 5.96 4.28 6.76 57.8 % 28.1 % 

Q3 1.53 0.41 0.42 0.45 7.6 % -1.0 % 

Q4 2.78 10.79 11.00 11.08 0.7 % -1.9 % 

Q5 10.83 55.70 55.77 63.97 14.7 % -0.1 % 

Q6 1.55 6.55 6.49 6.89 6.1 % 0.9 % 

Q7 1.36 0.91 0.92 0.93 1.2 % -0.2 % 

Q8 6.03 12.93 13.09 13.11 0.2 % -1.3 % 

Q9 5.34 3.21 3.22 5.76 79.1 % -0.3 % 

Q10 0.00 6.63 5.74 6.91 20.4 % 13.4 % 

Q11 21.74 14.89 15.07 16.47 9.3 % -1.2 % 

Q12 2.44 15.47 15.49 15.74 1.6 % -0.1 % 

Q13 0.00 0.23 0.24 0.25 5.5 % 2.1 % 

Q14 1.37 3.69 3.61 3.80 5.2 % 2.2 % 

Q15 2.74 9.14 15.69 15.88 1.2 % -71.7 % 

Average 4.07 10.17 10.36 11.65 12.5 % -1.9 % 

 

Table 5.14 summarizes the basic features of the Persons XML datasets, including the
size in Kilobytes, the approximate number of XML nodes, etc. We have generated 10
datasets (DT1 to DT10), varying the N factor from 102 to 5 ⋅ 106. In addition, Table 5.14
presents the characteristics of the corresponding RDF datasets (i.e., number of triples and
size in Kilobytes) that have been generated from the XML dataset transformation.

Queries. In our evaluation scenario, every SPARQL query QS of the Persons and DBLP
query sets, has been automatically translated by the SPARQL2XQuery Framework to the
XQuery query QXa . Moreover, QS has been independently manually translated by an
external expert to the XQuery QXm . The QXm queries have been expressed considering
the XML Schema semantics and after applying techniques aiming to provide efficient
XQuery queries. Finally, the rewriting rules defined in Section 5.10 have been applied on
the automatically generated XQuery queries (QXa), to obtain the automatically rewritten
XQuery queries QXa−Rw.

Evaluation Metrics. In order to study the efficiency of the XQuery queries generated by
the SPARQL2XQuery Framework, we have measured and compared the query evaluation
times for (a) the original SPARQL queries, natively executed using a SPARQL engine;
(b) the automatically generated (QXa) XQuery queries; (c) the automatically rewritten
(QXa−Rw) XQuery queries; and (d) the manually translated (QXm) XQuery queries. Note
that the XQuery evaluation times heavily rely on the underling XML data management
system (e.g., storage, indexing, query engine, query optimizer, configuration, etc.).

5.12.3.2 Synthetic Dataset

In this experiment we study the efficiency of the XQuery queries generated by the
SPARQL2XQuery Framework using synthetic datasets (Table 5.14). We have measured
and compared the query evaluation times of the automatically generated, rewritten and
manually translated XQuery queries.

In the rest of this section, we analyze the evaluation times for each query (Sec-
tion 5.12.3.2.1), we vary the dataset size in order to examine the query evaluation efficiency
over the dataset size (Section 5.12.3.2.2) and we compare the query evaluation time with
the query translation time (Section 5.12.3.2.3).
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Table 5.15: Query Evaluation Time over the Persons DT8 dataset (XML Store Y)

(a) Person Query Set 

Persons 

Query 

Translation 

Time 

SPARQL 

Parsing Time 

Q1 3.35 0.90 

Q2 3.35 0.80 

Q3 3.31 0.97 

Q4 3.32 0.74 

Q5 3.34 0.62 

Q6 3.30 0.50 

Q7 3.32 0.87 

Q8 6.23 0.49 

Q9 6.46 0.68 

Q10 3.26 0.34 

Q11 3.30 0.39 

Q12 3.29 0.39 

Q13 3.28 0.50 

Q14 3.26 0.32 

Q15 3.26 0.29 

Avg. 3.71 0.59 
 

(b) DBLP Query Set 

DBLP 

Query 

Translation 

Time 

SPARQL 

Parsing Time 

Q1 5.73 1.2 

Q2 4.19 1.4 

Q3 7.70 1.2 

Q4 7.62 1.0 

Q5 3.89 0.6 

Avg. 5.83 1.1 
 

(c) Berlin Query Set 

Berlin 

Query 

Translation 

Time 

SPARQL 

Parsing Time 

Q1 4.04 1.29 

Q2 13.82 0.90 

Q3 10.54 0.88 

Q4 7.26 0.82 

Q5 3.85 0.99 

Q6 3.61 0.50 

Q7 16.11 0.79 

Q8 19.02 0.71 

Q9 3.55 0.28 

Q10 3.70 0.51 

Q11 6.63 0.29 

Q12 3.72 0.48 

Avg. 7.99 0.70 
 

 

 

XML Dataset Characteristics  
 Corresponding RDF 

Dataset Characteristics   

Dataset 

Name 
N 

XML 

Nodes 
Size (Kb) 

 
Triples Size (Kb) 

DT1 102 1450 20  6·102 40 

DT2 5·102 7250 102  3·103 2·102 

DT3 103 145·102 2·102  6·103 4·102 

DT4 5·103 725·102 103  3·104 2·103 

DT5 104 145·103 2·103  6·104 4·103 

DT6 5·104 725·103 104  3·105 2·104 

DT7 105 145·104 2·104  6·105 4·104 

DT8 5·105 725·104 105  3·106 2·105 

DT9 106 145·105 2·105  6·106 4·105 

DT10 5·106 725·105 106  3·107 2·106 

 

 

Query Evaluation Time (sec) 

Query 
SPARQL 

(QS) 

Manual  

(QXm) 

Auto-Rw  

(QXa-Rw) 

Auto 

(QXa) 

Auto-Rw 

 vs. Auto 

Auto-Rw 

 vs. Manual 

Q1 1.66 5.95 4.30 6.78 57.7 % 27.7 % 

Q2 1.69 5.96 4.28 6.76 57.8 % 28.1 % 

Q3 1.53 0.41 0.42 0.45 7.6 % -1.0 % 

Q4 2.78 10.79 11.00 11.08 0.7 % -1.9 % 

Q5 10.83 55.70 55.77 63.97 14.7 % -0.1 % 

Q6 1.55 6.55 6.49 6.89 6.1 % 0.9 % 

Q7 1.36 0.91 0.92 0.93 1.2 % -0.2 % 

Q8 6.03 12.93 13.09 13.11 0.2 % -1.3 % 

Q9 5.34 3.21 3.22 5.76 79.1 % -0.3 % 

Q10 0.00 6.63 5.74 6.91 20.4 % 13.4 % 

Q11 21.74 14.89 15.07 16.47 9.3 % -1.2 % 

Q12 2.44 15.47 15.49 15.74 1.6 % -0.1 % 

Q13 0.00 0.23 0.24 0.25 5.5 % 2.1 % 

Q14 1.37 3.69 3.61 3.80 5.2 % 2.2 % 

Q15 2.74 9.14 15.69 15.88 1.2 % -71.7 % 

Average 4.07 10.17 10.36 11.65 12.5 % -1.9 % 

 

5.12.3.2.1 Query Evaluation Time Analysis

We have used the synthetic Persons dataset DT8 and the Persons query set. The DT8

dataset comprises 5⋅105 records of persons and students (250K persons and 250K students),
is of size 105Kb and has approximately 725 ⋅ 104 XML nodes.

Table 5.15 summarizes the results of the comparison of the execution of the SPARQL
as well as the automatically generated, rewritten and manually translated XQuery queries.
In particular, for each query, Table 5.15contains the evaluation times for (a) the SPARQL
queries (denoted as SPARQL); (b) the manually translated XQuery queries (denoted as
Manual); (c) the automatically rewritten XQuery queries (denoted as Auto-Rw); and (d)
the automatically generated (without rewriting) XQuery queries (denoted as Auto). In
addition, Table 5.15 presents the improvement of the rewritten compared to the automat-
ically generated queries (denoted as Auto-Rw vs. Auto) as well as the comparison between
the automatically rewritten and manually translated XQuery queries (denoted as Auto-Rw
vs. Manual). The measuring unit for the evaluation time is second (sec).

Automatically Rewritten vs. Automatically Generated (Auto-Rw vs. Auto).
We can observe from Table 5.15 that for almost all the queries the evaluation times for
the rewritten queries presented a notable performance improvement compared to the au-
tomatically generated ones. The average reduction in the evaluation time for the rewritten
queries was 12.5%, and the maximum 79.1%.

For five (Q4, Q7, Q8, Q12 and Q15) out of fifteen queries, the query evaluation time
was almost the same for the rewritten and the automatically generated queries (with a
time decrease between 0.2% and 1.6 %). For seven queries (Q3, Q5, Q6, Q10, Q11, Q13 and
Q14), the rewritten queries have presented a slight improvement with an evaluation time
decrease between 5.2% and 20.4% compared to the automatically generated ones. Finally,
three queries (Q1, Q2 and Q9) have presented a significant performance improvement with
a time decrease between 57.7% and 79.1%. In more detail:

− For the queries Q4, Q8, Q13 and Q15, the only difference between the rewritten the
automatically generated queries, is that the rewritten have one Let XQuery clause
less. In particular, in the rewritten queries the Let clause that is used to assign the
XML data on which the query is evaluated (i.e., let $doc ∶= collection( )), has been
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removed. The XML data declaration (i.e., collection( )) is directly used instead of
the $doc XQuery variable. Hence, it is expected that the evaluation of these queries
has not shown any significant efficiency improvement.

− For the queries Q1, Q2, Q3, Q6, Q7 and Q10 the rewriting rule Rule 3 (Unnesting
For Clauses) has been applied, which removes one For clause in each query, thus
resulting in a less nested For clause. For the queries Q3, Q6 and Q7, the improvement
of the rewritten queries is not significant (1.2% to 7.6 %), since the outer loops (i.e.,
outer For clauses) are restricted with conditions (i.e., predicates over the XPath
of the For clause) resulting into very few inner loops. For the queries Q1 and Q2,
though, which have no restrictions in the For clauses, the improvement is significant
(57%). Finally, we expected that the same should hold for the query Q10; however,
its improvement was not as significant as expected (20% improvement). This may
happen, because this query returns only the first 100 of the results, thus, the query
engine possibly selects an efficient execution plan (although the query optimizer has
been turned-off).

− For the queries Q13 and Q14 the rewriting rule Rule 2 (Reducing Let Clauses) has
been applied, which removes one Let clause from each query. As is expected, this
rewriting resulted in a slight improvement of 5%.

− Finally, for the queries Q5 and Q9, the rewriting rule Rule 1 (Changing For Clauses
to Let) has been initially applied. Rule 1 considers the exact cardinality of one in
the SSN attribute and the Age element. As a result, two For clauses in each query
are transformed to Let clauses. Then, the Rule 2 has been applied on the queries.
From query Q5, the two Let clauses that resulted from the application of Rule 1
on the For clause have been removed. In addition, from query Q9 four Let clauses
have been removed (two of them have resulted from the application of Rule 1 on
the For clause). Compared to the initial queries, the query Q5 has two For clauses
less and the query Q9 has two For and two Let clauses less. These rewritings have
resulted in a considerable improvement of 14.7% and 79.1% for the queries Q5 and
Q9 respectively.

Automatically Rewritten vs. Manually Translated (Auto-Rw vs. Manual). The
evaluation times of the automatically rewritten queries are very close to the ones of the
manually translated queries as shown in Table 5.15, with an average increase of 1.9%. For
three (Q1, Q2 and Q10) out of the fifteen queries, the rewritten queries have considerably
outperformed the manually translated ones, with an evaluation time decrease between
13.4% and 28.1%. In addition, in other cases (Q6, Q9, Q13 and Q14), the rewritten queries
have shown a slight improvement (with an evaluation time decrease between 0.9% and
13.4%) compared to the manually translated ones. For the remaining queries, (with the
exception of query Q15), the evaluation time of the rewritten and the manually translated
queries was almost the same. For query Q15 the manual translation has shown a significant
evaluation time increase (71.7%). In more detail:

− For the queries Q1, Q2 and Q10, the rewritten queries have one For clause less
compared to the manually translated ones. The use of the rewriting rule Rule 3 has
resulted to unnested For clauses in the rewritten queries. The resulting For clauses
have presented an evaluation time improvement of 13.4% to 28.1% in the rewritten
queries compared to the manually translated ones.

− For the remaining queries (except Q15), the performance of the rewritten queries
is almost the same with the manually translated ones. The only reason for delays
in few rewritten queries is the use of several “special” markup tags (e.g., <Result>,
<Results>) which are exploited to structure the query results. These markup tags
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have resulted in a larger size of the results, hence a slight delay in evaluation time
has been observed.

− Finally, for Q15, the manually translated query takes into account the cardinality of
the elements FirstName and LastName, which have been defined in the XML Schema
to be more than one. In that case, there is no need to check if the FirstName and
LastName XQuery variables were bound to some values during the construction of
the RDF graph. This is done in the automatically generated queries (rewritten and
not-rewritten) by using the fn∶exists( ) XQuery built-in function. This query is
the only case with a considerable difference in the evaluation time of the manu-
ally translated query compared to the rewritten one. However, it is obvious that
simple rewriting rules similar to Rule 1 can be defined in order to exploit the XML
Schema cardinality in several cases. For example, during the translation of Construct
SPARQL queries, the cardinality value of more than one for elements or attributes
can be considered by a rewriting rule, in order to avoid the unnecessary check if
some values exist for these elements or attributes.
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(a) DT1 Persons dataset (XML Store Y)
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(b) DT8 Persons dataset (XML Store Y)
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(c) DT10 Persons dataset (XML Store Y)

Figure 5.9: Query Evaluation Time over the Persons datasets DT1, DT8 and DT10
(XML Store Y)
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(a) DT1 Persons dataset (XML Store Z)
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(b) DT8 Persons dataset (XML Store Z)
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(c) DT10 Persons dataset (XML Store Z)

Figure 5.10: Query Evaluation Time over the Persons datasets DT1, DT8 and DT10
(XML Store Z)

5.12.3.2.2 Varying the Size of the Dataset

In order to study the query evaluation efficiency over the dataset size, we have used the 10
synthetic Persons XML datasets. We first present an overview of the effect of the dataset
size on the evaluation time. In the following figures, we present the results obtained us-
ing different XQuery engines. In particularly, Figure 5.9 corresponds to XML Store Y,
Figure 5.10 corresponds to XML Store Z, and Figure 5.11 corresponds to Memory-based
XQuery Engine. The figures show the query evaluation times for all the queries on three
datasets (DT1, DT8 and DT10). Each of the diagrams corresponds to one dataset. We can
observe that in all cases the automatically rewritten queries outperform the automatically
generated ones. In addition, the improvement of the automatically rewritten XQueries
against the automatically generated XQueries does not show significant variations (is al-
most constant) over the dataset size.

Figure 5.12 provides a thorough look at the query evaluation time over the dataset size.
Particularly, Figure 5.12 presents the evaluation times (in logarithmic scale) for (a) the
manually translated; (b) the automatically generated; and (c) the automatically rewritten
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(a) DT1 Persons dataset (Memory-based XQuery Engine)
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(b) DT8 Persons dataset (Memory-based XQuery Engine)
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(c) DT10 Persons dataset (Memory-based XQuery Engine)

Figure 5.11: Query Evaluation Time over the Persons datasets DT1, DT8 and DT10
(Memory-based XQuery Engine)

XQuery queries over the 10 datasets. Each of the first 15 diagrams corresponds to one
query (e.g., Figure 5.12a corresponds to Q1, Figure 5.12b corresponds to Q2, etc.) and the
last diagram (Figure 5.12q) corresponds to the average evaluation times for all the queries
(Queries 1 ∼ 15).

We observe that the evaluation times for both the manually and automatically rewrit-
ten queries have almost similar performance over the dataset size. As the dataset size
increases, the evaluation times increase in a sublinear manner for the specific query set.
For some of the queries, the increase is less sharp than for others (e.g., Queries 3, 7, 9);
this is due to the high selectivity (i.e., small result set) of these queries. However, for all
the queries the increase is sharper for datasets larger than 105 records. Finally, with the
exception of the queries 7, 10, 11 and 12 where the evaluation times are almost equal from
the smallest dataset to the largest, as the dataset size increases, the difference between
the evaluation times decreases, with most of the queries having almost equal evaluation
times for the larger datasets (DT7 to DT10).

The average evaluation times (Figure 5.12q) increase very fast with a sharper increase
for datasets larger than 105 records. In addition, as the dataset size increases, the differ-
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Figure 5.12: Query Evaluation Time vs. Dataset size (Persons Datasets DT1 ∼ DT10)
(XML Store Y)

ence between the evaluation times decreases.

In more detail, for the smallest dataset (102 records), the average evaluation time
for the automatically generated and rewritten queries has a 6.1% overhead compared to
that of the manually translated ones. In addition, the rewritten queries have shown an
evaluation time decrease of 18% compared to the automatically generated ones.

Regarding the DT7 dataset (105 records), the automatically rewritten queries have
a 4.1% overhead compared to the manually translated ones. In addition, the rewritten
queries have shown an evaluation time decrease of 11.8% compared to the automatically
generated ones.

Finally, for the largest dataset (5⋅106 records), the automatically rewritten queries have
a 1.0% overhead compared to the manually translated ones. In addition, the rewritten
queries have shown an evaluation time decrease of 10.8% compared to the automatically
generated ones.

The results show that even without extensive optimization, a noticeable performance
improvement can be achieved. The query evaluation time decreases in average by 13%
compared to the not-rewritten ones, with a maximum decrease 83% in some cases. Even
the automatically generated queries have reasonable performance and scale rather well for
sizes up to 725 ⋅ 105 XML nodes.

5.12.3.2.3 Query Evaluation Time vs. Query Translation Time

We present here a comparison of the query evaluation time with the query translation
time. We have compared the query translation time and the query evaluation time to the
total time which is the sum of the two (the charts are available in [84]).

We observe that the query translation takes negligible time in comparison to the query
evaluation time even for the smallest dataset (i.e., the lowest evaluation times). In par-
ticular, for the dataset DT1, the lowest ratio of translation time to total time (equal to
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2.8%) occurs in query Q5, while the highest ratio of translation time to total time (equal
to 10.5%) occurs in query Q8. Finally, the average ratio of translation time to total time is
equal to 5.9%. Regarding the dataset DT8, the lowest ratio of the translation time to the
total time (equal to 0.01%) occurs in query Q5, while the highest ratio of the translation
time to the total time (equal to 1.3%) occurs in query Q13. Finally, the average ratio of
the translation time to the total time is equal to 0.04%.

5.12.3.3 Real Dataset

In this experiment we have studied the efficiency of the automatically generated XQuery
queries using a real dataset. We have utilized the real DBLP dataset, as well as the DBLP
query set, including 5 queries (Section 5.12.2.2.1). In an analogous manner with the
previous experiment, we have measured and compared the query evaluation times for the
automatically generated, rewritten and manually translated XQuery queries. Table 5.16
summarizes the experimental results.

Table 5.16: Query Evaluation Time for the DBLP dataset (XML Store Y)

Query Evaluation Time (sec) 

Query 
SPARQL 

(QS) 

Manual  

(QXm) 

Auto-Rw 

 (QXa-Rw) 

Auto 

(QXa) 

Auto-Rw vs. 

Auto 

Auto-Rw vs. 

Manual 

Q1 2.88 40.14 40.12 44.56 10.0 % 0.1 % 

Q2 0.07 0.19 0.19 0.21 11.2 % 0.5 % 

Q3 0.06 16.61 16.63 18.72 11.2 % -0.1 % 

Q4 14.24 20.52 20.82 29.57 29.6 % -1.5 % 
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Automatically Rewritten vs. Automatically Generated (Auto-Rw vs. Auto)
Queries. Table 5.16 shows that the evaluation times for the rewritten queries have pre-
sented a significant performance improvement compared to the automatically generated
ones, with an average evaluation time decrease of 13.8%. In more detail:

− For the queries Q1, Q3 and Q5, the rewriting rule Rule 1 (Changing For Clauses to
Let) has been firstly applied. Rule 1 exploits the exact cardinality for the Title and
Year elements. As a result, two For clauses for Q1 and one For clause for Q3 and Q5

have been transformed to Let clauses. Afterwards, Rule 2 (Reducing Let Clauses)
has been applied and has removed the Let clauses generated from Rule 1. Compared
to the initial queries, the query Q1 has two For clauses less and the queries Q3 and
Q5 have one For clause less. The above rewritings have resulted in an improvement
of 10.0%, 11.2% and 7.1% for the queries Q1, Q3 and Q5, respectively.

− For query Q2, the rewriting rule Rule 2 has been applied and has removed one Let
clause, resulting in an improvement of 11.2%.

− Finally, for query Q4 the rewriting rule Rule 3 (Unnesting For Clauses) has been
applied and has removed two For clauses, resulting in an improvement of 29.6%.

Automatically Rewritten vs. Manually Translated (Auto-Rw vs. Manual)
Queries. We can see from Table 5.16 that the evaluation times of the automatically
rewritten queries are almost similar to the manually translated queries, with an average
evaluation time increase of 2.2%. In more detail:

− For all the queries, with the exception of Q5, the evaluation time for the rewritten
queries is almost to the same with the manually translated ones. The only delay
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Figure 5.13: Query Evaluation Time over the DBLP dataset (Using different XQuery Engines)

reason in the rewritten queries is the use of several “special” markup tags (e.g.,
<Result>, <Results>) which are exploited to structure the query results. These
markup tags have resulted in a larger size of the results, hence a slight delay in
evaluation time has been observed.

− For Q5, the manually translated query has taken into account the cardinality of the
elements Author and Title, which have been defined in XML Schema to be more
than one. Thus, there was no need to check the existence of these values, as was
done in the automatically generated query using the fn∶exists( ) XQuery function.

Finally, we can observe from Table 5.16 that the query evaluation performance for the
DBLP dataset is similar with that of the synthetic dataset of the same size.

In the following figure, we present the results obtained using different XQuery engines.
In particularly, Figure 5.13a corresponds to XML Store Y, Figure 5.13b corresponds to
XML Store Z, and Figure 5.13c corresponds to Memory-based XQuery Engine. The figures
show the query evaluation times for all the queries over the DBLP dataset.

5.12.4 Result Overview

Schema Transformation and Mapping Generation. Although both the schema
transformation and mapping generation processes are off-line processes, we wanted to have
an indication of their performance. To this end, we have used several international XML
Schema standards and have measured the time required for schema transformation and
for mapping discovery and generation. We observed that both processes took negligible
time even for very large XML Schemas.

Translation Efficiency. In order to demonstrate the efficiency of the SPARQL to
XQuery translation process we measured the translation time required by the
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SPARQL2XQuery Framework. In the first experiment, we generated several SPARQL
queries by modifying their graph pattern size and type. In the second experiment, for
the queries generated in the first experiment, we modified the number of the predefined
mappings. Finally, in the third experiment, we have used three SPARQL query sets at-
tempting to cover almost all the SPARQL grammar variations. The query sets used are
the Berlin SPARQL Benchmark query set, a query set over the DBLP schema and a set
over the Persons schema.

Query Evaluation Efficiency. Regarding the efficiency of the generated XQuery expres-
sions, we have defined a small set of simple rewriting rules aiming to provide more efficient
XQuery expressions. We have applied these rules on the automatically generated XQuery
expressions. Then, we have compared the evaluation time of the automatically generated,
rewritten and manually translated XQuery expressions. In the first set of experiments, a
synthetic dataset and a set of 15 queries have been used. We have modified the dataset
size and we have measured the query evaluation time for the automatically generated,
rewritten and manually translated XQuery queries. In the second set of experiments, the
real DBLP dataset has been utilized for demonstrating the query evaluation efficiency.

The results are similar for both the real and synthetic datasets. In particular, for the
largest synthetic dataset (5⋅106 records) the rewritten queries have presented an evaluation
time decrease of 10.8% compared to the not-rewritten ones. In general, the rewriting rules
have resulted in significant performance improvement, with an average evaluation time
decrease of 13%, reaching 83% in some cases. Moreover, the average evaluation time for
the automatically generated and rewritten queries has 1.0% overhead compared to the
manually specified ones. Finally, the query evaluation times have been compared to the
query translation times. The conclusion was that the query translation takes negligible
time in comparison to the evaluation time, even for very small datasets.

5.13 Summary

The Web of Data (WoD) is an open environment comprised of hundreds of large inter-
linked, user contributed datasets. The WoD is founded on technologies and standards
developed by the Semantic Web (SW) community (e.g., OWL, RDF/S, SPARQL) for
Web information representation and management. On the other hand, in the current
Web infrastructure the XML/XML Schema are the dominant standards for information
exchange, and for the representation of semi-structured information. In addition, many in-
ternational standards (e.g., Dublin Core, MPEG-7) have been expressed in XML Schema.
The aforementioned have led to an increasing emphasis on XML data.

In the WoD users should not interact with different data models and languages for
developing their applications or express-ing their queries. In addition, it is unrealistic
to expect that all the legacy data (e.g., Relational, XML) will be converted to RDF
data. Thus, it is crucial to provide interoperability mechanisms that allow the WoD
users to transparently access exter-nal heterogeneous data sources from their own working
environment. Finally, in the Linked Data era, offering SPARQL endpoints (i.e., SPARQL-
based search services) over legacy data has become a major research challenge. However,
despite the significant body of related work on relational data, to the best of our knowledge
there is no work addressing neither the SPARQL to XQuery translation problem nor
offering SPARQL endpoints over XML data. In the most recent research approaches,
a combination of SW (SPARQL) and XML (XQuery, XPath and XSLT) technologies is
exploited in order to transform XML data to RDF and vice versa.

In this work we have proposed the SPARQL2XQuery Framework, which bridges the
heterogeneity gap and creates an interoperable environment between the SW and XML
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worlds. The SPARQL2XQuery Framework comprises the key component for several WoD
applications, allowing the establishment of SPARQL endpoints over XML data, as well
as a fundamental component of ontology-based integration frameworks involving XML
sources.

The SPARQL2XQuery Framework allows arbitrary SPARQL queries posed over on-
tologies to be automatically translated to XQuery expressions which are evaluated over
XML data with respect to a set of predefined mappings. To this end, our Framework
allows both manual and automatic mapping specification between ontologies and XML
Schemas. Finally, the query results are returned either in RDF or in SPARQL Query
Result XML Format. Thus, the WoD users are no longer required to interact with more
than one models or query languages.

In more detail, we have introduced a mapping model for the expression of OWL–RDF/S
to XML Schema mappings, as well as a method for SPARQL to XQuery translation both
provided by the SPARQL2XQuery Framework. To the best of our knowledge, this is the
first work addressing these issues. Moreover, we have presented the XS2OWL component,
which allows transforming XML Schemas to OWL ontologies, exploiting the latest versions
of the standards (XML Schema 1.1. and OWL 2). As far as we know, this is the first
work that fully captures the XML Schema semantics and supports the XML Schema
1.1 constructs. The XS2OWL component has been integrated in the SPARQL2XQuery
framework in order to provide automatic mapping generation and maintenance.

A thorough experimental evaluation of the SPARQL2XQuery framework has been con-
ducted and presented, in order to demonstrate the efficiency of (a) schema transformation;
(b) mapping generation; (c) query translation; and (d) query evaluation.

We have also discussed, in this chapter, the major technical and theoretical challenges
we have faced throughout the development of the SPARQL2XQuery Framework. The
major difficulties have arisen from the different data models and semantics adopted by
the SW and XML worlds. In summary, we had to overcome several heterogeneity issues
like Directed graphs vs. Tree structures, Three-valued logic vs. Two-valued logic, Graph
patterns vs. Iterative procedures, etc. We have also discussed issues involved in the trans-
lation process that are related to the SPARQL semantics like Well Designed vs. Non-Well
Designed Graph Patterns, Safe vs. non-Safe Filter Expressions, etc.
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Chapter 6

Semantic Retrieval and
Exploration

In this chapter we examine two problems. In the first one we study the problem of
semantic information retrieval. For this problem, we proposed a framework that supports
ontology-based document annotation and retrieval, in a fully collaborative environment.
The framework provides an automatic annotation mechanisms that is based on a learning
method that exploits user annotation history and textual information to automatically
recommend annotations for new documents. Additionally, the framework provides search
facilities beyond the traditional keyword-based search. A flexible combination of keyword-
based and semantic-based search over documents is proposed in conjunction with advanced
semantic-based search operations. The proposed methods are implemented in a fully
functional tool and their effectiveness is experimentally validated.

Next, we study the problem of modeling, publishing and exploring evolving data,
adopting the Linked Data principles. For this problem, we propose a change model based
on RDF to capture versioned entities. Based on this model we convert legacy data from
biological databases to diachronic Linked Data. Our Linked Data infrastructure can as-
sist biologists to explore biological entities and their evolution, and provides a SPARQL
endpoint for applications and services to query historical miRNA data and track changes,
their causes and effects.

6.1 Semantic Information Retrieval

Document annotation and search have received tremendous attention by the Semantic Web
[197] and the Digital Libraries [24] communities. Semantic annotation involves tagging
documents with concepts (e.g., ontology classes) so that content becomes meaningful.
Annotations help users to easily organize their documents. Also, they can help in providing
better search facilities: users can search for information not only using keywords, but also
using well-defined general concepts that describe the domain of their information need.

Although traditional Information Retrieval (IR) techniques are well-established, they
are not effective when problems of concept ambiguity or synonymity appear. On the other
hand, neither search based only on semantic information may be effective, since: (a) it
does not take into account the actual document content, (b) semantic information may
not be available for all documents and (c) semantic annotations may cover only a few
parts of the document.

Hybrid solutions that combine keyword-based with semantic-based search deal with the
above problems. Developing methodologies and tools that integrate document annotation
and search is of high importance. For example, researchers need to be able to organize,
categorize and search scientific material (e.g., papers) in an efficient and effective way.
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Similarly, a press clipping department needs to track news documents, annotating specific
important topics and searching for information.

This chapter describes GoNTogle, a framework for document annotation and retrieval,
built on top of Semantic Web and IR technologies. GoNTogle provides both manual and
automatic ontology-based annotations, supporting documents of several formats (e.g., doc,
pdf, txt, rtf, odt, sxw). Annotation is based on standard Semantic Web technologies
like, OWL and RDF/S. All annotations are stored in a centralized server, providing a
collaborative environment. A learning method, exploiting textual information and user
annotation history, is proposed to support the automatic annotation mechanism.

GoNTogle also provides three search types: (a) Keyword-based, (b) Semantic-based
and c) Hybrid. Experimental evaluation validates the effectiveness of the proposed hybrid
method, compared to the other two. Finally, several advanced ontology-based searching
operations are provided, including the capability to expand or shrink the result list using
ontology information, in order to retrieve higher quality results.

Regarding the design principles of our framework, they are based on the requirements
set in previous works [23, 200, 380]. In contrast with the existing approaches, our aim
was to design an easy-to-use document annotation and search framework that supports (a)
viewing and annotating popular document types while maintaining their initial format, (b)
offering a collaborative environment by sharing those annotations (c) supporting Semantic
Web standards, (d) integrating textual information with semantics and (e) supporting
a flexible combination of keyword-based and semantic-based search in conjunction with
advanced ontology-base search operations.

Contributions. The main contributions of this work are summarized as follows.

1. We have designed and implemented an easy-to-use document annotation framework
that supports the most widely used document formats, providing also advanced
search facilities.

2. The framework is based on a server-based architecture, where document annotations
are stored in a central repository, separately from the original document. This offers
a collaborative environment where users can annotate and search documents.

3. We propose a learning method for automatic annotation of documents based on mod-
els trained from user annotation history and textual information, so that annotation
suggestions are tailored to user behavior.

4. We introduce a hybrid search method that provides a flexible combination of tradi-
tional keyword-based and semantic-based search for effective document retrieval.

5. We present a user-based evaluation to demonstrate the effectiveness of the automatic
annotation method. Moreover, we demonstrate a comparative evaluation to validate
that the proposed hybrid search outperforms keyword-based and semantic-based
search in terms of precision and recall.

6.1.1 Semantic Annotation

GoNTogle framework supports semantic, ontology-based annotations, for widely used doc-
ument formats (e.g., doc, pdf, txt, rtf, odt, sxw). It allows annotating the whole document
or parts of it. GoNTogle framework supports both manual and automatic annotations.
For automatic annotation we propose a learning method that exploits user annotation
history and textual information to automatically suggest annotations for new incoming
documents. GoNTogle provides a common ontology-based annotation model (Figure 6.1)
for all supported document formats. Annotations are stored on a centralized ontology
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Figure 6.1: Ontology-based annotation model

server, separately from the original document. Annotations from different document for-
mats are defined and stored in exactly the same way. Each annotation is stored as an
ontology class instance, along with information about the annotated document. We de-
fine a set of ontology properties that are used to store the minimum essential information
needed to provide a bidirectional connection between documents and ontologies. These
properties contain information like: document URL, annotation offsets, page number,
extent of annotation over the document, etc.

Figure 6.1 shows the ontology-based annotation model we developed in the context of
the GoNTogle framework. Annotations are represented as class instances that can belong
to one or more ontology classes. Using ontology properties, all the essential annotation
information is attached to these instances. Property doc URL, corresponds to the docu-
ment’s URL (including document’s file name) of represented annotation. page num and
line num properties, correspond to the number of the page and line respectively where
the annotation begins. The property offset 1 corresponds to a number that indicates the
offset from the beginning of the document until the beginning of the annotation. As the
same, property offset 2 corresponds to the offset from the end of annotation until the end
of the document. The property extent represents the extent of the annotation over the
document. Finally, text summ used for storing the summary of the annotated text (i.e.,
1-3 tokens from the begin and the end) required for the GUI functionality.

6.1.1.1 Automatic Semantic Annotation

In this section, we present the learning method used for automatic document annotation.
We propose a method based on weighted kNN classification [291] that exploits user an-
notation history and textual information to automatically suggest annotations for new
documents. Next, we describe our approach in detail. The training data of our method
include document annotations provided manually by the users. When a document is man-
ually annotated, the annotation text is extracted and indexed using an inverted index.
Along with the textual information, the index also stores information about the annota-
tion classes for each annotated document (or part of document).

To automatically annotate documents, the user first selects a document or a part of it.
Then, given the set of training data, our method suggests a ranked list of ontology concepts
(classes) to annotate the document (or its part). Algorithm 8 presents the pseudocode of
our method. It takes as input the selected text st and the inverted index I. Based on
textual similarity tsst,at between st and each indexed annotated text at, the k most similar
annotated texts are considered for further processing, and included in set S (lines 1∼3 ).
Then for each at in S, we retrieve the ontology classes used to annotate at. Each class cl
is given a score Scrcl that combines (a) the textual similarity (based on Lucene similarity
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Algorithm 8. Annotation Suggestion Algorithm (st, I)

Input: st: selected text; I: index
Output: cli: suggested class; Scrclii : suggested class score

1 foreach annotated text at in I do
2 calculate tsst,at

3 insert the k most similar annotated texts in S
4 foreach at in S do
5 foreach class cl annotate at do
6 Scrcl = Scrcl + (w1 ⋅ tsst,at) ⋅ (w2 ⋅ ecl,at)

7 return cli, Scrcli

model1) score tsst,at between st and at and (b) a score ecl,at representing the extent to
which each at in S is annotated with class cl (line 6 ). As ecl,at we define, the number of
tokens of the cl annotations in at divided by the number of tokens in at.

ecl,at =
number of tokens of cl annotations over at

number of tokens in at

The w1 and w2 weights are used to quantify the preference of textual similarity against
semantic similarity (or vice versa). Finally, a ranked list of suggested annotation classes
cli and their score Scrcli is presented to the user (line 7 ). The user may choose one or
more suggested classes to conclude the automatic annotation process.

Table 6.1: Basic Notation

Symbol Description

qkey Keyword query, consisting of search term {t1, t2, . . . tm}
Skey(qkey) Keyword-based search

RSkey Keyword-based search result set

Scrkey(qkey, d) Keyword-based similarity score

qsem Semantic query, consisting of search classes {cl1, cl2, . . . cln}
Ssem(qsem) Semantic-based search

RSsem Semantic-based search result set

Scrsem(qsem, d) Semantic-based similarity score

Shybr(qsem, qkey) Hybrid search

RShybr Hybrid search result set

Scrhybr(qsem, qkey, d) Hybrid similarity score

6.1.2 Search

In this section, we present the search facilities proposed in the context of GoNTogle frame-
work. We formally define the supported search types (Section 6.1.2.1) and we analyze the
ontology-based advanced search operations (Section 6.1.2.2). Moreover, we introduce the
hybrid search method, which combines keyword-based and semantic-based search. Ta-
ble 6.1 outlines the basic notation used in the following paragraphs.

6.1.2.1 Search Types

We categorize the basic search facilities of our framework into three types: (a) Keyword-
based search, (b) Semantic-based search and (c) Hybrid search.

1http://lucene.apache.org/core/3 0 3/api/core/org/apache/lucene/search/Similarity.html
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6.1.2.1.1 Keyword-based search

This is the traditional search model. The user provides keywords and the system retrieves
relevant documents based on textual similarity. We adopted the text similarity metric
used in Lucene IR engine.

Keyword-based search is denoted as Skey(qkey), where qkey = {t1, t2, . . . tm} and ti are
the search terms with m ≥ 1. Keyword-based search returns an ordered result set RSkey
of tuples ⟨d,Scrkey(qkey, d)⟩, containing all the documents d matched with terms qkey.
Scrkey(qkey, d) is the similarity score of document d for the searching terms qkey. This
score is based on document textual similarity with the searching terms.

6.1.2.1.2 Semantic-based search

This search facility allows the user to navigate through the classes of an ontology and
focus their search on one or more of them.

Semantic-based search is denoted as Ssem(qsem), where qsem = {cl1, cl2, . . . cln} and
cli are the searching classes with n ≥ 1. It return an ordered result set RSsem of tuples
⟨d,Scrsem(qsem, d)⟩, containing all the documents d that have been annotated with one or
more of the search classes qsem. Scrsem(qsem, d) is the similarity score of document d for
the searching classes qsem. This score is based on semantic similarity between the searching
classes qsem and document d. To define semantic similarity sscli,d between a class cli and
a document d, we consider the extent of the class annotations over the document: that is
the number of tokens used to define the class annotations in d divided by the number of
tokens in d.

The final similarity score is defined as follows:

Scrsem(qsem, d) =
n

∑
i=1

sscli,d

n
,

sscli,d =
number of tokens of cli annotations over d

number of tokes in d

where n is the number of ontology classes used during the semantic-based search, and
sscli,d is a score representing the extent to which document d is annotated with class cli.

6.1.2.1.3 Hybrid search

The user may search for documents using keywords and ontology classes. She can, also,
determine whether the results of her search will be the intersection or the union of the
two searches.

Hybrid search is denoted as Shybr(qsem, qkey) = Ssem(qsem) Op Skey(qkey), where qsem =
{cl1, cl2, . . . cln} and cli are the searching classes with n ≥ 1, qkey = {t1, t2, . . . tm} and ti are
the searching terms with m ≥ 1 and Op the Boolean operators OR or AND. Hybrid search
returns an ordered result set RShybr of tuples ⟨d,Scrhybr(qsem, qkey, d)⟩, the contents and
the order of the result set depend on Op value:

− op = AND The result set contains all the documents d that have been annotated
with one or more of the search classes qsem and match with terms qkey.

RShybr = RSkey ⋂
over d

RSsem

The final similarity score is defined as:

Scrhybr(qsem, qkey, d) = w3 ⋅ Scrsem(qsem, d) +w4 ⋅ Scrkey(qkey, d)
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where Scrsem(qsem, d) is the similarity score from semantic-based search, and
Scrkey(qkey, d) is the similarity score from keyword-based search. The w3 and w4

weights are used to quantify the relative importance of the semantic-based and
keyword-based scores, when both keyword and semantic queries must be satisfied.

− op = OR The result set contains all the documents d that have been annotated with
one or more of the searching classes qsem and all the documents d matched with
terms qkey.

RShybr = RSkey⋃RSsem

The final similarity score is defined as:

Scrhybr(qsem, qkey, d) = w5 ⋅ Scrsem(qsem, d) +w6 ⋅ Scrkey(qkey, d)

where Scrsem(qsem, d) is the similarity score from semantic-based search, and
Scrkey(qkey, d) is the similarity score from keyword-based search. The w5 and w6

weights are used to quantify the relative importance of the semantic-based and
keyword-based scores, when either keyword or semantic queries must be satisfied.

6.1.2.2 Advanced Search Operations

Here we present a set of advanced search operations that can be used after an initial search
has been completed.

Find Related Documents. Starting from a result document d, the user may search for
all documents that have been annotated with a class cl that also annotates d. For example,
if a user had initially searched with class2 H.2 [DATABASE MANAGEMENT] and selected
one of the results that is also annotated with class H.2.5[Heterogeneous Databases], then
“Find Related Documents” would return all documents annotated with both classes.

Find Similar Documents. This is a variation of the previous search facility. Start-
ing from a result document d, the user may search for all documents that are already in
the result list and have been annotated with a class cl that also annotates d. For exam-
ple, if a user had initially searched with keyword “XML” AND class H.2 [DATABASE
MANAGEMENT] and selected one of the results that is also annotated with class H.2.5
[Heterogeneous Databases], then “Find Similar Documents” would return all documents
annotated with both classes and contained the keyword “XML”.

Get Next Generation. The resulting list from a semantic-based (or hybrid) search
can be confined by propagating the search on lower levels in the ontology (i.e., if class
cl has been used, then search is propagated only in direct subclasses of cl). This is the
case when the search topic is too general. For example, if a user had initially searched
with H.2 [DATABASE MANAGEMENT], then “Get Next Generation” would return all
documents annotated with at least one of its subclasses (H.2.5 [Heterogeneous Databases],
H.2.3 [Languages], etc.).

Get Previous Generation. This offers the inverse functionality of the previous option.
The resulting list from a semantic-based (or hybrid) search can be expanded by propagat-
ing the search on higher levels in the ontology (i.e., if class cl has been used, then search
is propagated only in direct superclasses of cl). This is the case when a search topic is too

2We turned the ACM Computing Classification (www.acm.org/about/class) into an OWL ontology.
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narrow. For example, if a user had initially searched with H.2 [DATABASE MANAGE-
MENT], then “Get Previous Generation” would return all documents annotated with its
superclass (H. [Information Systems]).

Proximity Search. This search option allows the user to search for documents that
belong to all subclasses of a selected class, by applying a ranking model based on ontology
hierarchy. That is, if class cl is the initial class, then search is propagated in all direct and
indirect subclasses of cl. The resulting documents gathered from all levels of the ontology
hierarchy are weighted properly (i.e., documents from the selected class cl get higher score
than 1st level subclasses and even higher than 2nd level subclasses).

6.1.3 System Overview

6.1.3.1 System Architecture

Due to its centralized server-based annotation storage and management architecture,
GoNTogle offers a collaborative user environment. Annotations are stored separately from
the original document and may be shared by several user groups. GoNTogle’s architecture
is presented in Figure 6.2. The system is divided into 4 basic components:

− Semantic Annotation Component provides facilities regarding the semantic annota-
tion of documents. It consists of 3 modules: (a) Document Viewer, (b) Ontology
Viewer and (c) Annotation Editor.

− Ontology Server Component stores the semantic annotations of documents in the
form of class instances. It consists of 2 modules: (a) an Ontology Manager and (b)
an Ontology Knowledge Base.

− Indexing Component is responsible for indexing the documents using inverted in-
dexes.

− Search Component allows users to search for documents using a flexible combination
of textual (keyword-based search) and ontology (semantic-based search) information.

6.1.3.2 Semantic Annotation In-Use

Semantic Annotation Component offers 2 primary functionalities: (a) annotation of whole
document and (b) annotation of parts of a document. Also, a user may choose between
manual and automatic annotation.
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Figure 6.3: Semantic annotation example

Figure 6.3 shows the Semantic Annotation window of our application. The user may
open a document in the Document Viewer, maintaining its original format. Moreover,
she can load and view the hierarchy of an ontology through the Ontology Viewer. In the
specific example, the loaded ontology corresponds to the ACM Computing Classification
hierarchy. The user can, then, select one or more ontology classes and manually annotate
the whole document or part of it. The annotation is stored as an ontology class instance in
the Ontology Server, along with information about the annotated document. At the same
time, an annotation instance is added in the Annotation Editor list. Each record of this list
corresponds to an annotation stored in the Ontology Server. For example (Figure 6.3), the
abstract of the document is annotated with class H.2.3 [Languages]: Query Languages,
while the whole document is annotated with class H.2[DATABASE MANAGEMENT].
The user can manage those annotation instances, adding or removing ontology classes, or
completely remove them. Also, when she selects an annotation from the list (regarding a
part of a document), the document scrolls to the corresponding part, which is highlighted
with the same color as the annotation instance.

6.1.3.3 Implementation

In what follows we provide technical information about the implementation of our system.
All annotation and search facilities have been implemented in a Java prototype.

To develop our system, we used several open source tools and libraries. For indexing
and keyword searching we used the Lucene search engine library. Lucene modules partici-
pate in several components of our system: (a) Document text indexing for search purposes
(Indexing Component); (b) Document retrieval and scoring regarding textual similarity
(Search Component); and (c) Indexing and querying documents for automatic annotation
purposes (Semantic Annotation Component).
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We used the ProtégéAPI3 server and MySQL database for the Ontology Server Com-
ponent, so that document annotations are stored as class instances. Through Protégé API,
for each annotation, we store information that is required for processes such as retrieval
of the specific annotation, ontology search scoring for a specific class-document pair, etc.

OpenOffice API4 was essential in incorporating in our system a viewer that could
maintain the exact format of .doc documents, which is a very common filetype. The same
applies for Multivalent5, a generalized document viewer that was integrated in our system
so that PDF files could also maintain their format when being viewed and annotated.

6.1.4 Experimental Analysis

In this section, we present the experiments we performed in order to evaluate the effec-
tiveness of our methods. In Section 6.1.4.1 we present the evaluation of the automatic
annotation method. In Section 6.1.4.2, we compare our proposed hybrid search method
with keyword-based and semantic-based search .

6.1.4.1 Automatic Annotation

In order to demonstrate the effectiveness of the proposed automatic annotation method,
we perform a user-based evaluation. The effectiveness of our method is validated in terms
of Precision at position n (P@n) and Recall.

6.1.4.1.1 Setting

We turned the ACM Computing Classification into an OWL ontology. The ontology
produced is a 4-level structure with 1463 nodes. First, we performed an initial set of
experiments in order to compare the simple kNN and the weighted kNN classification
methods and also to identify the best value for the k factor. Best precision and recall
values were observed for k = 7 using the weighted kNN algorithm.

Moreover, the weights used for the automatic annotation method (Section 6.1.1.1), w1

and w2 are calculated at 0.6 and 0.4 respectively after tuning. Intuitively, these values
suggest that, in our problem setting, textual similarity is slightly more important than
semantic similarity in case of automatic annotation.

6.1.4.1.2 Scenario

We asked from 15 users (PhD students and researchers in various areas of computer
science) to participate in our experimental evaluation. Each user selected 2 areas of her
research interests and for each area she collected 10 research papers that she was familiar
with. In order to train our system, we asked from each user to annotate (parts or/and
the whole of) 12 out of her 20 papers with at least one ACM class, using the GoNTogle
framework.

After every user had performed the training task, we asked each of them to evaluate
the automatic annotation suggestions provided by GoNTogle, for the remaining 8 papers
of each user (test set). Note that, before reviewing the system suggestions, each user
was asked which annotation classes she expected to be given by the system. The system
presented a ranked list of annotation classes and each user was required to check the valid
ones. Also, each user should point out valid classes that were not found between the
system suggestions, as well as valid classes that, even they had not thought of, the system
correctly suggested them.

3http://protege.stanford.edu
4http://api.openoffice.org
5http://multivalent.sourceforge.net
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Table 6.2: The average Precision at
position n (P@n) for each user

User P@1 P@2 P@3 P@4 P@5

1 0.82 0.79 0.79 0.75 0.68

2 1.00 0.94 0.80 0.65 0.60

3 0.80 0.80 0.70 0.70 0.76

4 1.00 1.00 0.80 0.84 0.80

5 1.00 0.90 0.90 0.82 0.81

6 0.80 0.90 0.73 0.70 0.64

7 1.00 1.00 0.93 0.85 0.84

8 0.93 1.00 0.73 0.71 0.69

9 0.90 0.90 0.87 0.80 0.76

10 0.91 0.87 0.80 0.75 0.71

11 1.00 1.00 0.87 0.84 0.78

12 0.80 0.77 0.72 0.70 0.66

13 0.95 0.92 0.83 0.75 0.68

14 1.00 0.90 0.87 0.80 0.76

15 0.80 0.80 0.73 0.65 0.56

Avg 0.91 0.90 0.81 0.75 0.72

Table 6.3: The average Recall and
the average UVCS for each user

User Recall UVCS

1 0.80 0.40

2 0.92 0.20

3 0.98 0.20

4 0.97 0.40

5 0.98 0.40

6 1.00 1.20

7 0.97 0.20

8 0.82 0.20

9 1.00 0.20

10 0.89 1.00

11 0.88 0.80

12 0.95 0.65

13 0.87 0.40

14 0.95 1.60

15 1.00 0

Avg 0.93 0.52

Based on the data collected, we calculated the Precision at position n (P@n) and
Recall values for each user separately, as well as the mean average values for all users.
Also, for correctly suggested annotation classes that the user had not initially thought
of using them, we introduce the measure of Unexpected Valid Class Suggestion (UVCS),
defined as follows:

UVCS= #Correctly suggested and not initially though classes

Finally, P@n and Recall are defined as follows:

P@n = #relevant results in top-n suggestions

n
andRecall = #relevant results suggestions

#relevant results
,

where we count as relevant results, the ACM classes considered valid by the user.

6.1.4.1.3 Results

Table 6.2 presents, for each user, the average P@n values, for her 8 automatically annotated
papers. In addition, the average Recall (regarding the top-5 results) and the average UVCS
values are presented at Table 6.3.

Note that, due to our annotation scenario (annotating research papers with ACM
classes), it is rational to regard only the top-5 results during the P@n computation. That
is, because the majority of the research papers under consideration do not handle more
than 5 ACM hierarchy topics.

As we can observe, our method achieves high values both for Precision and Recall met-
rics. Moreover high Recall values have been achieved, with an average Recall value equal
to 0.93. We should note that the relatively low P@4 and P@5 are justified from the fact
that, for a respectable amount of test documents, the users expected (and thus validated)
no more than 1∼3 classes, that were found in the top-3 positions of the system’s ranked
suggestion list. Finally, it is obvious from the UVCS metric, that the automatic annota-
tion mechanism supports and guides users during the annotation process, by suggesting
correct classes that users had not previously thought of.
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Table 6.4: Keyword queries

ID Keywords

qkey1 knowledge discovery and privacy

qkey2 stream mining

qkey3 RDF indexing

qkey4 spatial databases

qkey5 clustering

qkey6 spatial access

qkey7 query language

qkey8 data model

qkey9 XML interoperability

qkey10 information integration

Table 6.5: Semantic queries

ID Classes

qsem1 K.4.1 [Public Policy Issues]: Privacy

qsem2 H.2.8 [Database Applications]: Data mining

qsem3 H.3.1 [Content Analysis and Indexing]: Indexing methods

qsem4 H.2.8 [Database Applications]: Spatial databases and GIS

qsem5 H.3.3 [Information Search and Retrieval]: Clustering

qsem6 H.2.2 [Physical Design]: Access Methods

qsem7 H.2.3 [Languages]: Query languages

qsem8 H.2.1 [Logical Design]: Data models

qsem9 D.2.12 [Interoperability]

qsem10 H.2.5 [Heterogeneous Databases]

6.1.4.2 Search

In this section, we present an evaluation comparing the effectiveness of the search types
provided by our framework. The comparison is performed in terms of Precision at position
n, Recall, F-measure and Precision-Recall curve. In all cases, the proposed hybrid search
method delivers higher quality results than traditional keyword-based or semantic-based
search methods.

6.1.4.2.1 Setting

The weights used for the hybrid search method (Section 6.1.2.1.3) are assigned the follow-
ing values: w3 = 0.7, w4 = 0.3 and w5 = 0.6, w6 = 0.4 after tuning. Intuitively, these values
suggest that, in our problem setting, semantic-based score is slightly more important than
keyword-based score in hybrid search.

6.1.4.2.2 Scenario

Our corpus consists of the 300 manually and automatically annotated research papers
from the previous experiment (Section 6.1.4.1). First, we collect all the keywords defined
in these papers and we randomly choose 10 keywords to be used as queries. Note that,
keywords queries may contain one or more tokens.

Also, we map the selected keyword queries to semantic queries, using the ontology
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Table 6.6: The average Precision at position n (P@n), Recall and F-measure for all queries

P@1 P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@9 P@10 Recall F-measure

qkey 0.73 0.73 0.70 0.70 0.60 0.53 0.49 0.49 0.46 0.45 0.55 0.50

qsem 1.00 0.95 0.91 0.89 0.91 0.88 0.83 0.78 0.74 0.68 0.84 0.75

qhybrA 1.00 1.00 1.00 1.00 0.98 - - - - - 0.66 0.79

qhybrO 1.00 1.00 0.97 0.98 0.96 0.95 0.95 0.90 0.83 0.76 0.98 0.86

classes. That is, to construct semantic queries that correspond to the keyword ones, we
select the ontology classes that are most similar to the keyword content. In this way, we are
able to perform both keyword, and ontology search, as well as hybrid search, comparing
the effectiveness of each approach.

Table 6.4 presents the 10 keyword queries (qkey) which are used for this experiment.
Table 6.5, presents the corresponding semantic queries (qsem) expressed using the classes
from ACM ontology. Hybrid queries are expressed by the combination of a keyword query
and its corresponded semantic query. For hybrid search we apply booth (OR, AND)
Boolean operators. The hybrid queries applying AND and OR operators are denoted
respectively as qhybrA and qhybrO.

For each query we measure the quality of retrieval method using the Precision at
position n at position n, for n ∈ [1,10] and Recall. Based on these measures, we compare
the various search types offered by our system: (a) Keyword-based search; (b) Semantic-
based search; (c) Hybrid search using AND operator (hybrA); and (d) Hybrid search using
OR operator (hybrO). Finally, for each search type, we compute the average Precision at
positions 1 to 10, Recall, F-measure and Precision-Recall curves for all queries.

6.1.4.2.3 Results For All Queries

Table 6.6 presents the average P@n for n ∈ [1,10] and the average Recall and F-measure
values for all queries. Note that, most queries in hybrid search using the AND operator, do
not retrieve more than 5-6 documents (as we can see from Table 6.7). As a consequence,
the precision, for this search type is calculated only at positions 1 to 5.

Precision. As we can observe from Table 6.6, the hybrid search (for both operators)
outperforms the keyword-based and semantic-based search at every position, with hybrA
achieving slightly higher values at positions 4 and 5. Moreover, we can see that keyword-
based search radically decreases after position 4, where semantic-based and hybrid search
start decreasing progressively after the 6th position.

Hybrid search compared to keyword-based search, achieves a maximum increase of
100% at position 7 and a minimum increase of 30.3% at position 2. Comparing hybrid
with semantic-based search, hybrid, achieves a maximum increase of 17.2% at position 10
and a minimum increase of 0% at position 1.

Recall. As we can see, the hybrO outperforms the keyword-based and semantic-based
search, achieving recall value close to 1 (0.98). Moreover, hybrA achieves slightly lower
recall values than semantic-based search. This is due to the fact that hybrA search is very
restrictive. So, too few documents are returned for each query with negative influence on
the recall values.

Comparing hybrO with keyword-based search, hybrO, achieves an increase of 78.2%.
Moreover, despite the low recall values of hybrA method, in comparison with keyword-
based search, it increases the recall value at 20%. In comparison with semantic-based
search, hybrO achieves a increase of 16.7%. Finally, hybrA achieves lower recall values
than semantic-based search, having a decrease of 21.4%.
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F-measure. As we can see, the hybrid search outperforms the other methods in F-
measure value. Comparing hybrO with keyword-based and semantic-based search, hybrO
achieves an increase of 72% and 14.6% respectively. Moreover, comparing hybrA with
keyword-based and semantic-based search, hybrA achieves an increase of 58% and 0.05%
respectively.

Precision vs. Recall. Figure 6.4 shows the average precision-recall curve for all queries.
As we can see, hybrid search has a very stable performance, achieving high precision
(close to 1) even for recall values greater than 0.8. hybrO precision starts to decrease
noticeably only after recall values are greater than 0.9. For recall values lower than 0.6,
hybrA achieves precision values higher than hybrO. Semantic-based search precision,
progressively decreases from the beginning while recall increases. Finally, keyword-based
search precision values rapidly decrease for recall values greater than 0.4.
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Figure 6.4: The average precision-recall curve for all queries

6.1.4.2.4 Results per Query

Table 6.7 presents for each query, the P@n for n ∈ [1,10] and Recall values. As we
can see, in all queries, the hybrid search (for both boolean operators) outperforms the
keyword-based and semantic-based search in precision values at every position. Moreover,
regarding the recall measures, the hybrO search outperforms the other search methods in
every query, with 9 out of 10 queries achieving recall values equal to 1.

As far as P@n is concerned, hybrid search achieves the highest precision values for
all queries in every position. Hybrid search using AND and OR operators achieve sim-
ilar precision values. However in many cases AND operator returns less than 10 docu-
ments. Semantic-based search achieves lower precision values (except hybrA for Query 6)
than hybrid search, and higher values than keyword-based search (with 3 exceptions,
Queries 4,5,6). Finally, keyword-based search achieves, in general, the lowest precision
values.

As far as recall is concerned, hybrid search using OR operator achieves the highest
recall values in all queries, with 9 out of 10 queries achieving recall values equal to 1.
Semantic-based search achieves lower recall values than the former and higher or equal
than rest methods, with two exceptions (Queries 6,8). Moreover, hybrid search using
AND operator achieves lower or equal recall values than semantic-based search and higher
than keyword-based search (with one exception, Query 2). Finally, keyword-based search
achieves, in general, lowest recall values.
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6.1.5 Related Work

A great number of approaches on semantic annotation have been proposed in the literature
[317, 380]. Most of them are focused on annotating web resources such as HTML pages
[241, 208, 127, 149, 13, 198, 384].

As far as plain text (or HTML) annotation is concerned, there are approaches that
differ in the annotation and search facilities they offer. GATE [135] is a platform that
offers an architecture, a framework and a graphical tool for language processing. Tools
and resources are offered to perform textual annotation both manually and automatically
using information extraction (IE) techniques.

KIM [240] provides an infrastructure for semantic annotation of documents (text or
HTML), restricted, however, to its own ontology, called KIMO. The information extrac-
tion, document management and annotation part is based on GATE. The aim of the IE
engine is the recognition of named entities with respect to the KIMO ontology. Com-
pared to the above approaches, GoNTogle provides advanced searching facilities using a
flexible combination of keyword-based and semantic-based search over documents. Also,
it provides automatic annotation facilities based on models trained from user annotation
history, so that annotation suggestions are tailored to user behavior.

AKTiveMedia [110] supports the annotation of text, images and HTML documents
using both ontology-based and free-text annotations. For the automatic annotation task
an underlying information extraction (IE) system has been integrated, learning from pre-
vious annotations and suggests annotations to the user. However, AKTiveMedia does not
provide search facilities. Furthermore, the supported automatic annotation mechanism
provides very low performance, when annotations are concern more than one tokens (due
to the IE system). In addition, a serious limitation of the automatic annotation mechanism
is that it takes into consideration only one class per annotation. In case of annotations
with multiples classes, the rest of the classes are skipped.

The above tools support annotations on HTML or plain text. As far as popular doc-
ument formats are concerned, PDFTab [163] is a Protégé plug-in for annotating PDF
documents with OWL ontologies classes. Annotations are stored in the internal docu-
ment representation, with the document structure remaining unchanged. Compared to
GoNTogle, PDFTab has several limitations: it does not provide any search facilities or
automatic annotation method. SemanticWord [361] is a MS Word plug-in which offers MS
Word annotations with DAML+OIL ontologies. Compared to GoNTogle, SemanticWord
integrates an information extraction system with no learning support to suggest annota-
tions. Also, SemanticWord does not provide search facilities and does not support OWL
and RDF/S ontologies.

Regarding the semantic search, in the recent years, numerous systems and approaches
have been proposed in the literature [278]. An approach close to our, is introduced at
[70], where a combination of keyword and semantic search over web sources is supported,
on top of the AKTiveMedia framework [110]. A noticeable drawback of this approach is
that the ranking of hybrid search, is relying only at keyword search where the semantic
part is utilized only to exclude or include a result and not to rank it. Moreover, [70] does
not support advanced search operations related to ontology semantics. Additionally, an
interesting but less relative approach [184], analyzes the meaning of words and phrases,
to define semantic relations between lexicalized concepts. In that case, syntactic search
is extended with semantics, by converting words into concepts and exploiting the arisen
semantics.
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6.1.6 Summary

In this section we presented GoNTogle, a framework for document annotation and retrieval,
built on top of Semantic Web and IR technologies. GoNTogle supports both manual and
automatic document annotation using ontologies. A learning mechanism is implemented,
providing automatic document annotation facilities based on textual information and user
annotation history. In order to overcome the drawbacks of traditional keyword-based
(like concept polysemy and synonymy) and semantic-based search (like partial or not
existing annotations) we propose a hybrid search method. Hybrid search provides a flexible
combination of keyword-based and semantic-based search. Moreover, several advanced
ontology-based search operations are provided. Ontology information is exploited, to help
the user expand or shrink the resulting list in order retrieve high quality results. A user-
based evaluation is performed, in order to demonstrate the effectiveness of the automatic
annotation method. Moreover, a comparative evaluation validates that, the proposed
hybrid search, outperforms in all cases the keyword-based and semantic-based search in
terms of precision and recall. Finally, all the proposed methods are implemented as a fully
functional tool.

6.2 Publishing and Exploring Evolving Linked Data

The technology advances in scientific hardware (e.g., sensors, new-generation sequencers),
together with the explosion of Web 2.0 technologies, have completely changed the way
scientists create, disseminate and consume large volumes of information and new content.
More and more scientific datasets break the walls of “private” management within their
production cite, are published, and become available for potential data consumers, i.e.,
individual users, scientific communities, applications/services. Typical examples include
experimental or observational data and scientific models from the life science domain,
climate, earth, astronomy, etc.

Linked Data6 (LD) is a compelling approach for the dissemination and re-use of scien-
tific data, realizing the vision of the so-called Linked Science7. The LD paradigm involves
practices to publish, share, and connect data on the Web, and offers a new way of data
integration and interoperability. Briefly, LD is about using the Web to create links be-
tween data from different sources. The driving force to implement LD spaces is the RDF
technology. The basic principles of the LD paradigm is (a) use the RDF data model to
publish structured data on the Web, and (b) use RDF links to interlink data from different
data sources. The aim of the LD technologies is to give rise to the Web of Data.

The Web of Data is impelled by the current trend towards an open Web. The open
data movement is a significant and emerging force towards this direction. Open science
data is open data related to observations and results of scientific activities, which are
publicly available for anyone to analyze and reuse.

However, by just converting legacy scientific data as LD, we do not fully meet the
requirements of data re-use. To ensure re-use and allow exploitation and validation of
scientific results, several challenges related to scientific data dynamics should be tackled.
Scientific data are evolving and diverse data. Users and services (a) should have access
not only to up-to-date scientific LD bases but to any of the previous versions of those
bases, and (b) should be able to track the changes among versions, as well as their cause
and effects.

In this section, we present our work on publishing and exploring evolving life sci-
ence data, and more specifically, genomic and experimental data related to microRNA

6linkeddata.org
7linkedscience.org
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biomolecules (Section 6.2.1). We propose a change model based on RDF to capture ver-
sioned entities. Based on this model legacy data from two well-known microRNA databases
are fused and exported as LD. The first database (Section 6.2.2) provides experimental
data and observations, while the second one (Section 6.2.3) provides change and version
information about microRNA entities. Our LD infrastructure can assist biologists to ex-
plore biological entities and their evolution by either using SPARQL queries or navigating
among entity versions.

6.2.1 Background

Biologists used to consider proteins and DNA as movers and shakers in genomics, seeing
RNA as nothing more than a messenger to carry information between the two. This
has dramatically changed after the discovery, in early 2000s, of the key role played in
gene expression by small RNA molecules, called microRNAs (miRNAs). miRNAs can
completely silence proteins. They do so by binding themselves to complementary sequences
on message RNA (mRNA) transcripts, called targets. The knowledge of miRNA targets
(i.e., which mRNA transcripts are targeted by a miRNA) is important for therapeutic
uses. For example, based on such knowledge, biologists can shut off genes by delivering
artificial miRNA molecules into cells.

The first miRNA molecules were identified in 1993. Since then, there has been a
dramatic increase in the number of miRNAs discovered and registered in miRBase8, a
searchable database of published miRNA sequences and annotation. However, there is
a lack of high-throughput experimental methods for identifying miRNA targets. Thus,
computational methods to predict targets have become increasingly important, and led to
the experimental identification of many miRNA targets.

Our team in Athena R.C. and the DNA Intelligent Analysis (DIANA) group of “Alexan-
der Fleming” B.S.R.C.9 have developed a set of advanced Web applications to provide
access to computationally predicted miRNA targets. Since its original launch, DIANA
Web app has been one of the most widely used service for miRNA analysis. It includes
the following two core services.

microT10. The service provides target prediction data for 1884 miRNAs and more than
six million predicted target genes, organized in a relational database. Besides the tar-
get prediction experimental results, we provide miRNAs and genes functional analysis
that goes beyond simple biological pathways, like, for example, relation of miRNAs to
functional features, and diseases and medical descriptors. All retrieved miRNAs are asso-
ciated to diseases, using textual information from PubMed11, a well-known digital library
for biomedical literature.

mirGen12. The service provides information about transcripts, and their transcription
factors (TF) that correspond to miRNAs. A transcription factor is a protein that binds
to specific DNA sequences, thereby controlling the flow of genetic information from DNA
to mRNA. MirGen database stores information about 811 human genes, 1270 human
miRNAs, 386 mouse genes and 1012 mouse miRNAs, organized in a relational database.

8www.mirbase.org
9www.fleming.gr

10diana.cslab.ece.ntua.gr/DianaTools/index.php?r=microtv4
11www.ncbi.nlm.nih.gov/pubmed
12diana.cslab.ece.ntua.gr/?sec=databases
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Table 6.8: Part of miRNA database schema

Core tables Column Description

Hairpins id (mima id), name, sequence, species, gene location info, etc.

Matures id (mimat), name, sequence, species.

Transcripts tid, id given from ensembl.org (enstid), species, DNA strand, gene location info, etc.

ProteinGenes id given from ensembl.org (ensgid), name, description.

Keggs id given from genome.jp (kegg id), name.

Tissues name, species.

Join Tables Column Description

MatureHairpinConn It relates matures and hairpins.

MicroT5Interactions It contains all the experimentally verified gene-mature interactions (bindings).

ProteinGeneKeggConn It relates genes to kegg pathways.

MatureTissueConn It relates matures to tissues.

6.2.2 Data Schema

In this section, we present an overview of the miRNA database maintained by IMIS/Athena
R.C. and the DIANA group of “A. Fleming” B.S.R.C., storing info about computation-
ally predicted miRNA targets produced by the target prediction algorithm proposed by
DIANA group[281].

To better understand the miRNA domain and the database schema design, we next
clarify some issues. Since the term “miRNA” is nowadays used in a wide scope, it is
common to distinguish between hairpin miRNAs and mature miRNAs, or just hairpins

and matures from now on. The former signify the genomic location of the latter. A hairpin
is actually processed into several matures. Matures can bind themselves to transcripts and
prevent the creation of functional ribosomes (and, thus, prohibit protein construction).
A transcript is a stretch of DNA transcribed into an RNA molecule (messenger RNA,
ribosomal RNA, transfer RNA, etc).

The miRNA database has some core tables to store the key entities of the miRNA
domain (hairpins, matures, transcripts and protein-encoding genes) and model their rela-
tionships (see Table 6.8 for a part of miRNA database schema).

There are also tables storing info about Kegg pathways13 and tissues. Kegg path-
ways is a collection of manually drawn pathway maps, with textual descriptions, repre-
senting biologists’ knowledge on molecular interaction and reaction networks.

6.2.3 A Model for Change and Version Management

The miRBase database is a searchable database of published miRNA sequences and anno-
tation. The miRBase database maintains info for 18443 hairpins and 49670 matures. Each
entry in miRBase represents a predicted hairpin miRNA with information on the location
and sequence of the corresponding mature miRNA sequence. Hairpins, mature miRNAs
and their relationship between them change in time. miRBase maintains a list of files that
record successive versions along with the changes between them. A short description for
each file follows.

− miRNA.dat It maintains info related to all known hairpins (like ID, name, related
matures, related publications, sequence, etc.) at the time of each version. Every new
version of miRNA.dat contributes to the previous one with all the newly discovered
miRNAs, omitting the deleted ones. Example entries of miRNA.dat are shown in

13www.genome.jp/kegg/pathway.html
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ΜI0000001 cel-let-7 NEW

MI0004476 mdv2-miR-M29-5p SEQUENCE NAME

MIMAT0000115 dme-miR-10* SEQUENCE NAME

AC MI0000104

ID hsa-mir-101-9

FW MI0000739

CC Duplicate entry removed.

Entries in miRNA.diff

Entries in miRNA.dead

Entries in miFam.dat

AC MIPF0000811

ID mir-677

MI MI0011482 bta-mir-677

MI MI0004634 mmu-mir-677

ID cel-let-7 standard; RNA; CEL; 99 BP. 

XX

AC MI0000001;

XX

DE Caenorhabditis elegans let-7 stem-loop

XX

RN [1] 

RX PUBMED; 11679671.

RA Lau NC, Lim LP, Weinstein EG, Bartel DP;

RT "An abundant class of tiny RNAs with probable regulatory roles in

RT Caenorhabditis elegans";

RL Science. 294:858-862(2001).

XX

DR RFAM; RF00027; let-7.

DR WORMBASE; C05G5/12462-12364; .

XX

CC let-7 is found on chromosome X in ...

CC the translational repression of these...

CC to late-larval and adult stages [2].

XX

FH Key Location/Qualifiers

FH

FT miRNA 17..38

FT /accession="MIMAT0000001" 

FT /product="cel-let-7"

FT /evidence=experimental

FT /experiment="cloned [1-3,5], ...

FT [6]"

FT miRNA 61..82 

FT /accession="MIMAT0000028"

FT /product="cel-miR-56"

FT /evidence=experimental

FT /experiment="cloned [1-3,5], ...

FT [6]"

XX

SQ Sequence ...

uacacugugg...

uaugcaauuu...

hairpin ID

comments

related publication

related mature miRNA

related mature miRNA

sequence info

hairpin name

Entries in miRNA.dat

Figure 6.5: File examples of tracking miRNA changes

Figure 6.5, where info about the hairpin with name cel-let-7 and id (i.e., key)
MI0000001 is presented.

− miRNA.diff It tracks change operations on hairpins and matures. Each version of
miRNA.diff refers to a certain time period and tracks changes only for that period.

Example entries of miRNA.diff are shown in Figure 6.5. For instance, MI0000001
cel-let-7 NEW means that the hairpin with ID MI0000001 and name cel-let-7 is cre-
ated. Also, MI0004476 mdv2-miR-M29-5p SEQUENCE NAME means that the hairpin
with ID MI0004476 has changed its name (to mdv2-miR-M29-5p) and its sequence.
Note that to find the old name and the old sequence, we should refer to the older
version of the miRNA.dat file, where hairpin names and info about sequences are
available. Similarly, MIMAT0000115 dme-miR-10* SEQUENCE NAME means that the
mature with ID MIMAT0000115 has changed its name (to dme-miR-10*) and its
sequence. Note that IDs starting with “MIMA” refer to matures.

− miRNA.dead It keeps all deleted hairpins at the time of a version. It is main-
tained incrementally. Deletion means either getting rid of a hairpin (e.g., incorrectly
characterized in previous versions) or replacing a hairpin with another one. For the
latter case, links to existing hairpins are provided. Contrary to deleted hairpins,
deleted mature miRNAs are not stored in miRNA.dead file.

Example entries of miRNA.dead are shown in Figure 6.5. For instance, the hairpin
with ID hsa-mir-101-9 and NAME MI0000104 has been deleted. The reason is that it
was a duplicate entry (see the comment in CC field). There is a hairpin (MI0000739),
though, that replaces the deleted one (see the FW field).

− miFam.dat It stores info about hairpin families at the time of a version. Hairpins
that produce similar mature miRNAs belong to the same family. It is maintained
incrementally. Example entries of miFam.dat are shown in Figure 6.5. For instance,
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Table 6.9: Table HairpinsHistory (sample records)

mimaid change name seq first appearance last appearance

..1364 NEW dre-mir-10b ..xyz.. 13 15

..1364 NAME dre-mir-10b-1 ..yzx... 16 17

..1364 SEQ dre-mir-10b-1 ..sdf.. 18 19

..1364 SEQ dre-mir-10b-1 ..xxx.. 20 32

Table 6.10: Table MaturesHistory (sample records)

mimat change name seq par. hairpin first appearance last appearance

..9477 NEW bfl-miR-79 ..yyx.. ... 28 ...

..9477 APH bfl-miR-79 ..xyz.. ..021 28 29

..9477 NS bfl-miR-9-3p ..xzy.. ... 30 32

hairpins with IDs MI0011482 (NAME bta-mir-677) and MI0004634 (NAME mmu-
mir-677) belong to the same family with is mir-677.

We have examined all files and recorded the following types of changes for hairpins:
(1) NEW: a new hairpin is created; (2) NAME: a hairpin changes its name;
(3) SEQUENCE (SEQ): a hairpin changes its sequence; (4) NAME/SEQUENCE (NS):
a hairpin changes both its name and sequence at the same time; (5) FORWARD (FW):
a hairpin is deleted, but miRBase give a link to another hairpin for replacement; and
(6) DELETE (DEL): a hairpin is deleted (no replacement).

Similarly, we have identified the following type of changes for matures: (1) NEW: a
new mature is created, (2) NAME: a mature changes its name, (3) SEQUENCE (SEQ):
a mature changes its sequence; (4) NAME/SEQUENCE (NS): a mature changes both its
name and sequence at the same time; (5) ADD PARENT HAIRPIN (APH): a new hairpin
is added to the list of hairpins that produces a mature; (6) REMOVE PARENT HAIR-
PIN (RPH): a hairpin is removed from the list of hairpins that produces a mature; and
(7) DELETE (DEL): a mature is deleted.

To manage change and version info, we maintain two history tables: HairpinsHistory
and MaturesHistory. Tables 6.9 & 6.10 show how change and version info is maintained
in history tables. For each hairpin change, HairpinsHistory keeps a record with, among
others, the hairpin id, the type of change, the version number where the change occurred,
and the version number where the next change occurs. The hairpin with id ..1364 is first
created in version 13. In version 16, it changes name from dre-mir-10b to dre-mir-10b-1.
No other change has occurred till version 18, where a change in its sequence has occurred.
Another sequence change has occurred in version 20. Similarly, the mature with id ..9477
is first created in version 28, getting the name bfl-miR-79, and having the parent hairpin
..021. In version 30, it changes name (to bfl-miR-9-3p) and sequence.

6.2.4 Publishing Evolving miRNA Linked Data

6.2.4.1 Background

To publish miRNA and miRBase databases as LD, we adopted the “virtual RDF” ap-
proach: accessing a non-RDF database using an RDF view. Such an approach enables the
access of non-RDF, legacy databases without having to replicate the whole database into
RDF. The D2R server [88] is a popular tool that follows the “virtual RDF” approach for
publishing the content of relational databases on the Semantic Web. Database content is
mapped to RDF using the D2RQ declarative language that captures mappings between
database schemas and RDFS/OWL schemas.
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Figure 6.6: RDFS to database mappings: Up-to-date data

A D2RQ mapping specifies how RDF resources are identified and how RDF prop-
erty values are generated from database content. Mappings in D2RQ are declared based
on ClassMaps and PropertyBridges. A ClassMap maps a set of database records to an
RDF class of resources. Resources are assigned URIs using URI patterns. The pattern
hairpins/@@diana hairpins.mima id@@, for instance, produces a relative URI like
hairpins/MI0000005 by inserting a value from the column mima id of table hairpins

of miRNA database into the pattern. The D2R Server turns relative URIs into absolute
URIs by expanding them with the server’s base URI. If a database already contains URIs
for identifying database content, then these external URIs can be used instead of pattern-
generated URIs. The following ClassMap definition creates the class of hairpin resources,
and assigns them URIs using their ids from the miRNA database:

map:Hairpins a d2rq:ClassMap;

d2rq:dataStorage map:database;

d2rq:uriPattern "hairpins/@@diana_hairpins.mima_id@@";

d2rq:class diana:Hairpin;

d2rq:classDefinitionLabel "Hairpin";

Each ClassMap has a set of PropertyBridges which specify how the properties of an
RDF instance are created. Property values can be literals, URIs or blank nodes, and
can be created directly from database values or by employing patterns. The following
PropertyBridge definition creates the property diana:name. Values for that property are
created from the name column of table diana haipins:

map:diana_hairpins_name a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:Hairpins;

d2rq:property diana:name;

d2rq:propertyDefinitionLabel "Hairpins name";

d2rq:column "diana_hairpins.name";

Note that D2R provides flexible mappings of complex relational structures, allowing
SQL statements directly in the mapping rules. The resulting record sets are grouped
afterwards and the data is mapped to the created instances.

We used D2R as a full-fledge Linked Data server. The size of the LD base is around
100M triples.

6.2.4.2 Schema and Mappings

The miRNA LD schema has been designed around four core classes: Hairpin, Mature,
ProteinGene and Transcript (defined as ClassMap entities in D2R - see previous sub-
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Figure 6.7: RDFS to database mappings: Historic data

section). Figure 6.6 shows an overview of the schema adopted and part of the mappings
used. Consider, for example, the class Mature. Resources of that class are assigned URIs of
the form http://.../resource/matures/[Matures.mimat], where Matures.mimat gets
values from column mimat of Table Matures. Some of the class properties are: name,
species, relatedKegg, targetsProteinGene (defined as PropertyBridge entities in D2R
- see Section 6.2.4.1).

Consider also the property targetsProteinGene that relates matures with genes (tar-
gets). Note that ProteinGene resources are assigned URIs of the form http://.../re-

source/proteingenes/[ProteinGenes.ensgid], where ProteinGenes.ensgid gets val-
ues from column ensgid of Table ProteinGenes. For a given Mature URI, to calculate
the URIs of related ProteinGene resources, the mapping definition should include the
following join:

Matures.mimat=MicroT5Interactions.mimat AND

MicroT5Interactions.tid=Transcripts.tid AND

Transcripts.enstid=ProteinGenes.enstid.

Figure 6.7 shows an overview of the schema adopted and part of the mappings used
to manage changes and versions (more details in Section 6.2.5.2). Finally, to link our LD
to the LD cloud, we provide owl:sameAs links to appropriate biological LD infrastruc-
tures. See, for example, the BIO2RDF14 data source that provide RDF descriptions for
transcripts, tissues, keggs, and species.

6.2.5 Exploring Evolving miRNA Linked Data

One of the major research problems in LD publishing is how to deal with linked data
that changes over time. While handling changes for information resources [90] is rather
straightforward, handling changes for non-information resources is a challenging issue.
Key requirements for dealing with changes in miRNA LD are the following:

− Biologists that care only about the current state of data should be able to browse
or query the miRNA LD base easily to get up-to-date data. Also, up-to-date data
should be easily retrieved using SPARQL.

14bio2rdf.org
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− Biologists should be able to query historic miRNA data, and navigate through ver-
sions. Also, miRNA changes should be treated as first-class citizens so that one can
form SPARQL queries that involve change resources, and trace those changes and
their effects.

Next we present how we deal with the above requirements.

6.2.5.1 Up-to-date Data

Using the D2R browsing facilities, biologists can navigate through the miRNA LD base,
exploring hairpin, mature, gene or transcript resources and their descriptions. All data
provided refer to the current version of miRNA database. Also, any resource URI refers to
the current version of that resource. This is ensured because all triples involving resources
from Hairpin, Mature, ProteinGene and Transcript classes are populated from the core
and join tables of Table 6.8 that are up-to-dated.

Using the D2R SPARQL end-point facilities, biologists can pose SPARQL queries to
the miRNA LD. Whenever a resource URI is used in a query, it refers to the current
version of that resource. To get up-to-date results, a property should be used to avoid
the retrieval of out-of-date triples. For example, the following SPARQL query retrieves 10
hairpins, and their sequences, that are located in chromosome X from the current version
of miRNA LD:

SELECT ?h ?s WHERE {

?h rdf:type diana:Hairpin.

?h diana:sequence ?s.

?h diana:chromosome "X".

?h diana:label "now". } LIMIT 10

6.2.5.2 Historic Data

Out-of-date resource descriptions are retrieved using the following pattern for URIs:
URI/{version number}. For example, the URI: http://.../resource/hairpins/

MI0000044/8.0 retrieves the RDF description of hairpin MI0000044 in version 8.0 of miR-
Base. To pose the previous SPARQL query on that version of miRBase, one should
replace ?h diana:label "now". with ?h diana:version "8.0". Note that we also
provide properties (diana:nextVersion, diana:prevVersion) to move to the next and
the previous version of a resource description.

To be able to provide the property values and URIs which are valid at a certain
version, we exploit the version information present in the history tables HairpinsHistory
and MaturesHistory (see Tables 6.9 and 6.10). Figure 6.7 shows an overview of the schema
adopted and part of the mappings used to manage changes and versions. For example,
given a current version curVer, to retrieve the valid value for the name property of a
hairpin, we should define a conditional mapping to focus the retrieval on values that
remain unchanged for a time period that starts before curVer and ends after curVer

(similarly for, e.g., mature names).
Each hairpin or mature resource description includes properties that capture the

changes which those resources are affected by. For each change, we track its effect and
its cause, where appropriate. Figure 6.8 shows the description of mature MIMAT0010008
at version 1615. The following SPARQL query retrieves 10 hairpins that where deleted or
replaced in version in version 1.3. of miRBase, and the URIs of the change operations:

SELECT ?h ?d ?c WHERE {

?h rdf:type diana:Hairpin.

{{?h diana:changeDelete ?d.} UNION {?h diana:changeForward ?c.}}

?h diana:version "1.3". } LIMIT 10

15URI: http://.../resource/matures/MIMAT0010008/16.0
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Figure 6.8: Resource description of mature MIMAT0010008 at version 16.0

We can also retrieve historical info about change occurrences. The following SPARQL
query returns name or sequence changes that happened on hairpin MI0001364:

SELECT ?h ?c ?v WHERE {

?h rdf:type diana:Hairpin.

?h diana:accession "MI0001364".

{{?h diana:changeName ?c. ?c diana:inVersion ?v.}

UNION

{?h diana:changeSequence ?c. ?c diana:inVersion ?v.}}}

6.2.6 Related Work

The Linked Data (LD) paradigm involves practices to publish, share, and connect data
on the Web, and offers a new way of data integration and interoperability. Briefly, LD is
about using the Web to create typed links between data from different sources. The driving
force to implement Linked Data spaces is the RDF technology. The basic principles of the
LD paradigm is (a) use the RDF data model to publish structured data on the Web, and
(b) use RDF links to interlink data from different data sources. Linked Data technologies
have given rise to the Web of Data: a Web of things in the world, described by data
on the Web. The Web of Data extents current Web to a global data space connecting
data from diverse domains. The Web of Data is impelled by the current trend towards
an open Web. The open data movement is a significant and emerging force towards this
direction. Open data is public data which are available to people without any restriction.
LD serve a great cause, enabling transparency, accountability and good governance for
public administrations.

In the context of LD, numerous approaches have been proposed to study the problems
of evolution, versioning, and change detection. In [377], the term dataset dynamics is
coined, essentially addressing content and interlinking changes in linked data sources. In
[378], a comparative study on the approaches and tools for detecting, propagating and
describing changes in LD resources and datasets is provided. This survey identifies the
following interesting problems for LD dynamics: change detection at several granularity
levels (i.e., at the dataset level, at the triple level, etc), common vocabulary for change
description across multiple domains, appropriate communication and notification mecha-
nisms for change propagation and finally automatic change (i.e., broken links) discovery.
In [313], the authors deal with changes in the linkage between datasets and specifically with
the problem of broken links. They propose, DSNotify, a framework able to assist human
and machine actors fixing broken links. A similar approach is the Silk linking framework
[389], which is used for discovering and maintaining data links between web data sources.
It consists of a link discovery engine, a tool for evaluating the generated links and a pro-
tocol for maintaining data links between continuously changing data sources. Regarding
versioning and temporal approaches to LD, in [144] the Memento framework is introduced
as a resource versioning mechanism for LD. It is based on HTTP and handles different
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versions of linked data by attaching time-specific attributes to HTTP requests. Finally, in
[129] they propose linked timelines, a temporal representation and management for LD.
This approach augments URIs with temporal attributes and employs temporal reasoning
for resolving URIs validity.

Our approach is specially-tailored to the scientific domain of life science data, and
more specifically to genomic and experimental data related to microRNA biomolecules.
Several attempts have been recently made to provide scientific LD services. W3C has
established the Semantic Web Health Care and Life Sciences Interest Group (HCLS)16,
aiming to exploit Semantic Web technologies for the management and the representa-
tion of biological, medicine and health care data. The HCLS group works on Linking
Open Drug Data (LODD) project which provides linked RDF data exported from several
data sources like ClinicialTriasl.gov, DrugBank, DailyMed, etc. Additionally, Bio2RDF 17

provides linked RDF data produced from over 30 biological data sources. Some earlier
efforts include YeastHub [121], LinkHub [348], BioDash [296] and BioGateway18. Fi-
nally, Chem2Bio2RDF [117] integrates chemical and biological information. Also, several
chemogenomics repositories have been transformed into RDF and linked to Bio2RDF and
LODD RDF resources.

6.2.7 Summary

In this section we presented our work on publishing diachronic life science data. Par-
ticularly, legacy data from two well-known microRNA databases with experimental data
and observations, as well as change and version information about microRNA entities,
are fused, modeled and exported as Linked Data. Our Linked Data infrastructure can
assist biologists to explore biological entities, navigate between versions, and also allow
applications to query historical miRNA data and track changes via a SPARQL endpoint.

16www.w3.org/blog/hcls
17bio2rdf.org
18www.semantic-systems-biology.org/biogateway
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Chapter 7

Summary and Future Work

This thesis presented novel methods for managing and analysing large amounts of data.
We focused on three complementary directions for enabling Big Data management and
analysis. Initially, we proposed scalable methods for preference-aware data management
and analysis. Then, we implemented techniques for efficient exploration and visualization
over large sets of numeric, temporal and graph data. Finally, we proposed methods for
semantic data integration, exploration and retrieval.

In the remainder of this chapter, we discus in more detail our contributions and we
identify interesting aspects that we propose for future work.

7.1 Summary

Initially, we considered the personalization problem of finding and ranking objects that are
preferable by a group of users based on their preferences. For this problem, we proposed
an objective and fair interpretation based on Pareto-based aggregation. Based on this
interpretation, we studied three related problems. The first is to find the set of objects
that are unanimously considered ideal by the entire group. In the second problem, we
relaxed the requirement for unanimity and only require a percentage of users to agree.
Then, in the third problem, we devised an effective ranking scheme based on our aggre-
gation framework. For the aforementioned problems we proposed index-based algorithms
which employ a space partitioning index to hierarchically group objects. Regarding the
ranking problem, we theoretically studied our ranking scheme and presented a number of
theoretical properties satisfied by our approach.

Then, we studied some of the most well-known skyline algorithms. We adapted the
algorithms based on a realistic I/O model that better captures performance in a real
system. Furthermore, we studied the management of in-memory objects and we introduced
various policies. In our experiments, we evaluated real disk-based implementations, rather
than simulations. Our analysis, demonstrated that, in many cases and contrary to common
belief, algorithms that pre-process the dataset are not faster. Finally, we evaluated the
proposed policies, and reached the conclusion that in some settings these policies can
reduce the number of dominance checks by more than 50%.

In the context of exploration, we examined the problem of on-the-fly efficient visual
exploration over large sets of data. As a result, we proposed a framework that offers per-
sonalized multilevel exploration. Our framework is built on top of a lightweight tree-based
structure that aggregates input objects into a hierarchical multilevel model. On top of
this model, we defined different exploration scenarios, assuming various user exploration
preferences. In order to enable efficient exploration over large datasets, our framework of-
fers incremental hierarchy construction and prefetching based on user interaction. Finally,
the proposed framework provides a method which dynamically and efficiently adapts an
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existing hierarchy to a new, taking into account a set of user preferences.

Furthermore, we considered the problem of visualizing large graphs. For this problem
we proposed a novel platform that introduces a new paradigm to interact with the visual-
ized graph in a way that is similar to maps exploration. The platform bases its efficiency
to a disk-based scheme for indexing and storing the graph. Finally, in order to enable very
large graphs visualization, a partition-based approach is proposed.

Regarding semantic techniques, we considered the problem of integration between XML
and semantic data sources. As a result, we proposed a framework which bridges the
heterogeneity gap and creates an interoperable environment. In this context, we defined
a mapping model, as well as query and schema transformation methods.

Next, we examined the problem of semantic information retrieval. For this purpose,
we proposed a framework that supports ontology-based annotation and retrieval, in a fully
collaborative environment. The framework provides an automatic annotation mechanisms
that is based on a learning method that recommend annotations for new documents.
Further, we introduced a model for flexible combination of textual-based and semantic-
based retrieval in conjunction with advanced semantic-based operations.

Finally, we considered the problem of modeling, publishing and exploring evolving
data, adopting the Linked Data paradigm. We proposed an RDF-based change model to
capture versioned entities. Based on this model we converted legacy data from biological
databases to evolving Linked Data. Moreover, we developed a Linked Data infrastructure
that offers exploration and retrieval over evolving data.

7.2 Future Work

During the course of this dissertation, we have identified the following interesting aspects
that we propose as future work.

− Recently, there has been a lot of work in partitioning-based skyline algorithms. Al-
though these approaches significantly reduce the number of checks between objects,
they do not consider the number I/Os that are possibly required. As a result, in
cases where the skyline size exceeds the memory size, these algorithms perform a
large number of I/Os which significantly affect the overall performance. A nice
alternative would be to design a simple scan-based algorithm (i.e., BLN-like) that
performs well in I/Os, enriched with a lightweight space partition scheme (e.g., grid),
which can be exploited to reduce the object checks by considering both the notions
of dominance and incomparability.

− In this thesis, we proposed a partition-based method for visualizing very large graphs.
This method adopts an approach where the visualized partitions are combined and
organized into a “global” partition. In this context, we presented a greedy algorithm
that attempts to avoid node overlaps, as well as minimize the length of the edges
connecting different partitions. Currently, we work on evaluating the effectiveness of
the proposed algorithm, as well as on the development and the comparison of several
alternative methods. A challenging extension would be to define a more flexible and
complex setting for the partition organization problem. A potential solution to this
problem would be to also examine the rotation of the partitions, and the reposition
of nodes inside partitions. Finally, an interesting issue is to examine proving whether
the partition organization problem is NP-hard.

− Another interesting problem would be the on-the-fly visualization of large graphs. In
this setting, there is no preprocessing phase and the graph is stored in a file as raw
data. Initially, the user selects a node to starts her exploration. This starting node
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can be determined by several techniques, e.g., by providing the node’s name, using
keyword search, recommendation, etc. Each time the user visits a node, the nodes
that are connected with this node within a predefined path length, are retrieved from
the file and visualized. In the described problem, several challenging issues arise with
respect to real-time exploration; for instance, how to efficiently find and retrieve from
the large raw file, the parts of the graph that are required. Furthermore, prefetch
and index parts of the graph that are likely to be accessed by user. Finally, in cases
where a large number of edges and nodes are visualized, large amounts of memory
are required from the user interface. Hence, in such cases there is a problem to select
parts of the visualized graph to remove from the canvas.

− Regarding multilevel exploration, the framework proposed in this thesis considers
objects to be organized and explored over one attribute. A challenging extension
of this would be to provide methods and structures that support exploration over
more than one dimension. For example, extend our framework to offer multilevel
exploration (over two attributes) using scatter plots. Furthermore, an interesting
problem would be the modification of our methods to consider issues related to
efficient object management. For example, resigned our method in order to reduce
the I/O cost over the raw input data; minimize the number of objects required to
be accessed in each step by the incremental method, etc.

− In an exploration scenario, it is common that users are interesting in finding some-
thing interesting and useful without previously knowing what exactly they are search-
ing for, until the time they identify it. In this case, users perform a sequence of
operations (e.g., queries), in which the result of each operation determines the for-
mulation of the next operation. In this setting, caching and prefetching the sets of
data that are likely to be accessed by the user in the near future can significantly re-
duce the response time. Several works have recently studied the problem of caching
and prefetching in an exploration scenario. An interesting direction would be the
development of caching and prefetching techniques considering several exploration
settings. These settings may be characterized by the supported interactive opera-
tions and/or the visualization type. For instance develop “operation-aware” caching
and prefetching techniques for a specific operation, e.g., pan, drill-down, roll-up,
zoom. In conjunction with “operation-aware” techniques, it would be interesting
to developed “type-aware” techniques based on the visualization type, e.g., graph,
line chart, scatter, histograms. Finally, an interesting topic would be the adaptation
of caching and prefetching techniques from location-based and spatial-based query
processing for the visual exploration context.

− In the context of multilevel exploration, an interesting direction would be to extend
the presented framework in order to support more rendering policies and interaction
operations. Particularly, it would be challenging to develop more flexible rendering
policies; e.g., rendering all or a number of nodes of current level; rendering all nodes
below (and including) the current level, etc. Regarding interaction operations, the
currently supported operations (i.e., roll-up, drill-down) enable users to navigate
over the hierarchy in a vertical fashion, by moving up and down to hierarchy levels.
It would be useful to also support operations which will allow users to explore the
hierarchy horizontally. For example, it would be valuable for the user to access
different sets of sibling nodes without the need to change level on the hierarchy.

− The hierarchical aggregation framework presented in this thesis, organizes data based
on binning methods. Particularly, in order to achieve efficient on-the-fly data pro-
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cessing, simple binning methods (i.e., equal-width and equal-frequency) have been
adopted. However, it is known that these methods are vulnerable to skewed data
distributions and outliers. Hence, in order to effectively handle non-uniform data dis-
tributions, more sophisticated (e.g., supervised) discretization methods are required.
On the other hand, in our setting, where on-the-fly data processing is required, the
use of sophisticated discretization methods is not an option (due to their high com-
putational complexity). Considering also the great importance of data reduction in
the general problem of large data visualization, the development of both effectively
and efficiently data reduction techniques would be an interesting topic.

− In the context of XML and Semantic Web interoperability, several interesting prob-
lems may be considered. First, an interesting topic would be the specification of so-
phisticated XQuery rewriting rules that exploit the XML Schema semantics, in order
to improve the performance of the XQuery expressions resulted from the SPARQL
translation. Another direction would be the extension of the presented methods in
order to support the new SPARQL features introduced by SPARQL 1.1 (e.g., nested
queries, aggregate functions). Finally, a useful extension would be the integration
of our framework with other interoperability systems that handle different types of
heterogeneous data sources.

In conclusion, we believe that there is a plethora of interesting and novel topics relevant
to the issues studied in this dissertation. We hope that this thesis will be an instigation
for further research in these areas.
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[288] K. McCarthy, M. Salamó, L. Coyle, L. McGinty, B. Smyth, and P. Nixon. CATS: A
Synchronous Approach to Collaborative Group Recommendation. In Florida Arti-
ficial Intelligence Research Society Conference, 2006.

[289] D. L. McGuinness and van Harmelen F., editors. OWL Web Ontology Language:
Overview. W3C Rec., 2004. www.w3.org/TR/owl-features.

[290] R. J. Miller, L. M. Haas, and M. A. Hernández. Schema Mapping as Query Discovery.
In Intl. Conference on Very Large Databases (VLDB), 2000.

[291] T. M. Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.

[292] M. H. Montague and J. A. Aslam. Condorcet Fusion for Improved Retrieval. In Intl.
Conference on Information and Knowledge Management, 2002.

[293] M. D. Morse, J. M. Patel, and H. V. Jagadish. Efficient Skyline Computation over
Low-Cardinality Domains. In Intl. Conference on Very Large Databases (VLDB),
2007.

[294] K. Morton, M. Balazinska, D. Grossman, and J. D. Mackinlay. Support the Data
Enthusiast: Challenges for Next-Generation Data-Analysis Systems. VLDB Endow-
ment (PVLDB), 7(6), 2014.

[295] E. Motta, P. Mulholland, S. Peroni, M. d’Aquin, J. M. Gomez-Perez, V. Mendez,
and F. Zablith. A Novel Approach to Visualizing and Navigating Ontologies. In
Intl. Semantic Web Conference (ISWC), 2011.

[296] E. K. Neumann and D. Quan. Biodash: A semantic web dashboard for drug devel-
opment. In Pacific Symposium on Biocomputing, 2006.

[297] E. Ntoutsi, K. Stefanidis, K. Nørv̊ag, and H.-P. Kriegel. Fast Group Recommen-
dations by Applying User Clustering. In Intl. Conference on Conceptual Modeling
(ER), 2012.

[298] M. O’Connor, D. Cosley, J. A. Konstan, and J. Riedl. PolyLens: A recommender
system for groups of user. In European Conference on Computer Supported Cooper-
ative Work, ECSCW, 2001.

[299] D. P, P. M. Deshpande, D. Majumdar, and R. Krishnapuram. Efficient skyline re-
trieval with arbitrary similarity measures. In Intl. Conference on Extending Database
Technology (EDBT), 2009.

[300] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in
database systems. ACM Transactions on Database Systems (TODS), 30(1), 2005.

242

www.w3.org/TR/owl-features


[301] M.-H. Park, H.-S. Park, and S.-B. Cho. Restaurant Recommendation for Group of
People in Mobile Environments Using Probabilistic Multi-criteria Decision Making.
In Asia Pacific Conference on Computer Human Interaction, 2008.

[302] Y. Park, M. J. Cafarella, and B. Mozafari. Visualization-Aware Sampling for Very
Large Databases. In IEEE Intl. Conference on Data Engineering (ICDE), 2016.

[303] H. Paulheim. Generating Possible Interpretations for Statistics from Linked Open
Data. In Extended Semantic Web Conference (ESWC), 2012.

[304] J. Perez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL.
ACM Transactions on Database Systems (TODS), 34:3, 2009.

[305] I. Petrou, M. Meimaris, and G. Papastefanatos. Towards a methodology for pub-
lishing Linked Open Statistical Data. eJournal of eDemocracy & Open Government,
6(1), 2014.

[306] D. Phan, L. Xiao, R. B. Yeh, P. Hanrahan, and T. Winograd. Flow Map Layout.
In IEEE Symposium on Information Visualization (InfoVis), 2005.

[307] F. Picalausa and S. Vansummeren. What are real SPARQL queries like? In Intl.
Workshop on Semantic Web Information Management, 2011.

[308] E. Pietriga. IsaViz: a Visual Environment for Browsing and Authoring RDF Models.
In World Wide Web Conference (WWW), 2002.

[309] A. Piliponyte, F. Ricci, and J. Koschwitz. Sequential Music Recommendations for
Groups by Balancing User Satisfaction. In User Modeling, Adaptation, and Person-
alization, 2013.

[310] S. Pizzutilo, B. De Carolis, G. Cozzolongo, and F. Ambruoso. Group Modeling in
a Public Space: Methods, Techniques, Experiences. In Int. Conference on Applied
Informatics and Communications, 2005.

[311] A. Polleres. From SPARQL to Rules (and back). In World Wide Web Conference
(WWW), 2007.

[312] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin. Translating
Web Data. In Intl. Conference on Very Large Databases (VLDB), 2000.

[313] N. Popitsch and B. Haslhofer. Dsnotify: handling broken links in the web of data.
In World Wide Web Conference (WWW), 2010.

[314] E. Prud’hommeaux and S. A., editors. SPARQL Query Language for RDF. W3C
Rec., 2008. www.w3.org/TR/rdf-sparql-query.

[315] D. A. Quan and R. Karger. How to make a semantic web browser. In World Wide
Web Conference (WWW), 2004.

[316] C. R. A relational algebra for SPARQL. Technical report, Hewlett-Packard Labo-
ratories, 2005. www.hpl.hp.com/techreports/2005/HPL-2005-170.html.

[317] L. Reeve and H. Han. Survey of semantic annotation platforms. ACM Symposium
on Applied Computing (SAC), 2005.

[318] G. Reif, M. Jazayeri, and H. Gall. Towards semantic Web Engineering: WEESA-
mapping XML schema to ontologies. In Workshop on Application Design
(WWW2004), 2004.

243

www.w3.org/TR/rdf-sparql-query
www.hpl.hp.com/techreports/2005/HPL-2005-170.html


[319] W. H. Riker. Liberalism Against Populism. Waveland Press Inc, 1988.

[320] P. Ristoski, C. Bizer, and H. Paulheim. Mining the Web of Linked Data with
RapidMiner. In Intl. Semantic Web Conference (ISWC), 2014.

[321] P. Ristoski and H. Paulheim. Visual Analysis of Statistical Data on Maps using
Linked Open Data. In Extended Semantic Web Conference (ESWC), 2015.

[322] J. Robie, D. Chamberlin, and et al., editors. XQuery Update Facility 1.0” W3C Rec.
2011. www.w3.org/TR/xquery-update-10.

[323] T. Rodrigues, P. Rosa, and J. Cardoso. Mapping XML to Exiting OWL ontologies.
In Intl. Conference WWW/Internet, 2006.

[324] T. Rodrigues, P. Rosa, and J. Cardoso. Moving from syntactic to semantic organi-
zations using JXML2OWL. Computers in Industry, 59:8, 2008.

[325] M. Rodriguez-Muro, J. Hardi, and D. Calvanese. Quest: Effcient SPARQL-to-SQL
for RDF and OWL. In Intl. Semantic Web Conference (ISWC), 2012.

[326] S. B. Roy, S. Amer-Yahia, A. Chawla, G. Das, and C. Yu. Space efficiency in group
recommendation. VLDB J., 19(6), 2010.

[327] L. Rutledge, J. van Ossenbruggen, and L. Hardman. Making RDF presentable:
integrated global and local semantic Web browsing. In World Wide Web Conference
(WWW), 2005.

[328] B. S. Gloze: XML to RDF and back again. In Jena User Conference, 2006.

[329] D. Sacharidis, S. Papadopoulos, and D. Papadias. Topologically Sorted Skylines for
Partially Ordered Domains. In IEEE Intl. Conference on Data Engineering (ICDE),
2009.

[330] S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. Thibodeau, S. Auer, J. Sequeda, and
A. Ezzat. A Survey of Current Approaches for Mapping of Relational Databases to
RDF. Technical report, Technical Report. RDB2RDF W3C Working Group, 2009.

[331] P. E. R. Salas, F. M. D. Mota, K. K. Breitman, M. A. Casanova, M. Martin, and
S. Auer. Publishing Statistical Data on the Web. Intl. J. Semantic Computing, 6(4),
2012.

[332] A. D. Sarma, A. Lall, D. Nanongkai, and J. Xu. Randomized Multi-pass Streaming
Skyline Algorithms. VLDB Endowment, 2(1), 2009.

[333] C. Sayers. Node-centric RDF Graph Visualization, 2004. Technical Report HP
Laboratories.

[334] S. Schenk, P. Gearon, and P. A., editors. SPARQL 1.1 Update. W3C Rec., 2013.
www.w3.org/TR/sparql11-update.

[335] K. Schlegel, T. Weißgerber, F. Stegmaier, C. Seifert, M. Granitzer, and H. Kosch.
Balloon Synopsis: A Modern Node-Centric RDF Viewer and Browser for the Web.
In Extended Semantic Web Conference (ESWC), 2014.

[336] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: A SPARQL Perfor-
mance Benchmark. In IEEE Intl. Conference on Data Engineering (ICDE), 2009.

244

www.w3.org/TR/xquery-update-10
www.w3.org/TR/sparql11-update


[337] J. Sequeda, R. Depena, and D. Miranker. Ultrawrap: Using SQL Views for
RDB2RDF. In Intl. Semantic Web Conference (ISWC), 2009.

[338] H. Shang and M. Kitsuregawa. Skyline Operator on Anti-correlated Distributions.
VLDB Endowment, 6(9), 2013.

[339] C. Shen and Y. Chen. A dynamic-programming algorithm for hierarchical discretiza-
tion of continuous attributes. European Journal of Operational Research, 184(2),
2008.

[340] C. Sheng and Y. Tao. On finding skylines in external memory. In Symposium on
Principles of Database Systems, 2011.

[341] C. Sheng and Y. Tao. Worst-Case I/O-Efficient Skyline Algorithms. ACM Trans-
actions on Database Systems (TODS), 37(4), 2012.

[342] B. Shneiderman. Tree Visualization with Tree-Maps: 2-d Space-Filling Approach.
ACM Trans. Graph., 11(1), 1992.

[343] B. Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for Information
Visualizations. In IEEE Symposium on Visual Languages, 1996.

[344] B. Shneiderman. Extreme visualization: squeezing a billion records into a million
pixels. In ACM Conference on Management of Data (SIGMOD), 2008.

[345] B. Shneiderman and M. Wattenberg. Ordered Treemap Layouts. In IEEE Sympo-
sium on Information Visualization (INFOVIS), 2001.
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